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In spite of the potency and e)cacy of morphine, its clinical application for chronic persistent pain is limited by the development
of tolerance to the antinociceptive e*ect.(e cellular and molecular mechanisms underlying morphine tolerance are complex and
still unclear. Recently, the activation of glial cells and the release of glia-derived proin+ammatory mediators have been suggested to
play a role in the phenomenon. N-Palmitoylethanolamine (PEA) is an endogenous compound with antinociceptive e*ects able
to reduce the glial activation. On this basis, 30mgkg−1 PEA was subcutaneously daily administered in morphine treated rats
(10mgkg−1 intraperitoneally, daily). PEA treatment signi!cantly attenuated the development of tolerance doubling the number
of days of morphine antinociceptive e)cacy in comparison to the vehicle + morphine group. PEA prevented both microglia and
astrocyte cell number increase induced by morphine in the dorsal horn; on the contrary, the morphine-dependent increase of
spinal TNF-! levels was not modi!ed by PEA. Nevertheless, the immunohistochemical analysis revealed signi!cantly higher TNF-! immunoreactivity in astrocytes of PEA-protected rats suggesting a PEA-mediated decrease of cytokine release from astrocyte.
PEA intervenes in the nervous alterations that lead to the lack of morphine antinociceptive e*ects; a possible application of this
endogenous compound in opioid-based therapies is suggested.

1. Introduction

Opioids remain an integral part of clinical pain management
[1]. Although o-en successful in acute settings, long-term
use of opioids may be accompanied by waning levels of
analgesic response not readily attributable to advancing
underlying disease, necessitating dose escalation to manage
pain. Analgesic tolerance has been invoked to explain such
declines in opioid e*ectiveness over time. (is undesirable
manifestation, along with other adverse e*ects caused by
escalating doses (e.g., oversedation, respiratory depression,
and constipation), signi!cantly decreases quality of life in
patients with chronic pain [2].

Lines of evidence have demonstrated thatmultiple factors
are known to be involved in morphine tolerance [3], mainly
involving neuronal mechanisms of adaptation and sensitiza-
tion. On the other hand, chronic morphine treatment acti-
vates spinal and cortical glial cells [4–7] which contribute the
development of antinociceptive tolerance [6, 8]. Direct and

indirect morphine-evoked signals [7] produce microglia and
astrocyte changes [9] ultimately resulting in increased pro-
duction ofmany substances such as free radicals, nitric oxide,
proin+ammatory cytokines and chemokines, prostaglandins,
complement proteins, neurotoxins, neurotrophic factors, and
excitatory amino acids which actively opposes the analgesic
e*ects of morphine and contributes to the development of
tolerance [10, 11]. Moreover, pharmacological glial inhibition
decreases morphine-induced cytokine release and attenuates
tolerance [7]. Administration of the glial metabolic inhibitor
+uorocitrate has been found to attenuate the development of
morphine tolerance [6]. Minocycline, propentofylline, and
pentoxifylline reduced glial cell activation and signi!cantly
blocked the development of morphine tolerance in naive
mice, as well as in a model of neuropathic pain [5, 12, 13].
Lu et al. [14] showed that patients receiving pentoxifylline
exhibited longer patient-controlled analgesia trigger times in
the presence of attenuated perioperative cytokine response
and required less morphine consumption. However the side
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e*ects of these compounds limit their prolonged use in
persistent pain conditions [15].

N-Palmitoylethanolamine (PEA), the endogenous amide
between palmitic acid and ethanolamine, belongs to the
family of fatty acid ethanolamides (FAEs), a class of lipid
mediators. PEA exerts antinociceptive e*ects in several ani-
mal models [16, 17]. Its safety and e)cacy were shown in
a variety of clinical trials focused on pain state treatment:
diabetic neuropathy, carpal tunnel syndrome, dental and
temporomandibular joint pain, and arthritic, postherpetic,
and chemotherapy-induced neuropathic pain [18, 19]. More-
over, PEA protects nervous tissue in neuropathic conditions
[20], prevents neurotoxicity and neurodegeneration [21, 22],
and inhibits peripheral in+ammation and mast cell degranu-
lation [23]. Further, PEA reduced the activation of microglia
and astrocytes [24]. PEA normalized spinal microglia and
astrocyte activation in the rat model of in+ammatory pain
induced by formalin [25] as well as a-er spinal cord
trauma in mice [26]. Treatment with PEA reducedmicroglial
activation and the number of astrocytes in the model of
Parkinson’s disease induced by 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) [27] and counteracts reactive
gliosis a-er "-amyloid peptide injection in rat brain [28].

Based on the hypothesis that the glial cell modulator PEA
may in+uence the development of morphine tolerance, the
antinociceptive e*ect of repeated treatment with the alkaloid
was evaluated overtime during PEA administration.

2. Material and Methods

2.1. Animals. Male Sprague-Dawley rats (Harlan, Varese,
Italy), weighing 200–250 g at the beginning of the experi-
mental procedure, were used for all the experiments. Animals
were housed in CeSAL (Centro Stabulazione Animali da
Laboratorio, University of Florence) and used no earlier than
one week a-er their arrival. Four rats were housed per cage
(size 26 × 41 cm); animals were fed with standard laboratory
diet and tap water ad libitum and kept at 23 ± 1∘C with a
12 h light/dark cycle, light at 7 a.m. All animal manipulations
were carried out according to the European Community
guidelines for animal care (DL 116/92, application of the
European Communities Council Directive of 24 November
1986; 86/609/EEC). (e ethical policy of the University of
Florence complies with the Guide for the Care and Use of
Laboratory Animals of the US National Institutes of Health
(NIH Publication number 85-23, revised 1996; University
of Florence assurance number: A5278-01). Formal approval
to conduct the described experiments was obtained from
the Animal Subjects Review Board of the University of
Florence and the research was authorized by the Italian
Ministry of Health (Decree 54/2014-B). All e*orts were made
to minimize animal su*ering and to reduce the number of
animals used.

2.2. Pharmacological Treatments. Micronized PEA (Epitech,
Padova, Italy) was dissolved in PEG and Tween 80 2 : 1
(Sigma-Aldrich,Milan, Italy) and kept overnight under gentle
agitation with a microstirring bar. Before injection, sterile

saline was added so that the !nal concentrations of PEG
and Tween 80 were 20 and 10%v/v, respectively. Drug was
injected daily (9 a.m., from day 1 to day 11) subcutaneously
(s.c.) in a dose of 30mgkg−1. Morphine (S.A.L.A.R.S., Como,
Italy) was dissolved in sterile saline and injected daily (2
p.m., from day 1 to day 11) intraperitoneally (i.p.) in a dose
of 10mgkg−1. Behavioral measurements were performed
immediately before and 30min a-er morphine administra-
tion. Dosages were chosen on the basis of previous studies
[20, 29, 30]. (e described dosages were administered with
respect to the body weight and all injections were given in a
mean volume of 0.3mL. Control animals were treated with
vehicle.

2.3. Paw Pressure Test. (e nociceptive threshold in the
rat was determined with an analgesiometer (Ugo Basile,
Varese, Italy), according to the method described by [31].
Brie+y, constantly increasing pressure was applied to a small
area of the dorsal surface of the hind paw using a blunt
conicalmechanical probe.Mechanical pressurewas increased
until vocalization or a withdrawal re+ex occurred while rats
were lightly restrained. Vocalization or withdrawal re+ex
thresholds were expressed in grams. Rats scoring below 40 g
or over 75 g during the test before drug administration were
rejected (25%). For analgesia measures, mechanical pressure
application was stopped at 120 g [32].

2.4. Plantar Test. Pain thermal sensitivity was measured
using a plantar test apparatus (Ugo Basile, Varese, Italy),
wherein the paw withdrawal latency to a thermal stimulus
was measured, as described previously [33]. (e apparatus
used a test unit containing a heat source that radiated a
light beam. An adjustable angled mirror on the test unit
was used to locate the correct targeting area on the paw.
(e beam source was set with an active intensity of 40%,
an idle intensity of 10%, and a cut-o* time of 25 s. (e
paw withdrawal latency comprised the time from the start
of the beam light until the animal withdrew the paw from
the heat stimulus (reaction time was measured to 0.01 s).
An acrylic six-chamber container was used to separate the
rats that were placed on the glass base. (e baseline paw
withdrawal latency values were close to 10 s when the current
parameters were used.Measurements were taken in duplicate
at least 1min apart, and the average was used for statistical
analysis. Behavioural responses of both le- and right paws
were measured.

2.5. Immuno)uorescence Staining. On days 6 and 11, rats
were sacri!ced; the L4/L5 segments of the spinal cord were
exposed from the lumbovertebral column via laminectomy
and identi!ed by tracing the dorsal roots from their respec-
tive DRG. According to [34–36], formalin-!xed cryostat
sections (7 $m) were washed 3× with phosphate-bu*ered
saline (PBS) and 0.3% Triton X-100 for 5min and then
were incubated, at room temperature, for 1 h in blocking
solution (PBS, 0.3% Triton X-100, and 5% albumin bovine
serum; PBST). Sliceswere incubated overnight at 4∘C inPBST
containing rabbit primary antisera. (e primary antibody
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used was directed against ionized calcium binding adapter
molecule 1 (Iba1; rabbit, 1 : 1000; Wako, Richmond, VA, USA)
for microglial staining or against glial !brillary acidic protein
(GFAP; rabbit, 1 : 1000; DAKO, Carpinteria, CA, USA) for
astrocyte staining. (e following day slides were washed
3× with PBS and 0.3% Triton X-100 for 5min and then
sections were incubated in goat anti-rabbit IgG secondary
antibody labeled with Alexa Fluor 568 (1 : 500; Invitrogen,
Carlsbad, USA) and DAPI (4#,6-diamidin-2-phenylindole;
1 : 2000; Life Technologies-(ermo scienti!c, Rockford, IL,
USA), a nuclei marker, in PBST at room temperature for
2 h, in the dark. A-er 3× PBS and 0.3% Triton X-100 wash
for 10min, slices were mounted using ProLong Gold (Life
Technologies-(ermo scienti!c, Rockford, IL, USA) as a
mounting medium.

Negative control sections (no exposure to the primary
antisera) were processed concurrently with the other sections
for all immunohistochemical studies, in order to exclude the
presence of nonspeci!c immuno+uorescent staining or cross
immunostaining.

Images were acquired by using an Olympus BX63micro-
scope equipped with an Olympus XM10 camera and coupled
to CellSens Dimension So-ware (Olympus, Milan, Italy).

Quantitative analysis of GFAP and Iba1-positive cells was
performed by collecting three independent !elds through a
20x 0.40NA objective in the dorsal horn of each rat spinal
cord. GFAP and Iba1-positive cells were counted using the
“cell counter” plugin of ImageJ (NIH, Bethesda, Maryland,
USA).

2.6. Double Immuno)uorescence Staining. To evaluate the
tumor necrosis factor-! (TNF-!) expression in the dorsal
horn of rat spinal cord, double immuno+uorescent labeling
of TNF-! and GFAP for astrocytes or OX42 for microglia
was performed. Formalin-!xed cryostat sections (7 $m)were
washed 3×withPBS and 0.3%TritonX-100 for 5min and then
were incubated, at room temperature, for 1 h in PBST. To visu-
alize TNF-! and microglia the primary antibodies used were
directed against TNF-! (rabbit, 1 : 1000; (ermo scienti!c,
Rockford, IL, USA) and OX42, a microglia marker (mouse,
1 : 150; BD Bioscience, Becton&Dickinson, New Jersey, USA).
Antibodies were incubated overnight at 4∘C in PBST. (e
following day, slides were washed 3× PBS and 0.3% Triton
X-100 for 5min and then sections were incubated in goat
anti-rabbit IgG secondary antibody labeled with Alexa Fluor
568 (1 : 500, Invitrogen, Carlsbad, USA), to visualize TNF-!, and in goat anti-mouse IgG secondary antibody labeled
with Alexa Fluor 488 (1 : 500; Invitrogen, Carlsbad, USA), to
visualize microglia, and DAPI (1 : 2000, Life Technologies-
(ermo scienti!c, Rockford, IL, USA), a nuclei marker, in
PBST at room temperature for 2 h in the dark. A-er 3× PBS
and 0.3% Triton X-100 wash for 10min, slices were mounted
using ProLong Gold (Life Technologies-(ermo scienti!c,
Rockford, IL, USA) as a mounting medium. (e same
procedure was repeated to visualize TNF-! and astrocytes
using the described antibody directed against TNF-! and a
mouse GFAP Alexa Fluor 488 conjugated (1 : 200; Millipore,
Temecula, CA, USA). Negative control sections (no exposure
to the primary antisera)were processed concurrentlywith the

other sections for all immunohistochemical studies, in order
to exclude the presence of nonspeci!c immuno+uorescent
staining or cross immunostaining. Images were acquired as
above. Quantitative analysis of TNF-! and GFAP expression
or TNF-! and OX42 expression was performed by collecting
three independent !elds through a 20x 0.40NA objective
in the dorsal horn of each rat spinal cord. Colocalization
that can be described as the spatial overlap of two or
more dyes in a multichannel image of TNF-! and GFAP
or of TNF-! and OX42 was evaluated using the “JACoP”
(just another colocalization plugin) plugin of ImageJ (NIH,
Bethesda, Maryland, USA). Colocalization can be estimated
by calculating a number of values representing the proportion
of colocalized pixels. (ese values are called colocalization
coe)cients [37]. In this work we evaluated the overlap
coe)cient: it indicates an actual overlap of the signals and is
considered to represent the true degree of colocalization [38].

2.7. Enzyme-Linked Immunosorbent Assay (ELISA) TNF-!.
(e dorsal horns of the spinal cord were homogenized in
lysis bu*er containing 50mM Tris-HCl pH 8.0, 150mM
NaCl, 1mM EDTA, 0.5% Triton X-100, Complete Protease
Inhibitor (Roche, Milan, Italy), in ice, and centrifuged at
13,000×g for 15 minutes at 4∘C. (e protein concentration
of the supernatant was quanti!ed by BCA assay kit (Sigma-
Aldrich, St. Louis, MO, USA). TNF-! was measured using
commercially available enzyme immunoassays (rat TNF-!
ELISA set, eBiosciences, San Diego, CA, USA) according to
the manufacturer’s instructions. (e protein expression was
normalized to the total protein amount per spinal cord and
reported as pg/mg.

2.8. Statistical Analysis. Behavioral measurements were per-
formed on 12 rats for each treatment carried out in 2 di*erent
experimental sets. Measurements were taken in duplicate
at least 1min apart; the responses of both le- and right
paws were measured. For behavioral experiments one-way
analysis of variance (ANOVA) followed by Fisher’s protected
least signi!cant di*erence procedure was used. ELISA and
immunohistochemical analyses were performed on 6 rats
per group. Six sections of spinal cord for each animal were
evaluated. For statistical analysis, data were analyzed by one-
way ANOVA followed by multiple comparisons with the
Bonferroni post hoc test.

All behavioral assessments were made by researchers
blinded to rat treatment. Slides from control and exper-
imental groups were labeled with numbers so that the
person performing the image analysis was blinded as to the
experimental group. In addition, all images were captured
and analyzed by an investigator other than the one who
performedmeasurements to avoid possible bias. Since behav-
ioral measurements were performed 30min a-er morphine
injection, di*erent animal groups were used for paw pressure
and plantar tests. ELISA and immunohistochemical analysis
were performed on tissues from the same animals used for
behavioral analysis. Data about the control group vehicle +
vehicle are the mean of values obtained on days 6 and 11.
For all the immunochemical analyses no di*erences were
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Figure 1: Analgesia measurement, paw pressure test. Animals were
treated daily with 30mgkg−1 PEA s.c. or with vehicle. (e pain
threshold was evaluated every day immediately before and 30min
a-er the injection i.p. of 10mgkg−1morphine. Each value represents
the mean ± SEM of 12 rats per group, performed in 2 di*erent
experimental sets. ∗∗% < 0.01 versus pretest values.
highlighted in the vehicle + vehicle group on days 6 and 11.
Data were analyzed using the “Origin 7.5” so-ware (Origin-
Lab, Northampton, MA, USA). Di*erences were considered
signi!cant at % < 0.05.
3. Results

Ten mg kg−1 morphine administered i.p. (30min a-er injec-
tion) increased the weight tolerated on the posterior paw
up to 90.3 ± 2.7 g in comparison to the threshold before
treatment (pretest) of 61.8 ± 1.2 g (Figure 1). A similar e*ect
was maintained when morphine was newly injected in the
following days till day 5. (e same dose was unable to
signi!cantly increase pain threshold from day 6. In the group
treated with 30mgkg−1 PEA s.c. (daily) the antinociceptive
e*ect of morphine reached 95.3±1.7 g (Figure 1).(e e)cacy
of morphine was signi!cant up to day 10 (81.6 ± 2.9 g). PEA
per se did not alter the response to the paw pressure as shown
by the values of pretest (before morphine injection) of the
group PEA + morphine. Figure 2 shows the results obtained
with the plantar test. (e withdrawal latency to a painful
thermal stimulus was increased by morphine to 21.1 ± 2.7 s
in comparison to the pretest value of 8.5 ± 0.5 s (vehicle
+ morphine group). In the presence of PEA treatment the
signi!cance of morphine-induced analgesia lasted till day 10
(14.8 ± 0.8 s).

(e spinal cord was analyzed on days 6 and 11 when
tolerance to the antinociceptive e*ect of morphine was
developed in the vehicle + morphine and in the PEA +
morphine group, respectively.

Alkaloid treatment progressively increased the number of
Iba1-positive cells in the dorsal horn (Figure 3). On day 6,
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Figure 2: Analgesia measurement, plantar test. Animals were
treated daily with 30mgkg−1 PEA s.c. or with vehicle. (e pain
threshold was evaluated every day immediately before and 30min
a-er the injection i.p. of 10mgkg−1morphine. Each value represents
the mean ± SEM of 12 rats per group, performed in 2 di*erent
experimental sets. ∗∗% < 0.01 versus pretest values.

Table 1: TNF-! levels in the spinal cord.

TNF-! levels (pg/mg proteins)
vehicle + vehicle vehicle + morphine PEA + morphine

12.2 ± 3.2
Day 6 25.9 ± 3.8∗ 30.7 ± 5.0∗
Day 11 32.7 ± 6.4∗ 28.4 ± 3.0∗
In the dorsal horn of the spinal cord, TNF-% levels were measured by ELISA
on days 6 and 11. Rats were treated daily i.p. with 10mgkg−1morphine and
30mgkg−1 PEA and comparedwith vehicle treatment. Each value represents
the mean ± SEM of 6 rats per group, performed in 2 di*erent experimental
sets. ∗P < 0.05 versus vehicle + vehicle.

microglia densitywas signi!cantly higher in the group vehicle
+ morphine in comparison to vehicle + vehicle group. PEA
fully prevented the morphine-induced microglia activation
on day 6 and on day 11 the e*ect was still signi!cant in com-
parison to vehicle +morphine (Figure 3). Similar results were
obtained when microglia was analyzed by OX42 immunore-
activity (Supplemental information, Figure S1 available online
at http://dx.doi.org/10.1155/2014/894732). (e expression of
GFAP in the dorsal horn is shown in Figure 4.(e analysis of
GFAP-positive cells reveals a morphine-induced increase in
astrocyte cell density on day 6 as well as on day 11 (vehicle +
morphine). PEA reduced astrocyte cell number at both time
points (Figure 4; PEA + morphine).

In dorsal horn homogenate TNF-! levels were measured
(Table 1). Vehicle + morphine treated rats showed a 112% and
168% increase of the cytokine on days 6 and 11, respectively.
PEA did not alter this increment. As shown in Figures 5 and
6, TNF-! localizationwas studied by immunohistochemistry.

http://dx.doi.org/10.1155/2014/20894732
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Figure 3: Iba1-positive cell density in the dorsal horn of the spinal cord. 30mgkg−1 PEA s.c. and 10mgkg−1 morphine i.p. were administered
daily and immunohistochemical analysis was performed on days 6 and 11; (a) representative images of merged Iba1-labeled microglia cells
(red), plus DAPI-labeled cell nuclei (blue); scale bar: 50$m. (b) Quantitative analysis of cellular density was performed evaluating 6 animals
for each group. Each value represents themean± SEMof 6 rats per group, performed in 2di*erent experimental sets. ∗% < 0.05 and ∗∗% < 0.01
versus vehicle + vehicle; ##% < 0.01 versus vehicle + morphine.
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Figure 4: GFAP-positive cell density in the dorsal horn of the spinal cord. 30mgkg−1 PEA s.c. and 10mgkg−1morphine i.p. were administered
daily and immunohistochemical analysis was performed on days 6 and 11; (a) representative images of merged GFAP-labeled astrocyte cells
(red), plus DAPI-labeled cell nuclei (blue); scale bar: 50$m. (b) Quantitative analysis of cellular density was performed evaluating 6 animals
for each group. Each value represents the mean ± SEM of 6 rats per group, performed in 2 di*erent experimental sets. ∗% < 0.05 versus
vehicle + vehicle; #% < 0.05 versus vehicle + morphine.
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Figure 5: Colocalization of TNF-! and OX42 in the dorsal horn of the spinal cord. 30mgkg−1 PEA s.c. and 10mgkg−1 morphine i.p.
were administered daily and immunohistochemical analysis was performed on days 6 and 11; (a) representative images of merged TNF-! (red), OX42 (green), and DAPI (blue) labeling; scale bar: 50 $m. (b) Quantitative analysis of the overlap coe)cient for TNF-! and OX42
expression performed evaluating 6 animals for each group. Each value represents themean ± SEMof 6 rats per group, performed in 2 di*erent
experimental sets.
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Figure 6: Colocalization of TNF-! and GFAP in the dorsal horn of the spinal cord. 30mgkg−1 PEA s.c. and 10mgkg−1 morphine i.p.
were administered daily and immunohistochemical analysis was performed on days 6 and 11; (a) representative images of merged TNF-!
(red), GFAP (green), and DAPI (blue) labeling; scale bar: 50 $m. (b) Quantitative analysis of the overlap coe)cient for TNF-! and GFAP
expression performed evaluating 6 animals for each group. Each value represents themean ± SEMof 6 rats per group, performed in 2 di*erent
experimental sets. ∗% < 0.05 versus vehicle + vehicle; #% < 0.05 versus vehicle + morphine.
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In the spinal dorsal horn of vehicle + vehicle treated rats,
TNF-! immunoreactivity was scarcely colocalized with the
microglial marker OX42 and the overlap coe)cient was
not modi!ed by treatments (Figure 5). (e colocalization
of TNF-! with GFAP was more evident even though mor-
phine repeated treatment did not alter the value. On the
contrary, a-er 6 days of treatment, PEA (PEA + morphine)
signi!cantly increased the overlap between TNF-! andGFAP
(Figure 6). On day 11, a-er the development of tolerance
also in the PEA group, the cytokine presence in astrocytes
decreased to the level of vehicle +morphine group (Figure 6).
For all the immunochemical analyses no di*erences were
highlighted in the vehicle + vehicle group on days 6 and 11.

4. Discussion

(e present data show the property of PEA to double the
number of days of morphine treatment e)cacy. (e pain
threshold evaluated by both mechanical and thermal stimuli
is still signi!cantly increased by the alkaloid a-er 10 days
of treatment in animals receiving PEA. (is result is not
in+uenced by per se antinociceptive e*ects of PEA as shown
by pretest values recorded before morphine treatment. (is
piece is added to the intriguing mosaic of the pain reliever
e*ects of PEA.

Both opioid tolerance and neuropathic pain conditions
share features of diminished morphine analgesia, leading to
suggestions of a common mechanism [39]. Among complex
signaling networks, glial cell modulation emerges in neuro-
pathic pain [40–42] and in antinociceptive tolerance [6] as
well as in PEA e*ects [24].

To the best of our knowledge, this is the !rst evidence
of morphine-induced glial activation characterized by an
increase in cell density without consistent morphological
alteration of both microglia and astrocytes. (is glial pro!le
is evident on day 6 when morphine lacks its antinociceptive
properties. PEA prevents the glial cell number increase
and prolongs morphine e)cacy up to day 10 suggesting
a relationship between glial inhibition and attenuation of
tolerance. Nevertheless, the preventative e*ect on the glial
density increase is maintained also on day 11 a-er the onset of
tolerance in the group PEA + morphine suggesting a further
mechanism based on glia functions. Glial cells activated
by morphine secrete large amounts of proin+ammatory
cytokines including interleukin-1" (IL-1"), IL-6, and TNF-!, ATP, and nitric oxide (NO), accelerating the development
of the antinociceptive tolerance [43]. Moreover, IL-1", IL-
6, and TNF-! have also been shown to oppose acute and
chronic opioid analgesia [44]. Glia-derived proin+ammatory
cytokines inhibit the antinociceptive e*ect of morphine
by sensitizing pain-transmission neurons in animals with
morphine tolerance and neuropathic pain [45]. Both cen-
tral and peripheral administration of the proin+ammatory
cytokines TNF-!, IL-1", and IL-6 facilitate pain transmis-
sion [46, 47] and the reduction of the antinociceptive
e*ect of morphine can be reversed by inhibition of glial
metabolism, antagonism of IL-1 receptors, and induction of
anti-in+ammatory cytokine IL-10 expression [6, 48]. In the
present study, the expression levels of TNF-! in spinal cord

tissue homogenate are increased a-er 6 and 11 days of mor-
phine treatment but PEA does not modify this alteration.(e
double immuno+uorescence analysis of dorsal horn revealed
a preferential localization of TNF-! astrocyte in comparison
tomicroglia cells and, interestingly, signi!cantly higher TNF-! immunoreactivity in astrocytes of PEA-protected rats
(day 6) is shown. Since the presence of TNF-! in GFAP-
positive cells decreases on day 11, PEA seems to be able to
delay the cytokine release from astrocyte paralleling with
tolerance attenuation. (e relevance of astrocyte-released
TNF-! in tolerance mechanisms was highlighted by Wang
et al. [49] which demonstrated, a-er a 7-day treatment
with morphine, the cytokine upregulation in astrocytes
by a calcitonin gene-related peptide- (CGRP-) mediated
increase of phosphorylated ERK [49]. Furthermore Shen and
coworkers [50] con!rmed the role of TNF-! since etan-
ercept, a recombinant soluble p75 TNF receptor:Fc fusion
protein [51], preserved a signi!cant antinociceptive e*ect
of morphine in morphine-tolerant rats suppressing proin-
+ammatory cytokine expression and neuroin+ammation in
microglia [50]. On the contrary, the glial modulation pro!le
and cytokine levels during the period of morphine e)cacy
remain to be assessed. Even though some relevant upstream
signals, including ceramide and nitroxidative stress [52],
were shown further research is necessary to clearly highlight
the neuron-glia network in the development of morphine
tolerance.

PEA is a naturally occurring amide between palmitic
acid and ethanolamine; it is a lipid messenger known to
mimic several endocannabinoid-driven actions even though
PEA does not bind CB1, CB2, and abn-CBD receptors
[53]. So far, numerous actions of PEA on immune cells
such as modulation of cytokine release from macrophages,
attenuation of leukocyte extravasation, and inhibition of
mast cell degranulation have been described [54, 55]. Anti-
in+ammatory e*ects of PEA have been associated with per-
oxisomeproliferator-activated receptor- (PPAR-)! activation
[56]. PPAR-!, well known for its role in lipid metabolism,
controls transcriptional programs involved in the develop-
ment of in+ammation through mechanisms that include
direct interactions with the proin+ammatory transcription
factors NF-kB and AP1 and modulation of IkB function [57].
(e pivotal role of PPAR-! in the PEA pharmacodynamic
mechanisms has been demonstrated for pain relief [17] as well
as for the PEA neurorestorative properties a-er peripheral
nerve injury [20]. PPAR-! participates also in the PEA
modulation of microglial cells [58]. (e involvement of
PPAR-! in morphine tolerance development is not actually
established; on the contrary, the PPAR-& agonist pioglitazone
reduced the tolerance to the analgesic e*ect of morphine
[59]. An “entourage e*ect hypothesis” has also been put
forward to account for the pharmacological actions of PEA.
Based on an activity enhancement of other endogenous
compounds (e.g., the endocannabinoid anandamide [16]), by
potentiating their a)nity for a receptor or by inhibiting their
metabolic degradation [60], PEAmay indirectly stimulate the
transient receptor potential vanilloid type 1 (TRPV1) and the
cannabinoid receptors [24]. Interestingly, morphine is able to
modulate endocannabinoid levels. Viganò et al. [61] showed
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modi!ed brain levels of arachidonoylethanolamide (anan-
damide, AEA) and 2-arachidonoylglycerol (2-AG) a-er mor-
phine treatment, and di*erences were highlighted between
compounds depending on the duration of morphine expo-
sure and brain area. In particular, a single morphine injec-
tion increased AEA whereas it returned to the basal level
a-er 3 days of treatment [61]. CB1 and opioid receptors
are colocalized in brain regions important for the expres-
sion of morphine dependence [62] and, !nally, compounds
that modulate the CB1 receptor systems can modulate the
development of morphine tolerance and dependence [63].
Repeated administration of the naturally occurring cannabi-
noid agonist Δ9-tetrahydrocannabinol or the CB1 receptor
agonist CP-55940 attenuates morphine antinociceptive tol-
erance [63–65]. Cannabinoids act on glia and neurons to
inhibit the release of proin+ammatory molecules, including
IL-1", TNF-!, and NO [66, 67], and enhance the release
of the anti-in+ammatory cytokines IL-4 and IL-10 [68]. In
particular, anandamide reduces the release of TNF-! from
astrocytes [66] and the CB2 receptor stimulation attenu-
ated morphine-induced microglial proin+ammatory medi-
ator increases, interfering with morphine e*ect by acting
on the Akt-ERK1/2 signalling pathway [69]. On the other
hand, PEA reduces activation of microglia and astrocytes
expressing cannabinoid CB2 receptors in mice underwent
compressive trauma of spinal cord [26].

5. Conclusion

Multiple properties of PEA converge to an interaction with
signals evoked by morphine. (e evidence of a delayed
development of tolerance to the antinociceptive e*ects of
morphine in the presence of PEA suggests a possible
application of this endogenous compound in opioid-based
therapies.
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