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Melatonin mitigates mitochondrial malfunction

Introduction

Apoptosis is a form of programmed cell death that
physiologically plays a role in embryogenesis, metamor-
phosis, differentiation, proliferation/homeostasis, and as a
defensive mechanism to remove infected, mutated, or

damaged cells [1]. Under normal conditions, a balance
between apoptosis and cell survival is important in the
development of multicellular organisms and in the regula-

tion and maintenance of cell populations in tissues. In fact,
dysfunction of the apoptotic program is implicated in a
variety of pathological conditions. Thus, defects in apop-

tosis can result in cancer, autoimmune diseases and the
spread of viral infections, while neurodegenerative disor-
ders, AIDS and ischemic diseases are caused or enhanced

by excessive apoptosis [2]. As a consequence, modulation of
the different molecular pathways of the apoptotic process
has emerged as an attractive therapeutic strategy for these
diseases [3]. In particular, recent studies have focused on the

extrinsic or mitochondrial pathway of apoptosis which
leads to mitochondrial membrane permeabilization (MMP)
and translocation of a number of soluble proteins localized

in the matrix and in the intermembrane space to the cytosol
[4]. The cause of MMP is the opening of a nonspecific pore

in the inner mitochondrial membrane, known as mitoch-
ondrial transition pore (MTP), as a consequence of a rise in
matrix calcium levels [5]. Several factors are known to

greatly enhance the sensitivity of the MTP to calcium, of
which the most potent and relevant are oxidative stress,
ATP depletion, mitochondrial depolarization, among oth-
ers [6].

Melatonin is a highly conservative molecule found in
organism from unicells to vertebrates [7]. First discovered
as the main secretory product of the pineal gland, it is

known to be present in the blood, where its concentrations
exhibit a circadian rhythm; it is also found in high
concentrations in others body fluids and tissues and is

differentially distributed in subcellular organelles as well
[8–10]. Its wide extracellular and intracellular distribution
may explain the complexity of melatonin’s role in modu-
lating a diverse number of physiological processes through

different mechanisms of action. Classically, the effects of
melatonin were considered to be receptor mediated; more
recently, nonreceptor mediated actions, including its free

radical scavenging activities, have been uncovered [11–13].
Although two distinct receptors/binding sites have been
identified, i.e. membrane [14] and nuclear [15, 16], they may

not act separately [17]. New recent studies suggest that
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calreticulin may represent a new class of high-affinity
melatonin-binding sites involved in some functions of the
indoleamine including genomic regulation [18]. For exam-

ple, some of the antioxidant properties of melatonin are
because of a genomic effect in regulating protein expression
and activities of antioxidant enzymes [19] as well as the
inducible (iNOS) and mitochondrial (mtNOS) isoforms of

nitric oxide synthase [20, 21]. Melatonin inhibits nNOS
activity due its binding to the calcium–calmodulin complex
[22]. Some compounds structurally related to melatonin

including its neural metabolite, N-acetyl-5-methoxykynu-
renamine (AMK), also inhibit nNOS activity in rat striatum
in a dose-dependent manner. This suggests that the effect of

melatonin on cerebral nNOS may be mediated, at least in
part, through its metabolites [22, 23]. AMK and N1-acetyl-
N2-formyl-5-methoxykinuramine (AFMK) are formed dur-
ing the enzymatic metabolism of melatonin in the brain

[24], but also as secondary products when melatonin acts as
free radical scavenger of reactive oxygen (ROS) and
reactive nitrogen species (RNS). Interestingly, these metab-

olites are also efficient antioxidants [25, 26].
The recent discovery that mitochondria are a target for

melatonin opened a new perspective to understand the

mechanism of action of this indoleamine [27]. Melatonin
has a direct role in mitochondrial homeostasis [9, 28, 29],
which may explain the protective effect of this molecule in

diseases such as Parkinson’s disease, Alzheimer’s disease,
epilepsy, aging, ischemia–reperfusion and sepsis, all of
which have mitochondrial dysfunction as a primary or
secondary cause of the condition [30]. As apoptosis is a

mechanism involved in the cell death described in these
diseases, it was expected that melatonin may exhibit
antiapoptotic effects [27]. In fact, several findings document

a role for melatonin in modulating experimentally induced
apoptosis by a variety of agents. The indoleamine inhibits
apoptosis in immune cells [31, 32], peripheral tissues [33, 34]

and prevents neuronal cell death in models of Parkinsonism
[35–37], Alzheimer’s disease [38–41] and ischemia–reper-
fusion injury [42–44]. The mechanism by which melatonin

reduces apoptosis seems to be related to its antioxidant and
free radical scavenging properties. However, recently, a new
mechanism has revealed that the antiapoptotic effects of
melatonin may be explained by a direct interaction with the

MTP [45]. Interestingly, melatonin acts as a proapoptotic
agent in cancer models [46], and, therefore, it appears to
have differential actions in regulating the apoptotic process

in normal and cancer cells [47].

Mitochondria and cell death

Apoptosis and necrosis are two forms of cell death, with
clearly distinguishable morphological and biochemical
features [48]. Apoptosis is morphologically characterized

by cytoplasmic contraction, chromatin condensation, nuc-
lear fragmentation, internucleosomal DNA fragmentation,
plasma membrane bleb formation, apoptotic body forma-

tion and retention of organelle integrity [49]. Many of these
changes are activated specifically by a set of cysteine
proteases called caspases. They possess an active site,

cysteine, and cleave substrates after aspartic acid residues
[1]. Apoptotic cells are rapidly sequestered by phagocytes or

by neighboring cells before they can lyse, spill their contents
and cause an inflammatory reaction [50].
In contrast to apoptosis, necrosis does not involve any

regular DNA or protein degradation pattern and is
accompanied by swelling of the entire cytoplasm (oncosis)
and of the mitochondrial matrix, both of which occur
shortly before the cell membrane ruptures [51].

These two types of cellular demise can occur concurrently
in tissues or cell cultures exposed to the same stimulus [52]
and, often, the intensity of the same initial insult dictates

the prevalence of either apoptosis or necrosis and it can also
vary among experiments [53]. This suggests that while some
early events may be common to both types of cell death, a

downstream controller may be required to direct cells
toward the organized execution of apoptosis [54]. Thus, the
early phase of both modes of cell death may involve a
similar change in MMP [51].

The cause of the MMP is the opening of a nonspecific
pore in the inner mitochondrial membrane, known as the
MTP. Opening of the MTP allows the passage of any

molecule of >1500 Da across the inner mitochondrial
membrane; it can be rapidly closed by chelation of calcium.
Because the MTP also allows rapid passage of protons, its

opening is accompanied by depolarization of the mito-
chondria and uncoupling of oxidative phosphorylation. In
addition, the equilibration of small solutes across the inner

mitochondrial membrane leaves behind high concentrations
of proteins in the matrix and these exert a colloidal osmotic
pressure that is responsible for the extensive swelling of
mitochondria associated with MTP opening [5].

If the MTP remains open, ATP levels can be totally
depleted leading to cell necrosis. On the contrary, transient
opening of the MTP may be involved in the intrinsic

pathway or mitochondrial-mediated apoptosis through the
release of proteins usually confined to the mitochondrial
compartment. Known as apoptogenic proteins, these

released molecules include cytochrome c [55], AIF [56],
HtrA2/Omi [57], SMAC/Diablo [58] and EndoG [59] of
which cytochrome c has been the most intensively studied.

Upon intrinsic apoptotic stimulation, cytochrome c is
released into the cytosol where it triggers the formation of
the apoptosome, a multimeric molecule composed of
apoptotic protease activating factor-1 (Apaf-1), dATP

and cytochrome c [60]. At present, the only known function
of the apoptosome is the recruitment and activation of
caspase 9 [61]. The caspase 9/apoptosome complex targets

and activates caspase 3. This is considered the point of no
return in the apoptotic signaling cascade [4]. However,
mitochondria play an important role in apoptosis even in

the absence of the MTP opening as release of proapoptotic
factors from the intermembrane space of mitochondria may
occur through changes in the outer membrane permeability.
These are induced by proapoptotic proteins such as Bax

and Bid, two members of the Bcl-2 protein family [62].
The exact composition of the MTP is not known; it is

currently believed to involve cytosolic proteins (hexoquin-

ase), outer membrane proteins (peripheral benzodiazepine
receptor, voltage-dependent anion channel or VDAC),
intermembrane proteins (creatine kinase), inner membrane

proteins (adenine nucleotide translocator or ANT); and
also matrix proteins (cyclophilin D) [6].
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It appears that any major change in energy balance
(absence of oxygen, depletion of ATP, depletion of NADH/
NADPH, disruption of the DWm) or changes in the redox

balance (oxidation/depletion of reduced gluthatione, exces-
sive production of ROS/RNS) may induce MTP opening.
In addition, determined signal transduction pathways
triggered via intracellular or cell surface receptors can

result in MTP opening. Thus, second messengers such as
increases in cytosolic calcium concentration, ceramide and
caspase 1-like enzymes facilitate MTP [51].

The Bcl-2 family of proteins are potent regulators of
apoptosis. This family is divided into three groups, based
on structural similarities and functional criteria. Members

of group I (Bcl-2 and Bcl-xL) possess antiapoptotic activity,
whereas members of groups II (Bax and Bak) and group III
(Bid) promote cell death [62]. One hypothesis proposes that
permeabilization of the mitochondrial outer membrane to

small proteins occurs through interaction of a Bcl-2 family
member with the MTP. Bax has been shown to induce the
MTP in cells upon induction of apoptosis via an interaction

with VDAC. However, other experiments suggested the
involvement of ANT in Bax-mediated apoptosis [63].

Apoptotic cell death can also be triggered when death

signals, i.e. tumor necrosis factor (TNF) or Fas ligand,
interact with the death receptors at the plasma membrane,
resulting in the recruitment of adaptor molecules such as

the Fas-associated protein with the death domain, which is
responsible for activating caspase 8. Activated caspase 8
can directly activate caspase 3 and caspase 7, but it can also
cleave Bid. The cleaved C-terminal Bid (truncated Bid or

tBid) translocates to the mitochondria and induces the
release of cytochrome c, linking the death receptor pathway
with the mitochondrial pathway [64]. Interaction of tBid

with the mitochondria does not seem to require the
activation of the MTP or Bax, although tBid and Bax can
function synergistically [65]. In addition, Bid-induced

cytochrome c release can be antagonized by Bcl-2 death
repressor protein [64].

Mitochondria, free radicals and cell death

Cells possess multiple sites for ROS/RNS production and a
number of mechanisms for their detoxification [66]. Small

fluctuations in the steady-state concentrations of ROS/RNS
may play a role in intracellular signaling [67]; however,
uncontrolled increases in these metabolites lead to free

radical-mediated chain reactions which indiscriminately
target proteins, lipids and DNA resulting in cell death [66].

Mitochondria are considered the main source of free

radicals in the cell and oxidants produced by the electron
transport chain (ETC) have been implicated in cell death
[68]. Most available data indicate that the origin of
excessive ROS generation is a consequence of an impair-

ment of the ETC [68].
The major consequence of an increased ROS production

is the subsequent decreased availability of intracellular

antioxidants such as NAD(P)H or GSH, leading to an
imbalance in the redox status. This, in turn, results in
damage to the mitochondrial respiratory chain and a

further elevation of free radical generation [69]. Other
major consequence of a reduction in the mitochondrial

GSH content is the opening of the MTP because of the
oxidation of critical sulfhydryl groups present in the
channel [6].

The ROS produced by mitochondria can be discharged
into the cytoplasm where they induce calcium release from
the endoplasmic reticulum, which leads to mitochondrial
calcium loading. The increase in the concentration of

mitochondrial calcium can induce opening of the MTP [70].
Other consequence due to the accumulation of calcium in
the mitochondria include the induction of mtNOS causing a

rise in nitric oxide (NO•) and peroxynitrite (ONOO))
production which induce (cyclosporine-insensitive) cyto-
chrome c release associated with peroxidation of mitoch-

ondrial lipids [71].

Melatonin and mitochondria

In vitro and in vivo experiments have shown that melatonin
can influence mitochondrial homeostasis. Thus, melatonin
increases the activities of the brain and liver mitochondrial

respiratory complexes I and IV in a time-dependent manner
after its administration to rats [28]. Melatonin also coun-
teracts ruthenium red-induced inhibition of complexes I

and IV in brain and liver mitochondria [28].
Further experiments indicate that the indoleamine, but

not other endogenous antioxidants such as vitamins C and

E, regulates the glutathione redox status in isolated brain
and hepatic mitochondria, correcting it when it is disrupted
by oxidative stress [9]. Under normal conditions, melatonin
reduces mitochondrial hydroperoxide levels and stimulates

the activity of the two enzymes involved in the GSH-GSSG
balance, i.e. glutathione peroxidase (GPx) and glutathione
reductase (GRd) [9]. Melatonin is also able to counteract

the oxidative damage induced by high doses of t-butyl
hydroperoxide (t-BHP), restoring GSH levels and GPx and
GRd activities and scavenging hydroperoxides. However,

vitamins C and E have no such effect under these conditions
[9]. These results are in agreement with other data showing
the effects of melatonin on GSH homeostasis in brain tissue
[72] and in gastric mucosa and testis [73]. As a result of the

interaction of melatonin with complexes I and IV and the
subsequent promotion of electron flux through the ETC,
melatonin increases ATP production under basal condi-

tions and counteracts cyanide-induced depletion of ATP
associated with complex IV inhibition [29]. Although the
indoleamine also reportedly stimulates metabolism of

isolated mitochondria from frog oocytes [74], other experi-
ments have shown that melatonin reduces the oxygen
consumption of liver mitochondria [75], an effect that

may protect this organelle from excessive oxidative damage
[76–79].
The antioxidant and free radical scavenging capacity of

melatonin protects proteins of the ETC and mtDNA from

the ROS/RNS-induced oxidative damage [80]. Melatonin
also interacts with lipid bilayers, reducing lipid peroxida-
tion and stabilizing mitochondrial inner membranes [81], an

effect that may improve ETC activity [30]. In a model of
sepsis induced by the administration of lipopolysacharide in
rats, melatonin prevented functional deterioration which

occurs as a result of mtNOS-induced mitochondrial failure.
In this situation, melatonin administration also reduced

Melatonin, mitochondria and apoptosis
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both mtNOS activity and NO• production and also
counteracted the inhibition of complexes I and IV [21].
Other studies have described one possible mechanism by

which melatonin increases the activity of the complex IV;
this protective action may be due, at least in part, to an
effect on the expression of mtDNA. Melatonin increases the
expression of mtDNA encoded polypeptide subunits I, II

and III of complex IV in mitochondria from rat liver in a
time-dependent manner which correlates with the increase
in complex IV activity [27]. In experiments with fresh

mitochondria prepared from rats treated for 10 days with
melatonin, the indoleamine reduced the levels of mRNA in
these animals, compared with non-melatonin-treated con-

trols [27]. These effects were also produced by AMK and
this compound was more potent than melatonin itself [82].
Interestingly, AMK is a metabolite of melatonin and its
in vivo production could be responsible for some of the

apparent actions of melatonin [83].
Collectively, these results may help to explain the

protective effects of melatonin in neurodegenerative dis-

eases and other disorders which involve mitochondrial
dysfunction. Thus, melatonin prevents the inhibition of
mitochondrial complex I activity induced by MPTP [84]

and limits dopamine autooxidation [85]. Melatonin is also
neuroprotective in in vitro models of Alzheimer’s disease
through its stimulatory effects on complex V activity [9, 28,

38]. Furthermore, the antiepileptic properties of melatonin
may be due to the regulation of the central GABA-
benzodiazepine receptor complex and inhibition of the
glutamate-mediated response [86]. However, other studies

reveal that melatonin acts by inhibiting ROS-induced
mitochondrial dysfunction in vivo [78, 87] as well as in
cultured cells [88]. In the senescence accelerated mouse,

either chronic or acute melatonin administration restores
the activity of the mitochondrial complexes [89–91]. Treat-
ment with melatonin before injury protects against mitoch-

ondrial dysfunction induced by ischemia–reperfusion of rat
liver [92] and restores hepatic energetic status by inhibiting
both activation of iNOS and the production of TNFa [93].

As mitochondrial dysfunction can lead to ATP depletion,
depolarization and initiation of apoptotic processes, it is
possible that the antiapoptotic effects of melatonin in the
situations described above may be a result of its protective

actions [27, 30, 82]. However, recent findings have shown
that the interaction of melatonin with mitochondria in
terms of antiapoptotic agent is more complex than

described here.

Melatonin, mitochondria and apoptosis

Mitochondrial dysfunction associated with the loss of
calcium homeostasis and enhanced cellular oxidative stress
have long been recognized to play a major role in cell death

associated with excitotoxicity [94], a well-known process
that has been implicated in neurodegeneration in Hunting-
ton’s disease, Alzheimer’s disease, Parkinsonism, epilepsy

and disorders such as ischemia–reperfusion [95]. Excitotox-
icity results from the over-stimulation of ionotropic glu-
tamate receptors, in particular, the N-methyl-d-aspartate

(NMDA) and the a-amino-hydroxy-5-methyl-4-isoxazole-
propionate (AMPA) receptors which lacks the GluR2

subunit [96, 97]. Over-stimulation can occur as a result of
an increase in the liberation of excitatory aminoacids from
the presynaptic neuron. However, energy depletion caused

by mitochondrial dysfunction can result in neuronal depo-
larization, opening of NMDA receptors and the influx of
calcium then activates several intracellular enzymes, inclu-
ding phospholipase A2, NOS, xanthine dehydrogenase,

calcineurin and endonucleases, many of which elicit the
generation of endogenous ROS. Additionally, when taken
up by mitochondria, calcium can induce MTP opening and

cell death [6].
Melatonin is a potent antiexcitotoxic agent which has

been documented in both in vivo and in vitro experiments

[86]. Electrophysiological experiments demonstrate the
antagonism of melatonin on the NMDA receptor [98–
101]. This effect is dose-dependent and, as a consequence of
the treatment, the NMDA receptor channel pore remains

closed, thereby preventing the opening of L-type calcium
channels and calcium influx [102]. Other experiments have
shown that melatonin also inhibits activation of nNOS

through its binding to the calcium–calmodulin complex,
reducing the production of both NO• and ONOO) as well
as the presynaptic release of additional glutamate [22].

Some synthetic melatonin-related kynurenines also reduce
striatal NMDA excitability in a dose-dependent manner;
some of these kynurenines were 100 times more potent than

melatonin in this action. The effects of these drugs were
linked to their inhibition of nNOS activity and a reduction
in NO• production and were not because of an interaction
with melatonin membrane receptors [22, 23]. Further

experiments demonstrate that melatonin is able to diminish
the rises in cytosolic calcium induced by NMDA in cultured
mouse striatal neurons [45]. Taken together, these results

show that melatonin limits cytosolic calcium rises and, as a
consequence, the concomitant production of free radicals;
additionally, melatonin reduces the associated mitochond-

rial membrane depolarization [103]. Other experiments
carried out using rat brain astrocytes [104] and cultured
PC12 cells [105] show that melatonin prevents ROS-

induced calcium overload and mitochondrial membrane
depolarization. In these two reports, melatonin indirectly
inhibited the opening of the MTP and blocked MTP-
dependent cytochrome c release, the downstream activation

of caspase 3 and the cell death by apoptosis [104]. In a
recent in vivo experiment as well, melatonin was reported to
inhibit caspase 3 activation in the mouse brain damaged by

ischemia–reperfusion [106]. However, recordings have been
obtained from the inner mitochondrial membrane of rat
liver mitoplasts using the patch-clamp approach and have

demonstrated a direct effect of melatonin on the MTP
activity at the single channel level. These results showed
that melatonin strongly inhibits MTP currents in a dose-
dependent manner with an IC50 of 0.8 m [45].

Studies in peripheral tissues have suggested that melato-
nin inhibits apoptotic processes via its antioxidant proper-
ties. For example, melatonin protects against cyclosporin

A-induced hemolysis in human erythrocytes because of
depuration resulting from O��

2 produced by mitochondria
[107]. Melatonin is also highly protective against mitoch-

ondrial ROS-induced cardiotoxicity resulting from doxo-
rubicin treatment. In this study, pretreatment with
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melatonin prevented the release of lactate dehydrogenase

and restored membrane potential [108].
Many lines of evidence indicate an antiapoptotic effect of

melatonin on thymic cells. The methoxyindole reduces

DNA fragmentation induced by glucocorticoids in cultured
thymocytes [31]. A reduction in glucocorticoid-receptor
mRNA levels in the intact thymus as well as in cultured

thymocytes that were treated with melatonin seem to be the
most likely mechanism whereby melatonin inhibits gluco-
corticoid-induced cell death [32]. Other studies reported
that melatonin inhibits DNA fragmentation and the release

of cytochrome c from mitochondria of mouse thymocytes
treated with dexamethasone. Melatonin may act by inhib-
iting the mitochondrial pathway, presumably through the

regulation of Bax protein levels [109], although melatonin
was ineffective per se on this parameter.

Interestingly, proapoptotic effects of melatonin have

been noted in a number of tumor cell lines [47]. In MCF-
7 breast tumor cell studies conducted in the absence of
exogenous steroid hormones, treatment with melatonin
produced a 64% reduction in the cellular ATP levels

through a membrane receptor-modulated pathway [110].
These findings in tumor cells are in contrast to the described
actions of melatonin in normal cells and suggest melato-

nin’s potential use in killing cancer cells while preserving
the function of normal cells.

Concluding remarks

The actions of melatonin on mitochondria may be mediated

via at least three mechanisms (Fig. 1). First, antioxidant and
free radical scavenging properties of the indoleamine protect
the organelle from oxidative damage. Secondly, its actions at
the mtDNA level increase the expression of complex IV.

Thirdly, a direct interaction of melatonin with the MTP was
found recently. These effects suggest that melatonin, because
of these direct and indirect mitochondrial actions, may have

utility as an antiapoptotic agent for normal cells.

In addition, some of the products that are produced

when melatonin detoxifies reactive species [25, 111–114],
especially AMK and AFMK, are also both efficient
antioxidants [25, 83, 115] that may be found in mitochon-

dria; these metabolites can also act at the mitochondrial
genomic level, resulting in a cascade of protective reactions.
Given that these compounds exert the same actions as

melatonin, they also could act as antiapoptotic drugs in
normal cells and as proapoptotic agents in cancer models.
In all the studies where comparisons were made, melato-
nin’s metabolites AMK and AFMK were more potent than

melatonin itself [82]. Therefore, these compounds may exert
the same regulatory effects on apoptotic processes in a more
efficient manner than melatonin.
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