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Abstract

Introduction: Epigallocatechin 3-gallate (EGCG), a polyphenol present in green tea, was shown to exert
chondroprotective effects in vitro. In this study, we used a posttraumatic osteoarthritis (OA) mouse model
to test whether EGCG could slow the progression of OA and relieve OA-associated pain.

Methods: C57BL/6 mice were subjected to surgical destabilization of the medial meniscus (DMM) or sham
surgery. EGCG (25 mg/kg) or vehicle control was administered daily for 4 or 8 weeks by intraperitoneal injection
starting on the day of surgery. OA severity was evaluated using Safranin O staining and Osteoarthritis Research
Society International (OARSI) scores, as well as by immunohistochemical analysis to detect cleaved aggrecan
and type II collagen and expression of proteolytic enzymes matrix metalloproteinase 13 (MMP-13) and A
disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5). Real-time PCR was performed to
characterize the expression of genes critical for articular cartilage homeostasis. During the course of the experiments,
tactile sensitivity testing (von Frey test) and open-field assays were used to evaluate pain behaviors associated with OA,
and expression of pain expression markers and inflammatory cytokines in the dorsal root ganglion (DRG) was
determined by real-time PCR.

Results: Four and eight weeks after DMM surgery, the cartilage in EGCG-treated mice exhibited less Safranin O loss
and cartilage erosion, as well as lower OARSI scores compared to vehicle-treated controls, which was associated with
reduced staining for aggrecan and type II collagen cleavage epitopes, and reduced staining for MMP-13 and ADAMTS5 in
the articular cartilage. Articular cartilage in the EGCG-treated mice also exhibited reduced levels of Mmp1, Mmp3, Mmp8,
Mmp13, Adamts5, interleukin 1 beta (Il1b) and tumor necrosis factor alpha (Tnfa) mRNA and elevated gene expression of
the MMP regulator Cbp/p300 interacting transactivator 2 (Cited2). Compared to vehicle controls, mice treated with EGCG
exhibited reduced OA-associated pain, as indicated by higher locomotor behavior (that is, distance traveled). Moreover,
expression of the chemokine receptor Ccr2 and proinflammatory cytokines Il1b and Tnfa in the DRG were significantly
reduced to levels similar to those of sham-operated animals.

Conclusions: This study provides the first evidence in an OA animal model that EGCG significantly slows OA disease
progression and exerts a palliative effect.
* Correspondence: herb.sun@einstein.yu.edu
1Department of Orthopaedic Surgery, Albert Einstein College of Medicine,
1300 Morris Park Ave, Bronx, NY 10461, USA
2Department of Radiation Oncology, Albert Einstein College of Medicine,
1300 Morris Park Ave, Bronx, NY 10461, USA
Full list of author information is available at the end of the article

© 2014 Leong et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,
unless otherwise stated.

mailto:herb.sun@einstein.yu.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Leong et al. Arthritis Research & Therapy  (2014) 16:508 Page 2 of 11
Introduction
Osteoarthritis (OA) affects more than 27 million Americans
and is a leading cause of pain and disability [1]. There is
currently no cure for OA [2]. The optimal treatment
would be an OA disease-modifying therapy that can arrest
the progressive degradation and eventual loss of articular
cartilage in OA and improve symptomatic relief. Cur-
rently, most pharmacologic treatments are concentrated
on secondary effects of the disease, such as relieving
pain and improving joint function, but fail to address
the evolving and complex nature of OA [3]. Commonly
prescribed analgesics and nonsteroidal anti-inflammatory
drugs (NSAIDs) provide symptomatic relief but do not
have any demonstrated any beneficial effect on OA disease
prevention or modification [4]. Furthermore, long-term
use of these drugs has in some cases been associated
with substantial gastrointestinal, renal and cardiovascular
side effects [4]. Because the nature of OA likely requires
decades-long treatment [5], novel therapies to combat this
disease must be safe for clinical use over long periods of
time.
Epigallocatechin 3-gallate (EGCG), a major bioactive

polyphenol present in green tea, belongs to a group of
food-derived products, termed nutraceuticals, with re-
ported health benefits. Nutraceuticals have been sug-
gested as safe alternatives or supplements to current
pharmacologic therapies for OA [6,7]. EGCG exerts
numerous health-promoting effects to counteract in-
flammation, aging and cancer [6]. In addition, EGCG
has other reported effects particularly relevant to OA,
such as inhibiting the production of inflammatory me-
diators such as nitric oxide, prostaglandin E2 (PGE2),
cyclooxygenase-2 (COX-2), inducible nitric oxide synthase
and interleukin (IL)-8 in human and equine chondrocytes
in vitro [8,9]. In vitro studies also showed that EGCG
inhibits mRNA and protein expression of matrix metallo-
proteinase (MMP)-1 and MMP-13 [10] and suppresses
IL-1β-induced glycosaminoglycan release from cartilage
by reducing the levels of A disintegrin and metallo-
proteinase with thrombospondin motifs 1 (ADAMTS1),
ADAMTS4 and ADAMTS5 [11]. Furthermore, catechins
from green tea inhibit the degradation of proteoglycan
and type II collagen in bovine and human cartilage [12].
Also, green tea polyphenols added to drinking water
reduce the incidence of collagen-induced arthritis and
decrease the levels of COX-2 and tumor necrosis factor
(TNF)-α in articular joints in mice [13]. However, the
extent to which EGCG alters OA progression in vivo
and improves OA-related symptoms, especially pain,
has not been reported.
In this study, we addressed the question of whether

EGCG could prevent progression of OA and relieve OA-
associated pain in mice with posttraumatic OA induced
by destabilization of the medial meniscus (DMM). To
assess disease modification, we evaluated the integrity
of the articular cartilage by using the following methods:
(1) Safranin O staining and the Osteoarthritis Research
Society International (OARSI) score; (2) immunohisto-
chemistry of two crucial enzymes in OA progression,
MMP-13 and ADAMTS5, as well as of cleaved aggrecan
and type II collagen, as indicators of their activities; and
(3) gene expression analysis of other proteolytic enzymes,
including Mmp1, Mmp2, Mmp3, Mmp8; inflammatory
cytokines (Il1b,Tnfa); and CBP/p300-interacting transacti-
vator with ED-rich tail 2 (Cited2), a transcriptional regula-
tor associated with the maintenance of cartilage integrity
[14,15]. To assess symptom modification, we evaluated
the effect of EGCG on pain relief by using pain behavioral
assays and examining expression of pain markers and pro-
inflammatory cytokines in the dorsal root ganglion (DRG).

Methods
Induction of osteoarthritis in mice and EGCG treatment
All studies were approved by the Albert Einstein College of
Medicine Institutional Animal Care and Use Committee.
DMM was established in adult C57BL/6 mice (males 5 to
6 months of age) by surgically transecting the medial
meniscotibial ligament (MMTL) in the right hind limb [16].
Briefly, the joint capsule immediately medial to the patellar
tendon was incised, followed by blunt dissection of the fat
pad, to provide visualization of the MMTL of the medial
meniscus. The MMTL was transected, leading to DMM.
In the sham surgery, the MMTL was visualized but not
transected. The joint capsule and skin were closed with
sutures. Immediately after the DMM surgery, 100 μl of
EGCG (25 mg/kg; Sigma-Aldrich, St Louis, MO, USA)
dissolved in phosphate-buffered saline) or vehicle was ad-
ministered via intraperitoneal injection once daily for 4 or
8 weeks. At 4 and 8 weeks postsurgery, groups of treated
and control animals (n = 6/group) were selected for ana-
lysis as described below. The 25 mg/kg dose was chosen
for intraperitoneal injection based on a dose–response
experiment using 10 mg/kg to 50 mg/kg EGCG, in
agreement with previous studies [17-19] (see Additional
file 1: Figure S1 for details).

Immunohistochemistry, Safranin O staining and OARSI
score evaluation
At 4 and 8 weeks, groups of six animals were euthanized,
and their hind limbs were fixed in formalin, decalcified
in formic acid, embedded in paraffin and sectioned for
histology and immunohistochemistry. Sections were incu-
bated overnight at 4°C with antibodies against cleaved
aggrecan (NITEGE; IBEX Technologies, Montreal, QC,
Canada) and cleaved type II collagen (Col2-3/4 M; IBEX
Technologies), MMP-13 (Abcam, Cambridge, UK) and
ADAMTS5 (Abcam), followed by incubation with anti-
mouse or anti-rabbit secondary antibody (Biocare Medical,
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Concord, CA, USA) and visualization with 3,3′-diamino-
benzidine chromogen (Vector Laboratories, Burlingame,
CA, USA). Negative controls were stained with irrelevant
isotype-matched antibodies (Biocare Medical). Safranin O
fast green staining was used to visualize proteoglycans in
the articular cartilage. OA severity was evaluated with six
sections of the articular cartilage for each mouse using the
OARSI scoring system [20]. Immunostaining intensity for
type II collagen or aggrecan cleavage epitopes was quanti-
fied by determining the reciprocal intensity of the stained
articular cartilage matrix. Briefly, the light intensity value
of six random locations within all three zones from the
posterior to anterior direction of the femoral and tibial
condyles of three sections per mouse was measured using
the color picker in Adobe Photoshop (Adobe Systems,
San Jose, CA, USA) [21]. Percentages of positive MMP-13
and ADAMTS5 chondrocytes were determined by count-
ing the number of immunostained cells and dividing by
the total number of chondrocytes visualized by using a
hematoxylin counterstain (Vector Laboratories).

Tactile sensitivity testing
Mice were acclimated for 30 minutes in individual
chambers on top of a wire grid platform prior to von
Frey testing. The plantar surface of the hind paw was
stimulated with ascending force intensities of von Frey
filaments (Stoelting, Wood Dale, IL, USA) to determine
tactile sensitivity. A positive response was defined as a rapid
withdrawal of the hind paw when the stimulus was applied,
and the number of positive responses for each stimulus
was recorded. Tactile threshold was defined as a withdrawal
response to a given stimulus intensity in five of ten trials
[22]. This threshold was calculated once per animal.

Open-field behavioral test
Mice were acclimated to the test room for 30 minutes
before open-field testing. They were placed in the center
of individual Plexiglass square chambers (45 cm× 45 cm)
and allowed to freely explore the chamber for the duration
of the 6-minute test session. The movements of the mice
were recorded with a video camera. Upon completion
of the test, which was performed once per animal, each
mouse was returned to its home cage [23]. Two observers
blinded to treatment group assignments manually traced
the mice’s movements to calculate the distance (in centi-
meters) the mouse traveled within the cage in 6 minutes
and recorded the number of times each mouse reared
(standing on its hind limbs) within the 6-minute period.

Real-time PCR
The articular cartilage of sham or DMM mice treated
with vehicle or EGCG for 4 weeks was harvested. For
mice treated for 8 weeks, L3-L5 DRGs innervating the
ipsilateral knee were collected and flash-frozen in liquid
nitrogen. RNA was isolated using a QIAGEN RNeasy kit
(QIAGEN, Valencia, CA, USA), and cDNA was synthe-
sized using an iScript reverse transcriptase kit (Bio-Rad
Laboratories, Hercules, CA, USA). Real-time PCR was
performed in duplicate for each sample to determine rela-
tive gene expression, using glyceraldehyde 3-phosphate
dehydrogenase as a housekeeping control, with the com-
parative cycle threshold method.

Statistical analysis
The results are expressed as mean ± SD. Significance
was determined using one-way analysis of variance and
Sidak’s multiple-comparisons test, with GraphPad Prism
software (GraphPad Software, La Jolla, CA, USA). P < 0.05
was considered as statistically significant.

Results
EGCG administration slows progression in early and
midstage OA in DMM mice
To evaluate the efficacy of EGCG on DMM-induced OA
initiation and progression, the structural integrity of the ar-
ticular cartilage was examined by microscopy after Safranin
O staining and OARSI evaluation. Four weeks after DMM,
the articular cartilage in the DMM limb in the vehicle-
treated mice exhibited mild OA pathological changes
characterized by proteoglycan loss, cartilage fibrillation
and an average OARSI score of 2.0 ± 0.5 (Figures 1A
and 1B). In contrast, the cartilage in the DMM limb of
EGCG-treated mice exhibited less proteoglycan loss and
cartilage fibrillation, and the mean OARSI score (1.2 ± 0.4)
was significantly lower compared to vehicle-treated con-
trols (P < 0.05) (Figures 1A and 1B). Sham-operated mice
that received either vehicle or EGCG treatment did not
exhibit pathologic changes in the articular cartilage and
had OARSI scores of 0.15 ± 0.25 and 0.12 ± 0.31, respect-
ively (Figures 1A and 1B).
The vehicle-treated DMM mice exhibited more severe

OA at 8 weeks than at 4 weeks, characterized by more
pronounced proteoglycan loss and cartilage erosion, with
an average OARSI score of 6.5 ± 3.2 (Figures 1C and 1D).
In DMM mice treated with EGCG, OA severity was sig-
nificantly lower (OARSI score, 2.1 ± 1.6; P < 0.05) com-
pared to vehicle-treated DMM mice, pathological changes
were limited to cartilage fibrillation and proteoglycan loss,
and no cartilage erosion was observed. Sham-operated
animals treated with vehicle control or EGCG exhib-
ited no significant cartilage degradation, with average
OARSI scores of 0.37 ± 0.5 and 0.29 ± 0.4, respectively
(Figures 1C and 1D).

EGCG administration reduced degradation of both type II
collagen and aggrecan in articular cartilage matrix
Immunohistochemical staining showed that EGCG treat-
ment strongly reduced the levels of the type II collagen



Figure 1 Epigallocatechin 3-gallate administration slows progression in early and midstage osteoarthritis in mice that underwent surgical
destabilization of the medial meniscus. Mice underwent sham surgery or surgical destabilization of the medial meniscus (DMM), and cartilage
specimens were treated with vehicle or epigallocatechin 3-gallate (EGCG). Safranin O stains and Osteoarthritis Research Society International (OARSI)
scores of mice at 4 weeks (A and B) and 8 weeks (C and D) following surgery are shown (*P < 0.05 by analysis of variance; n = 6/group). Arrowheads
indicate the areas of cartilage fibrillation or erosion, and arrows indicate loss of Safranin O staining.
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cleavage epitope (Col2-3/4 M) in DMM mice com-
pared to vehicle-treated DMM mice (Figure 2). On the
basis of the immunostaining intensities of six randomly
selected areas of the articular cartilage at 4 weeks fol-
lowing DMM, we found that type II collagen cleavage
in vehicle-treated controls increased to 1.18-fold above
Figure 2 Epigallocatechin 3-gallate administration reduced the degra
Immunohistochemical staining of type II collagen cleavage epitope (Col2-3
mice that underwent sham operations or surgical destabilization of the media
3-gallate (EGCG) at 4 weeks (A and B) and 8 weeks (C and D) following surg
(E) Representative staining of tissue sections with isotype control (mouse imm
sham-operated, vehicle-treated mice and was reduced to
0.97-fold in EGCG-treated animals (P < 0.05) (Figures 2A
and 2B). At 8 weeks, the immunostaining intensities of the
type II collagen cleavage epitope were 2.06-fold and 1.63-
fold above sham-operated controls in vehicle and EGCG-
treated DMM mice, respectively (P < 0.05) (Figures 2C
dation of type II collagen in the articular cartilage matrix.
/4 M) and relative staining intensity of the articular cartilage matrix of
l meniscus (DMM) that were treated with vehicle or epigallocatechin
ery (*P < 0.05 by analysis of variance; n = 6/group). Scale bar = 100 μM.
unoglobulin G (IgG)).
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and 2D). Sham-operated animals treated with vehicle or
EGCG had no significant immunostaining for type II
collagen degradation at 4 or 8 weeks (Figures 2A to 2D).
Immunohistochemical staining similarly showed that

EGCG treatment reduced the levels of cleaved aggrecan
(NITEGE) in DMM mice compared to vehicle-treated
DMM mice at 8 weeks (Figure 3). At 4 weeks after DMM,
the intensity of aggrecan cleavage was not significantly
different in the EGCG-treated mice compared to the
vehicle control group (P = 0.08) (Figures 3A and 3B).
At 8 weeks after DMM, the immunostaining intensity
of cleaved aggrecan in EGCG-treated DMM mice was
reduced to 1.12-fold compared to 1.51-fold in vehicle-
treated mice (P < 0.05) (Figures 3C and 3D). Sham-
operated animals treated with vehicle or EGCG did not
exhibit significant immunostaining for cleaved aggrecan at
4 or 8 weeks (Figures 3A to 3D).

EGCG administration reduced MMP-13 and ADAMTS5
levels in articular cartilage
Cartilage matrix degradation is mediated mainly by
two major families of proteolytic enzymes: MMPs and
ADAMTS [24]. In particular, MMP-13 is the most potent
enzyme in cleaving type II collagen, the principal form in
articular cartilage, whereas ADAMTS5 has been shown in
mice to cleave aggrecan, the major cartilage proteoglycan
[2]. Therefore, using immunohistochemistry, we examined
Figure 3 Epigallocatechin 3-gallate administration reduced the deg
Immunohistochemical staining of cleaved aggrecan (NITEGE) and relativ
underwent sham operations or surgical destabilization of the medial me
3-gallate (EGCG) at 4 weeks (A and B) and 8 weeks (C and D) following
bar = 100 μM. (E) Representative staining of tissue sections with isotype
whether reduction of MMP-13 and ADAMTS5 could
underlie the chondroprotective effect of EGCG.
At 4 weeks following DMM, the percentage of MMP-

13-positive cells was reduced from 60% in vehicle-treated
mice to 22% in EGCG-treated mice (P < 0.05). MMP-13-
positive chondrocytes in the vehicle-treated DMM mice
were distributed in all three zones of the articular cartilage
of the femoral and tibial condyles. In contrast, the MMP-
13-positive chondrocytes in EGCG-treated mice were lo-
calized mainly in the middle and deep zones (Figures 4A
and 4B). Levels of MMP-13-positive cells in the articular
cartilage of EGCG-treated, sham-operated mice were at a
level (4%) similar to that in the sham-operated, vehicle-
treated mice (5%) (Figures 4A and 4B). At 8 weeks after
DMM, the percentage of MMP-13-positive cells in the
articular cartilage was reduced from 70% in vehicle-treated
mice to 23% in EGCG-treated mice (P < 0.05). MMP-
13-positive chondrocytes in the articular cartilage
of EGCG-treated sham surgery animals were slightly
lower (7%) than those in vehicle-treated controls (12%)
(Figures 4C and 4D).
Similarly, at 4 weeks following DMM surgery, EGCG

reduced the percentage of ADAMTS5-positive cells
from 61% in vehicle-treated mice to 22% in EGCG-
treated mice (P < 0.05) (Figures 5A and 5B). EGCG treat-
ment appeared to exert no measurable effect on the levels
of ADAMTS5 in chondrocytes in the articular cartilage in
radation of aggrecan in the articular cartilage matrix.
e staining intensity in the articular cartilage matrix of mice that
niscus (DMM) that were treated with vehicle or epigallocatechin
surgery (*P < 0.05 by analysis of variance; n = 6/group). Scale
control (rabbit immunoglobulin G (IgG)).



Figure 4 Epigallocatechin 3-gallate administration reduced matrix metalloproteinase 13 levels in articular cartilage. Immunohistochemical
staining of matrix metalloproteinase 13 (MMP-13) and percentage of MMP-13-positive cells in the articular cartilage of mice that underwent sham
operations or surgical destabilization of the medial meniscus (DMM) that were treated with vehicle or epigallocatechin 3-gallate (EGCG) at 4 weeks
(A and B) and 8 weeks (C and D) following surgery (*P < 0.05 by analysis of variance; n = 6/group). Scale bar = 100 μM. (E) Representative staining of
tissue sections with isotype control (rabbit immunoglobulin G (IgG)).

Figure 5 Epigallocatechin 3-gallate administration reduced ADAMTS5 levels in the articular cartilage. Immunohistochemical staining of A
disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5) and percentage of ADAMTS5-positive cells in the articular cartilage
of mice that underwent sham operations or surgical destabilization of the medial meniscus (DMM) that were treated with vehicle or epigallocatechin
3-gallate (EGCG) at 4 weeks (A and B) and 8 weeks (C and D) following surgery (*P < 0.05 by analysis of variance; n = 6/group). Scale bar = 100 μM.
(E) Representative staining of tissue sections with isotype control (rabbit immunoglobulin G (IgG)).
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the sham-operated animals treated either with vehicle
(5%) or with EGCG (4%) (Figures 5A and 5B). In the ar-
ticular cartilage at 8 weeks following DMM, the percent-
ages of ADAMTS5-positive cells were 63% in vehicle-
treated mice and 37% in EGCG-treated mice (P < 0.05)
(Figures 5C and 5D). EGCG did not significantly alter the
percentage of ADAMTS5-positive cells in sham-operated
mice (Figures 5C and 5D). These data suggest that EGCG
treatment improves the integrity of the articular cartilage
by preserving both collagen and aggrecan components in
posttraumatic OA mice and that the chondroprotective
effects exerted by EGCG are mediated, at least in part, by
reducing MMP-13 and ADAMTS5 levels.

EGCG treatment results in a chondroprotective gene
expression profile
To further understand the mechanism underlying the ef-
fects of EGCG on cartilage integrity, we examined the ex-
pression of genes encoding proteins with functions closely
related to cartilage homeostasis, in addition to MMP-13
and ADAMTS5, including proteolytic enzymes MMP-1,
MMP-2, MMP-3 and MMP-8; the MMP-repressing
transcriptional regulator CITED2; and proinflammatory
cytokines, IL-1β and TNF-α. EGCG treatment signifi-
cantly reduced the mRNA levels of Mmp1, Mmp3, Mmp8,
Mmp13, Adamts5, Il1b and Tnfa and increased Cited2
mRNA in the articular cartilage of DMM mice compared
to vehicle-treated mice (P < 0.05 in all cases) (Figure 6) in
the articular cartilage. The data demonstrate that EGCG
exerts a broad spectrum of anti-inflammatory and antica-
tabolic effects, involving cytokines, inflammatory media-
tors, proteolytic enzymes and transcriptional regulators.

EGCG reduces osteoarthritis-related pain symptoms
The progression of OA is accompanied by secondary
clinical symptoms, most prominently pain [25,26]. At
Figure 6 Epigallocatechin 3-gallate treatment results in a chondropro
catabolic enzymes, inflammatory cytokines and the matrix metalloproteinas
2 (Cited2) in the articular cartilage of mice that underwent sham operation
treated with vehicle or epigallocatechin 3-gallate (EGCG) at 4 weeks follow
disintegrin and metalloproteinase with thrombospondin motifs 5; Il1b, inte
8 weeks after DMM, vehicle-treated DMM mice exhibited
reductions in distance traveled (P < 0.05) (Figure 7A),
rearing (standing on hind limbs) (P < 0.05) (Figure 7B)
and response threshold to mechanical stimuli (tactile
hypersensitivity) (P < 0.05) (Figure 7C), compared to sham-
operated controls. EGCG treatment suppressed one of
these pain responses: distance traveled was the same as
in sham-operated mice (P < 0.05) (Figure 7A). There was
no significant difference observed in rearing (Figure 7B)
or tactile sensitivity of the paw (Figure 7C) in EGCG-
treated mice.
The chemokine monocyte chemoattractant protein

(MCP)-1 and its receptor, chemokine receptor 2 (CCR2)
in the DRG, are central to the development of pain asso-
ciated with OA. Increased mRNA levels of Mcp1 and
Ccr2 in the ipsilateral DRG at 8 weeks after DMM are
causally related to pain-related behaviors [26]. In our
study, in vehicle-treated DMM mice at 8 weeks following
surgery, Mcp1 gene expression in the ipsilateral DRG
remained unchanged (Figure 7D), whereas the mRNA
levels of its receptor, Ccr2, and two chronic pain-
associated proinflammatory cytokines, Il1b and Tnfa,
were significantly upregulated (P < 0.05 in all cases)
(Figure 7D). In the EGCG-treated animals, the levels of
Ccr2, Il1b and Tnfa mRNA were similar to those ob-
served in sham-operated mice and significantly re-
duced compared to those in vehicle-treated controls
(P < 0.05) (Figure 7D).

Discussion
There is currently no therapeutic agent with a clearly
demonstrated ability to modify the course of OA [27]. In
this study, we provide direct in vivo evidence that admin-
istration of EGCG slows the progression of posttraumatic
OA in the DMM mouse model. EGCG-treated mice
exhibited less cartilage erosion and proteoglycan loss,
tective gene expression profile. Relative gene expression levels of
e (MMP) regulator CBP/p300-interacting transactivator with ED-rich tail
s or surgical destabilization of the medial meniscus (DMM) that were
ing surgery (*P < 0.05 by analysis of variance; n = 5/group). Adamts5, A
rleukin 1 beta; Tnfa, Tumor necrosis factor alpha.



Figure 7 Epigallocatechin 3-gallate reduces osteoarthritis-related pain symptoms. Behavior assessments of mice that underwent sham
operations or surgical destabilization of the medial meniscus (DMM) that were treated with vehicle or epigallocatechin 3-gallate (EGCG) at 8 weeks
after DMM surgery. (A) Distance traveled. (B) Number of times mice reared in an open cage within 6 minutes. (C) von Frey testing (mechanical
allodynia). (D) Gene expression of monocyte chemoattractant protein 1 (Mcp1), chemokine receptor 2 (Ccr2), interleukin 1 beta (Il1b) and tumor
necrosis factor alpha (Tnfa) in the ipsilateral L3-L5 dorsal root ganglion (*P < 0.05 by analysis of variance; n = 6/group). N.S., Not significant.
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improved preservation of type II collagen and aggrecan
and reduced levels of MMP-13 and ADAMTS5, two
crucial proteolytic enzymes involved in the degradation of
those matrix components [24]. Although the efficacy of
EGCG in human OA has not yet been tested in controlled
trials, our findings provide fundamental evidence and a
sound rationale for advancing EGCG-based treatments
toward clinical application.
The chondroprotective effects of EGCG on attenuating

inflammation and catabolic activity have been established
in vitro in studies using human chondrocytes [8-10,28-32],
synovial fibroblasts [33-36] and human and bovine cartilage
explants [12], as well as in rheumatoid arthritis animal
models [37-41]. Consistent with these studies, our present
study demonstrates that EGCG exerts broad chondropro-
tective effects in a posttraumatic OA mouse model in vivo
by suppressing the expression of genes encoding inflam-
matory cytokines IL-1β and TNF-α and multiple cartilage-
degrading enzymes, including MMPs 1, 3, 8 and 13 and
ADAMTS5, as well as by inducing gene expression of the
MMP-repressing transcriptional regulator Cited2. In our
previous study, we demonstrated that, in response to
moderate mechanical loading, CITED2 represses MMP-1
and MMP-13 gene transcription in vitro [14] and in vivo
[15]. Of note, EGCG elevated Cited2 expression in OA
(DMM) as well as non-OA (sham) articular cartilage,
suggesting that it may play cartilage-protective roles
under both physiological and OA pathological conditions.
The in vivo evidence provided in this study, together
with a well-established chondroprotective effect demon-
strated in previous studies, supports the concept that
EGCG may be an effective chondroprotective agent for
OA treatment.
In this study, we also provide evidence for an OA-

related pain-relieving effect of EGCG in a posttraumatic
OA mouse model. OA pain can be triggered by joint
movement and typically results in diminished use and
reduced joint mobility [25]. Patients with OA also have
lower mechanical stimuli pain-sensing thresholds, sug-
gesting that central sensitization also contributes to
OA-related pain [42]. In our study, EGCG-treated DMM
mice exhibited increased locomotor behavior (that is, dis-
tance traveled) compared to vehicle-treated mice, suggest-
ing an improvement in OA-related pain. Of note, there
was no significant difference in rearing or tactile sensitivity
of the paw in EGCG-treated mice compared to vehicle
controls. Because rearing (standing on the hind limbs) and
tactile sensitivity are both measurements related to mech-
anical sensitivity of the limbs due to OA [26], this suggests
that the improvement of pain by EGCG may not rely sim-
ply on the mechanical sensitivity of the diseased limb;
however, it merits further study.
Interactions between neuropathic pathways and OA

tissues influence the development of pain behaviors and
alterations in gene transcription and protein expression
in the sensory neurons of the DRG [43-46]. A previous
study suggested that MCP-1 and CCR2 mediate pain
development in OA mice, and the investigators reported
a transient upregulation of MCP-1 and CCR2 at 8 weeks
following DMM surgery [26]. To understand the mecha-
nisms underlying the analgesic effects of EGCG, we ex-
amined expression of genes encoding the chemokine
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MCP-1 and its receptor CCR2, as well as the chronic
pain-related proinflammatory cytokines IL-1β and TNF-α,
in the DRG. In our DMM model, we did not find Mcp1
upregulation in the DRG compared to sham-operated ani-
mals at 8 weeks, but elevated Ccr2 mRNA, which together
with increased levels of Il1b and Tnfa mRNA, suggests
a receptor-oriented MCP-1/CCR2 pain-sensitizing mech-
anism. Interestingly, in EGCG-treated DMM mice, gene
expression of Ccr2 is significantly lower than in vehicle
controls. This fact, together with reduced mRNA levels
of Il1b and Tnfa, provides supporting evidence that EGCG
exerts effects on pain-related disease modification by
targeting the pain-associated mediators and cytokines in
the pain sensitization pathway, in addition to structure-
modifying effects through reducing OA severity. Consist-
ent with our findings, a previous study demonstrated that
intravenous infusion of EGCG improved pain symptoms
in chronically injured spinal cord of adult rats [47].
EGCG has shown promise in clinical trials for the

treatment of various cancers and cardiovascular and
neurodegenerative disorders [48-52]. Furthermore, the
chondroprotection of EGCG has been well established
in vitro and in vivo, including in rheumatoid arthritis
animal models [8-10,28-41,53], providing a solid foun-
dation for further exploration of its therapeutic poten-
tial in preclinical and clinical studies. One advantage of
using nutraceutical-based treatments such as EGCG is
that they exhibit favorable safety profiles. Early studies
demonstrated that EGCG was nontoxic to human chon-
drocytes [8]. In humans, daily doses of 800 mg of EGCG
for 4 weeks are safe and well tolerated [54]. EGCG is
mostly absorbed by the small intestine and may undergo
gastrointestinal inactivation [54]. Therefore, oral adminis-
tration of EGCG may reduce its bioavailability. Accordingly,
in our study, we chose to administer EGCG systemically via
intraperitoneal injection, which leads to higher bioavail-
ability compared to oral consumption [54]. In future trials,
researchers should consider optimizing EGCG bioavail-
ability when given orally.
Destabilization of the medial meniscus is a commonly

used surgically induced OA mouse model. In this model,
OA results primarily from altered joint biomechanics
and pathologic changes, including cartilage destruction,
subchondral bone thickening and osteophyte formation,
similar to those observed in human OA [16]. In the
present study, we focused on the effects of EGCG on
moderate to severe OA and therefore chose the 8-week
experimental period because, based on previous studies
[16] and also confirmed in this study, moderate to
severe OA develops reproducibly at this time point fol-
lowing DMM surgery in mice. A study with a longer
injury and treatment period is needed to evaluate the
efficacy of EGCG on OA progression in severe and late-
stage posttraumatic OA in mice. One limitation of this
acute mouse trauma model is that it may not represent
the more slowly progressive human OA such as that seen
during aging. Further studies undertaken to investigate
the efficacy of EGCG on other relevant OA models, such
as spontaneous or aging-related OA, are of interest. In this
study, we show evidence for the beneficial effects of
EGCG on disease modification and symptom modification
in mice with posttraumatic arthritis. Further studies ad-
dressing whether EGCG would have a clinical impact on
OA are clearly needed to advance EGCG-based treat-
ments toward applicability in humans.
Accumulating evidence indicates that EGCG exerts a

variety of biological effects such as anti-inflammatory,
antioxidative and anticatabolic effects on chondrocytes
[8-10,28-32,55], suggesting that the mechanism which
couples these different responses to EGCG may involve
a common receptor. Tachibana et al. identified a 67 kDa
nonintegrin cell surface laminin receptor that confers
EGCG responsiveness to cancer cells at physiologically
relevant concentrations [56]. Researchers in a subsequent
study identified the motif to which EGCG binds to this re-
ceptor [57]. It will be interesting to uncover whether such
a receptor or similar mechanism may exist in chondro-
cytes and, if it does, whether it plays a required role in me-
diating the effects of EGCG on chondrocytes.
Our study demonstrates significant efficacy of EGCG in

disease and symptom modification of posttraumatic OA,
and combining EGCG with other potential therapeutic
agents may further enhance its efficacy. Recent studies
show that, in cultured equine chondrocytes in vitro,
EGCG and avocado/soybean unsaponifiables (ASU) indi-
vidually inhibited IL-1β- and TNF-α-induced expression
of COX-2 and PGE2; the combination of EGCG and ASU
achieved synergistic effects on the suppression of COX-2
expression and PGE2 production [9]. Furthermore, a com-
bination therapy of methotrexate and EGCG, compared
to each treatment used individually, exerted a more pro-
found reduction of the gene expression of proinflamma-
tory cartilage cytokines (TNF-α and IL-6) and potentiated
the antiarthritic (decrease in hind paw volume) and anti-
oxidant effects [39]. Together, these studies suggest that
the chondroprotective effect of EGCG may be amplified
when used with other antiarthritic agents in the manage-
ment of OA.

Conclusions
Taken together, the results of this study provide the first
evidence in an OA animal model that EGCG provides
significant efficacy in arresting OA disease progression
and exerts a substantial effect in OA pain relief. Our
study suggests that the effect of EGCG on OA disease
modification may be due to the action of modulating a
broad spectrum of molecules that are critical for cartilage
homeostasis. The effect of EGCG on symptom modulation
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in relieving OA-related pain involves suppression of the
pain marker CCR2 and chronic pain-related proinflamma-
tory cytokines in the DRG, in addition to reduced disease
progression.
Additional file

Additional file 1: Figure S1. Dose-dependent effects of EGCG on
Mmp13 and Adamts5 in DMM mice. EGCG was administered
intraperitoneally at various doses (0, 10, 25, 50 mg/kg) daily for 3 days
starting immediately after destabilization of the medial meniscus (DMM)
surgery in mice (C57BL/6, 6-month-old males, n = 4/group). Expression of
genes encoding the proteolytic enzymes MMP-13 and ADAMTS5 was
assessed by real-time PCR of total RNA isolated from the articular cartilage.
EGCG at 25 mg/kg and 50 mg/kg decreased the levels of both Mmp13 and
Adamts5 mRNA by 50% to 60% relative to vehicle control (*P < 0.05,
one-way ANOVA with Tukey’s post hoc test), whereas animals treated with
10 mg/kg showed a significant reduction of Mmp13 mRNA, but not
Adamts5 mRNA. Because there was no statistical difference between the
25 mg/kg and 50 mg/kg treatment groups, the lower dose (25 mg/kg) was
chosen for the present study.
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