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Abstract
Bisphosphonates (BPs) have been in use for many years for the treatment of osteoporosis, multiple 
myeloma, Paget's disease, as well as a variety of other diseases in which there is reduced bone 
mineral density. Given that bisphosphonates inhibit bone resorption, an important stage of fracture 
healing; this class of compounds has been widely studied in preclinical models regarding their 
influence on fracture healing. In animal models, bisphosphonate treatment is associated with a 
larger fracture callus, coincident with a delay in remodeling from primary woven bone to lamellar 
bone, but there is no delay in formation of the fracture callus. In humans, de novo use of 
bisphosphonate therapy after fracture does not appear to have a significant effect on fracture 
healing. Rarely, patients with long term use of Bisphosphonates may develop an atypical fracture 
and delay in fracture healing has been observed. In summary, bisphosphonates appear safe for use 
in the setting of acute fracture management in the upper and lower extremity in humans. While 
much remains unknown about the effects on healing of long-term bisphosphonates, use prior to 
“typical” fracture, in the special case of atypical fracture, evidence suggests that bisphosphonates 
negatively influence healing.
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INTRODUCTION
Bisphosphonates have been in clinical use since 1968 (etidronate), and use of these 
compounds has increased in prevalence after the Food and Drug Administration approved 
alendronate for use in September of 1995. As such, millions of doses of bisphosphonates 
(BPs) have been taken worldwide and we have now begun to collect and analyze critical 
data regarding acute, as well as long-term consequences of their use. Herein, we will 
examine the current best evidence regarding the effects of bisphosphonate use on fracture 
healing, including evidence from animal models, as well as human studies, with the aim to 
inform the reader about the implications of bisphosphonate use on bone healing.

Fracture repair is a complex, multi-staged process, of which the end goal is the return of the 
damaged bone to a functional and biomechanically sound state. Immediately post fracture, 
bleeding occurs and this is followed by the formation of a hematoma at the fracture site. 
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This creates an inflammatory environment that recruits mesenchymal stem cells (MSCs) to 
the site of healing, followed by expansion of these cells and their differentiation into either 
osteoblasts or chondrocytes. Via intramembranous ossification, the osteoblast cells form 
new bone on the existing bone surface, flanking the fracture site, generating the hard callus. 
In the center, over the site of fracture, which is a more hypoxic environment and one that is 
less mechanically sound, chondrocytes form a cartilaginous or soft callus via endochondral 
ossification. As the chondrocyte population expands, these cells become hypertrophic and 
the cartilage tissue is mineralized. The callus is then invaded by the vasculature, allowing 
for infiltration by osteoclasts that in turn remove the mineralized cartilage allowing for the 
ultimate bridging of the fracture by woven bone. This is followed by a secondary and more 
prolonged remodeling phase, which includes resorption by the osteoclasts, which converts 
the woven bone to lamellar bone, and remodeling of the original fractured bone below the 
callus, yielding bone that mechanically and anatomically matches the pre-fractured bone.[1, 
2]

All Bisphosphonates (BPs) are analogues of inorganic pyrophosphate, wherein a carbon, in 
place of the natural oxygen, connects the two phosphates. As a result, BPs have two side 
chains that can be modified to modulate their pharmacological properties. Clinically used 
BPs can be divided into non-nitrogen containing compounds such as etidronate, clodronate, 
tiludronate and nitrogen containing BPs such as pamidronate, alendronate, ibandronate, 
risedronate and zoledronate. All BPs have a high affinity for calcium and in the body, they 
concentrate in the skeleton at sites of active bone remodeling. Both classes of BPs become 
embedded in new bone during the anabolic phase of remodeling by binding to the 
hydroxyapatite of bone, where they remain inert. When bone containing a BP is resorbed the 
BPs are released in the acidic lacuna created by the osteoclast, and are taken up by these 
cells. The non-nitrogen containing BPs induce apoptosis in the osteoclast by incorporating 
into ATP and thereby reduce resorption by decreasing the number of active osteoclast cells 
on the bone surface. The more widely used nitrogen containing BPs inhibit farnesyl 
pyrophosphate synthase (FPPS), a key enzyme in the mevalonate pathway. This results in 
cytoskeletal changes in the osteoclast, which inhibit the activity of the osteoclast and or may 
induce apoptosis of these cells. Similar to the non-nitrogen containing BPs, the net result is a 
decrease in osteoclastic bone resorption. Because these compounds become entombed in the 
bone, they reside in the body long after treatment cessation and indeed, the calculated half-
life of elimination of BPs from the skeleton is up to 10 years (reviewed in [3]). This is 
substantiated by the observation of detectable levels of pamidronate in the urine of patients 8 
years after they had ceased treatment [4]. Given that resorption of bone by the osteoclast is a 
key component of fracture repair, concerns have been raised regarding BP associated 
inhibition of the repair process, both in situations where there has been past use of these 
compounds and it is known that BPs have been retained in the skeleton and in cases of acute 
treatment after fracture.

MATERIALS AND METHODS
A literature search of Medline, Google Scholar and PubMed was performed for articles 
addressing the subject of bisphosphonates on fracture healing and this literature search 
yielded 275 citations (search conducted in December, of 2014). Included among our search 
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findings were two recent reviews of meta-analyses of human studies and these papers were 
not considered as a primary reference, yielding 273 papers for consideration.[5, 6] Several 
of the articles identified addressed the topic of preclinical fracture healing with 
bisphosphonates. In addition to database queries, the reference lists of potentially relevant 
articles were also examined to identify additional relevant studies. Inclusion criteria for 
consideration of studies for this literature review included: 1) papers were written in 
English, 2) publication of the study findings in peer-reviewed journals and 3) in vitro and in 
vivo studies that evaluated the implication of Bisphosphonates on fracture healing. We used 
the following exclusion criteria: 1) articles using languages other than English and 2) letters, 
reviews, expert opinion publications or other articles that were not primary reports of 
findings. Articles meeting the above mentioned criteria were retrieved and all of the studies 
related to these were extensively reviewed.

RESULTS
The search strategies yielded a total of 273 potential articles. During the selection process, 
the articles were excluded by title and or by abstract, because they were clearly irrelevant to 
the study question. The papers meeting our inclusion criteria are described in greater detail 
below. These papers could be distributed into two main categories. The first category was 
comprised of studies which investigated the effects of BPs in animal models and the second 
category included the studies which examined effects of BPs use on human fracture healing.

Preclinical animal models
Several animal models have been used to examine the effects of BPs on fracture healing 
including mice, rats, rabbits, dogs and ovine models. Using these models, the impact of 
bisphosphonate administration on indirect fracture healing (healing with callus) has been 
extensively examined and the results have been remarkably consistent, but direct fracture 
healing has been less well studied. Overall, these studies of indirect healing suggest that BP 
administration appears to decrease the remodeling of fracture callus with a concomitant 
increase in fracture bridging and or retained cancellous bone structures within the callus [7, 
8] but it is apparent that BPs do not interfere with the formation of the callus itself [8-15]. 
As a result, there is a delay in the conversion of the woven bone at the fracture to mature 
lamellar bone. [16]

Indirect Fracture Healing—Fu and colleagues studied fracture callus properties in 
ovariectomized rats using alendronate long-term and found a larger fracture callus formed in 
the treated animals. However, despite the observation of a delayed conversion of woven 
bone to lamellar bone in the intervention group, the mechanical properties of the callus were 
similar to control animals.[16] Manabe et al. found similar findings using ibandronate. In 
this study, the authors noted that extending the dosing interval could mitigate the delay of 
conversion of woven bone to lamellar bone in the callus.[17]

Kidd and colleagues studied the effects of either a high or low dose of risedronate on stress 
fracture healing in a rat ulna model. In the animals treated with the higher dose (1.0 mg/kg, 
twice the normal dose for osteoporosis treatment), they found a delay in healing. 
Specifically they noted a reduction in bone resorption and in new bone formation along the 
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fracture line at 6 and 10 weeks post fracture. This delay in healing was not observed in the 
animals treated with a low dose (0.1 mg/kg). Regardless of the dose of risedronate used, 
they observed no interference with callus formation.[18] Sloan and colleagues had similar 
findings study in which the effects of alendronate were examined.[19]

Yu and colleagues noted that early in fracture repair, there was a delay in cartilage 
hypertrophy and in angiogenesis and later in the repair, there a delay in remodeling of the 
callus, cartilage and bone in mice treated with zoledronate. This effect was more pronounced 
in mandible fracture healing than tibia fracture healing in their study [20]. It must be note 
though that this is in stark contrast to studies in rabbits, in which use of zoledronic acid was 
observed to accelerate mandible fracture healing.[21]

Bosemark et al. used a combination of zoledronate and BMP7 in an autograft healing model 
in rats. While they did observe an effect of just BMP7 alone, the combined therapy resulted 
in a substantial increase in callus volume and a four-fold increase in mechanical strength at 
the healed fracture site as compared to the repair observed in the controls. The impact of the 
combined therapy was nearly double that for the BMP7 treatment alone with regards to 
callus volume and ultimate force at failure at the fracture site. [22] In a follow up study, this 
same group examined the combination of BMP7 and zoledronate on healing in an allograph 
model and found a very similar result. [23] Doi and colleagues examined the impact of 
zoledronic acid plus BMP2 in a rat femoral fracture model and determined that healed 
fractures from rats treated with either zoledronic acid alone or zoledronic acid combination 
with BMP2 showed greater ultimate load at failure and greater stiffness than either the 
control treated animals or the animals treated with BMP2 alone. The authors further 
concluded that the combination of BMP2 and zoledronic acid enhanced fracture fusion.[24]

Another group studied low-intensity, pulsed ultrasound combined with alendronate in a rat 
osteotomy model, wherein the fracture was fixed with intramedullary pin. An increase in 
bone mineral density at the osteotomy site was observed in the ultrasound treatment alone 
group, the alendronate treatment alone group and in the combined treatment groups, with the 
greatest effect seen in the combined treatment animals. However, no mechanical testing of 
the healed bone was conducted in this study. [25]

Direct Fracture Healing—Direct bone healing is typically seen with rigid internal 
fixation such as compression plating of a transverse fracture undergoing direct osteonal 
healing. Using rats wherein an osteotomy was rigidly fixed with a compression plate, 
Savaridas and colleagues examined the impact of ibandronate given three weeks prior to 
fracture. They showed impairment in progression to fracture union, a reduction in mean 
stress at failure as assessed by 4 point bending and reduction of bone mineral density at the 
osteotomy site in the treated animals versus controls. Lastly, they observed the presence of 
cartilage-like tissue and undifferentiated mesenchymal tissue at the osteotomy site. [26]

Human studies of acute fracture healing after short term and long term use of BPs
Bisphosphonates are the most commonly used therapy in humans for osteoporosis treatment. 
Like what was found using pre-clinical models, most studies report that fracture callus 
formation is larger but that healing is not impaired in patients treated with bisphosphonates 
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compared with untreated patients.(reviewed in [27, 28]) Indeed, a large meta-analysis of 8 
randomized controlled trials using BPs with fracture healing as an endpoint concluded there 
was no delay in callus formation or healing.[5]

In general, the finding of no impact of BPs on fracture healing was observed in studies 
focused on specific types or sites of fractures, but this was not a universal observation. For 
example, the use of zoledronic acid give to the patient after fracture, irrespective of the 
timing post fracture, has not been shown to affect fracture healing in two separate studies of 
hip fracture patients.[6, 29]. In the upper extremity, bisphosphonates have been studied for 
many different types of fractures and likewise, most authors report no significant delay in 
union in these fractures with BP use immediately after the fracture, but an increase in risk of 
fracture non-union was reported. Conversely, fracture healing in patients already on BP at 
the time of fracture was reported to be slightly delayed, but there was no difference in non-
union incidence.[30] Similarly, Rozental and colleagues report that BP use prior to distal 
radius fracture resulted in <1 week of delay in healing, but in a separate study, the early 
administration of BPs after distal radius fracture did not result in a delay in healing.[31, 32] 
One key instance in which many authors report delayed healing to occur is with long-term 
use of bisphosphonates and development of atypical femoral fractures.[33, 34] 
Unfortunately, a delay in healing was reported to occur in 26% of cases of these rare 
fractures.[35]

DISCUSSION
Considerable study of the effects of BPs on fracture healing has been done using animal 
models and essentially all species studied exhibit formation of larger bony callus and 
delayed remodeling of woven bone into lamellar bone with use of this class of compounds. 
Despite this deviation from the normal pattern of healing, this larger callus size seen in BP 
treated animals was usually reported to be mechanically equivalent to but not superior to 
that found in the control animals. The increases in biomechanical strength may be due to the 
retention of trabecular elements in the callus and or increased fracture bridging. It should be 
noted that the timing of BP dosing relative to the time of fracture does appear to influence 
this delay in healing.

Comparatively speaking, there are fewer human studies that have been performed with BPs 
used around the time of fracture healing. In all of the studies reported to date, there has been 
no significant delay noted in upper extremity or lower extremity fractures when BP therapy 
was initiated right after fracture. Conversely, in patients already on long-term BP therapy 
who sustain an atypical femoral fracture (a clinically rare event), a delay in bony union was 
observed an estimated 26% of the time[35]. At this time, there is insufficient data regarding 
any delay in healing in patients using long-term BP who suffer more typical fractures and as 
such this clinical situation is not fully understood. Similarly, there is a paucity of 
information about the benefits of “drug holidays” during long-term BP use upon suffering of 
fracture.
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CONCLUSION
Animal models of BP use show no delay in periosteal healing but a significant effect on 
fracture remodeling was consistently observed. BPs do not appear to delay human fracture 
healing when the use of these compounds is initiated following the acute fracture, regardless 
of the timing of the initiation of treatment during the healing period. Conversely, there is 
some evidence to suggest that BP therapy should be stopped in patients that have been 
already treated long-term with BPs and then suffer an atypical fracture. Cessation of BP use 
(drug holiday) at the time of fracture may also be prudent after long-term treatment with this 
class of drugs, however this remains a topic of investigation.
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