Oxidative Stress Correlates with Headache Symptoms in Fibromyalgia: Coenzyme Q\textsubscript{10} Effect on Clinical Improvement

Mario D. Cordero1,2,*, Francisco Javier Cano-García3, Elíabet Alcocer-Gómez3, Manuel De Miguel2, José Antonio Sánchez-Alcázar1

1Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-CSIC-Junta de Andalucía and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Sevilla, Spain, 2Departamento Citología e Histología Normal y Patológica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain, 3Departmento de Personalidad, Evaluación y Tratamiento Psicológicos. Facultad de Psicología Universidad de Sevilla, Sevilla, Spain

Abstract

Background: Fibromyalgia (FM) is a chronic pain syndrome with unknown etiology and a wide spectrum of symptoms such as alodynia, debilitating fatigue, joint stiffness and migraine. Recent studies have shown some evidences demonstrating that oxidative stress is associated to clinical symptoms in FM of fibromyalgia. We examined oxidative stress and bioenergetic status in blood mononuclear cells (BMCs) and its association to headache symptoms in FM patients. The effects of oral coenzyme Q\textsubscript{10} (CoQ\textsubscript{10}) supplementation on biochemical markers and clinical improvement were also evaluated.

Methods: We studied 20 FM patients and 15 healthy controls. Clinical parameters were evaluated using the Fibromyalgia Impact Questionnaire (FIQ), visual analogues scales (VAS), and the Headache Impact Test (HIT-6). Oxidative stress was determined by measuring CoQ\textsubscript{10}, catalase and lipid peroxidation (LPO) levels in BMCs. Bioenergetic status was assessed by measuring ATP levels in BMCs.

Results: We found decreased CoQ\textsubscript{10}, catalase and ATP levels in BMCs from FM patients as compared to normal control (P<0.05 and P<0.001, respectively). We also found increased level of LPO in BMCs from FM patients as compared to normal control (P<0.001). Significant negative correlations between CoQ\textsubscript{10}, catalase, LPO and headache parameters were observed (r = −0.59, P<0.05; r = −0.68, P<0.05, respectively). Furthermore, LPO levels showed a significant positive correlation with HIT-6 (r = 0.33, P<0.05). Oral CoQ\textsubscript{10} supplementation restored biochemical parameters and induced a significant improvement in clinical and headache symptoms (P<0.001).

Discussion: The results of this study suggest a role for mitochondrial dysfunction and oxidative stress in the headache symptoms associated with FM. CoQ\textsubscript{10} supplementation should be examined in a larger placebo controlled trial as a possible treatment in FM.

Editor: John E. Mendelson, California Pacific Medical Center Research Institute, United States of America

Received December 6, 2011; Accepted March 21, 2012; Published April 19, 2012

Copyright: © 2012 Cordero et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work has been supported by IV Plan Propio de Investigación (University of Seville, ref. 2010/00000453), FIS PI10/00543 grant, FIS EC08/00076 grant, Ministerio de Sanidad, Spain and Fondo Europeo de Desarrollo Regional (FEDER-Unión Europea), SAS 111242 grant, Servicio Andaluz de Salud-Junta de Andalucía, Proyecto de Investigación de Excelencia de la Junta de Andalucía CTS-5725 and Federalización Andaluza de Fibromialgia y Fatiga Crónica (ALBA Andalucía). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: mdcormor@upo.es

Introduction

Fibromyalgia (FM) is a common chronic pain syndrome with an unknown etiology, which has been associated with a wide spectrum of symptoms such as alodynia, debilitating fatigue, joint stiffness and depression. FM is diagnosed according to the classification criteria established by the American College of Rheumatology (ACR) [1]. Despite being a common disorder that affects at least 5 million individuals in the United States [2], its pathogenic mechanism remains elusive. In addition to the described symptoms, a high prevalence of FM has been found among patients with transformed migraine and headaches [3,4]. Common genetic basis, synergically working with other factors (emotional, personality features, stressful events and medication overuse) should cause a chronic antinociceptive system alteration and therefore a progressive increase (hyperalgesia) and diffusion (panalgesia) of pain. It has been hypothesized that episodic migraine, chronic daily headaches and FM may actually be a continuum of the same disorder [5].

Recently, oxidative stress has been proposed as a relevant event in the pathogenesis of FM and headaches [6,7]. Previously, our group has detected decreased coenzyme Q\textsubscript{10} (CoQ\textsubscript{10}) levels and increased mitochondrial reactive oxygen species (ROS) production in blood mononuclear cells (BMCs) from FM patients [8]. Furthermore, oxidative stress showed a significant correlation with clinical symptoms in FM [6].
CoQ_{10} levels and mitochondrial dysfunction have also been implicated in the pathophysiology of migraine, and it has been reported that oral CoQ_{10} supplementation improved clinical symptoms [9].

The aim of this paper was first to establish a possible correlation between oxidative stress parameters and severity of headaches in FM, and secondly to study the effects of oral CoQ_{10} supplementation on the improvement in headache symptoms.

Patients and Methods

Ethics Statement

Written informed consent and the approval of the ethical committee of University Pablo de Olavide and Universitary Hospital Virgen Macarena from Seville were obtained, according to the principles of the Declaration of Helsinki.

Patients

All samples were obtained after informed consent from patients and the approval of the local ethical committee was obtained according to the principles of the Declaration of Helsinki. The study consisted of 20 women diagnosed with FM and 15 healthy women. The inclusion criteria was fibromyalgia that had been diagnosed for the previous 2 to 3 years, based on the current ACR diagnostic criteria [1]. Exclusion criteria were acute infectious diseases in the previous 3 weeks; past or present neurological, psychiatric, metabolic, autoimmune, allergy-related, dermal or chronic inflammatory disease; undesired habits (e.g., smoking, alcohol, etc.); oral diseases (e.g., periodontitis); medical conditions that required glucocorticoid treatment, use of analgesics, statin or antidepressant drugs; past or current substance abuse or dependence and pregnancy or current breastfeeding. Healthy controls had no signs or symptoms of FM and were free of any medication for at least 3 weeks before the study began. All patients and controls had no drugs or vitamin/nutritional supplement during the 3 week period prior to the collection of the blood samples. Before the study, the patients reported using paracetamol on demand. Clinical data was obtained from physical examination, and evaluated using the Fibromyalgia Impact Questionnaire (FIQ) including visual analogues scales about general and diffuse pain, and Headache Impact Test (HIT-6).

Blood mononuclear cells

Heparinized blood samples were collected after 12-hours fasting from patients and healthy women and sex-matched control subjects. BMCs were purified from heparinized blood by isopycnic centrifugation using Histopaque-1119 and Histopaque-1077 (Sigma Chemical Co., St. Louis, MO, USA).

Measurement of CoQ_{10} levels

CoQ_{10} content in BMCs were analyzed by HPLC (Beckman Coulter, Brea, CA, USA; 166-126 HPLC) with ultraviolet detection (275 nm), according to the method described above [8].

Lipid peroxidation

Lipid peroxidation in cells was determined by analyzing the accumulation of lipoperoxides using a commercial kit from Cayman Chemical (Ann Arbor, Michigan, USA). TBARS are expressed in terms of malondialdehyde (MDA) levels. In these assays, an MDA standard is used to construct a standard curve against which unknown samples can be plotted.

Catalase determination

A spectrophotometric method described by Beer and Sizer (1952) [10] was used for measuring the breakdown of hydrogen peroxide by catalase. Briefly, activity was determined by using 35 μg of cell lystate, prepared in a lysis buffer composed of 0.9% NaCl, 20 mM Tris.ClH, pH = 7.6, 0.1% triton X-100, 1 mM phenylmethylsulfonfluorid and 0.01% leupeptine with gentle shaking, in a kinetic spectrophotometric assay that measures a decrease in the absorbance of hydrogen peroxide.

ATP levels

ATP levels were determined by a bioluminescence assay using an ATP determination kit from Invitrogen-Molecular Probes (Eugene, OR, USA) according to the instructions of the manufacturer.

Oral CoQ_{10} supplementation

Ten volunteer patients were supplemented with CoQ_{10} (Pharma Nord, Vejle, Denmark) with soft gel capsules for 3 months (300 mg/day CoQ_{10}, divided in three doses). After 3 months of treatment, heparinized blood samples were collected after 12-hours fasting and 24 hours after the last dose, and clinical symptoms were evaluated. The CoQ_{10} formulation consisted of soft gelatin capsules containing 100 mg of ubiquinone emulsified with diglyceryl monooleate, beeswax, soy lecithin and canola oil.

Statistical Analysis

All results are expressed as mean ± SD unless stated otherwise. The unpaired Student’s t test was used to evaluate the significance of differences between groups. Statistical analyses included Pearson’s correlations between CoQ_{10}, catalase, and MDA levels in compared with Hit-6 score. P values less than 0.05 were considered significant. Data were analysed using the SPSS/PC statistical software package (SPSS for Windows, 19, 2010, SPSS Inc. Chicago, IL, USA).

Results

Oxidative stress in FM

The mean age of patients was 46.6 ± 5 years for the FM group and 44.9 ± 4 years for the control group. The mean duration of symptoms in the FM group was 10.1 ± 4.2 years. The mean tender point score in the FM group was 14.8 ± 1.7 points. According to International Headache Society (IHS) criteria, the headache was tension-type headache. The mean of frequency of headache was 3 ± 1 per week. The duration of headache episodes was 10 ± 2 hours. The patients did not describe any symptoms such as nausea, photophobia, or aura.

The most prominent features of these FM patients were pain and stiffness. They were sedentary people and routine laboratory tests yielded normal results for glucose, urea, uric acid, total protein, creatinine, aspartate aminotransferase, alanine aminotransferase, cholesterol and triglycerides (data not shown). The number and subgroup distribution of BMCs (monocytes and lymphocytes) in FM patients were in the normal range (data not shown).

To evaluate the antioxidant system in FM patients, CoQ_{10} and catalase levels in BMCs were examined and compared to control subjects. Both, CoQ_{10} and catalase levels were significantly reduced in FM patients, 64.3% and 40% respectively (Figure 1A and 1B). We also determined LPO levels in BMCs from FM patients as a marker of oxidative stress-induced membrane damage by ROS. FM patients showed higher LPO levels in BMCs, 610% with respect to control subjects (Figure 1C).
To determine whether the observed CoQ_{10} deficiency had an effect on cellular bioenergetics, we measured intracellular ATP levels in BMCs from control and FM patients. ATP levels were reduced to 70% of the control value in BMCs from FM patients (Figure 1D).

Headache correlates with oxidative stress in FM patients

All FM patients showed high HIT-6 scores compared with control subjects (Table 1). To examine whether headache symptoms were associated with increased oxidative stress, Pearson’s correlation coefficients (r) were performed between CoQ_{10}, catalase or LPO levels and HIT-6 scores. Figure 2 shows a significant negative correlation between CoQ_{10} and catalase levels and HIT-6 (r = −0.59, P < 0.05; r = −0.68, P < 0.05, respectively). Furthermore, LPO levels showed a significant positive correlation with HIT-6 (r = 0.33, P < 0.05). No correlation of ATP levels and HIT-6 scores was found (data not shown).

Influence of oral Coenzyme Q_{10} supplementation

Table 2 shows levels of biochemical markers in control subjects and before and after treatment with CoQ_{10}. In FM patients treated with CoQ_{10}, all levels of oxidative stress markers were similar to those measured in control subjects. CoQ_{10} supplementation significantly increased levels of CoQ_{10}, ATP and catalase but all levels were lower than those seen in controls. In contrast, MDA in BMCs declined and fell to levels similar to those seen in controls. These biochemical marker changes were associated with improvement of clinical measured by tender points, FIQ VAS and HIT-6 scores.

We observed a significant increase of CoQ_{10} levels after treatment (135.6 ± 6.3 pretreatment and 221.6 ± 11.3 posttreatment, P < 0.001) (respect to control, 224.4 ± 12.5; P < 0.001), ATP levels (61.3 ± 4.9 pretreatment and 191.1 ± 6.7 posttreatment, P < 0.001) (respect to control, 202.8 ± 22.1; P < 0.001) and catalase levels (35.6 ± 10.1 pretreatment and 85.2 ± 15.3 posttreatment, P < 0.001) (respect to control, 96.5 ± 14.8; P < 0.001) in BMCs, a reduction of LPO levels (30.3 ± 5.9 pretreatment and 5.1 ± 6.6 posttreatment, P < 0.001) (respect to control, 6 ± 1; P < 0.001) and a marked improvement of clinical symptoms (FIQ: P < 0.01; VAS: P < 0.01; HIT-6: P < 0.05) (Table 2). No biochemical alterations were detected after CoQ_{10} treatment: glucose 82.3 ± 10.6 mg/dL (normal range: 76–110), urea 29.7 ± 5.31 mg/dL (normal range: 10–45), uric acid 5.1 ± 1.41 mg/dL (normal range: 2.5–7.5), total protein 7.2 ± 1.01 g/dL (normal range: 6.6–8.7), creatinine 0.9 ± 0.13 mg/dL (normal range: 0.5–1.1), aspartate aminotransferase 24.3 ± 5.17 mU/mL (normal range: 10–40), alanine ami-
notransferase 21.2 ± 8.1 mU/mL (normal rage: 10–40), total cholesterol 205 ± 9.0 mg/dL (normal range: <220), and triglycerides 168 ± 31.1 mg/dL (normal range: 150–200).

Discussion

In the present study we have confirmed a significant increase of oxidative stress in FM patients, showing a marked decrease of CoQ10, ATP and catalase levels and a significant increase of LPO levels in BMCs compared to control subjects.

Coenzyme Q10 (CoQ10) is present in every membrane of all cells in the body. CoQ10 transfers electrons from complexes I and II to complex III in the mitochondrial respiratory chain and fulfills a critical role in mitochondrial ATP production, playing a crucial role in cellular metabolism; regulating mitochondrial uncoupling proteins, the mitochondrial permeability transition pore, β-oxidation of fatty acids, nucleotide metabolism and production of reactive oxygen species (ROS) [11,12]. It has been widely demonstrated that CoQ10 is essential for respiratory chain efficacy, and as antioxidant [13,14,15]. CoQ10 deficiency has been associated with several diseases with the typical symptoms found in FM patients [16,17]. Interestingly, CoQ10 deficiency has been detected in depression and chronic fatigue [18,19], two typical symptoms found in FM patients. Furthermore, both symptoms were markedly improved after CoQ10 supplementation. Our results are in agreement with those of previous reports which have shown that CoQ deficiency is associated with decreased ATP levels and increased oxidative stress [20,21]. Oxidative stress and, in particular, LPO levels have been implicated in the severity of the clinical symptoms in FM and it has been suggested that antioxidant therapy could be beneficial in FM [6]. On the other hand, the oxidant-antioxidant balance disorders underlie a number of acute and chronic diseases of the central nervous system (CNS) [22]. Clinical conditions affecting the nervous system range from mild cognitive perturbations such as headache or migraine, to life-threatening acute courses such as meningitis, and to chronic neurodegenerative diseases such as multiple sclerosis. One common feature in clinical dysfunctions within the nervous system is redox regulation, with an imbalance in oxidative stress versus antioxidants being characteristic of pathological conditions. It is believed that oxidative stress and LPO play a role in the pathogenesis of migraine by regulating cerebral blood flow and energy metabolism and may constitute a trigger threshold for migraine attacks [23,24]. Moreover, emerging data suggest that LPO may underlie the neuronal alterations and neurotoxicity observed in numerous neuropathological conditions. Direct application of LPO, either in vivo or in vitro, has been shown to be cytotoxic and to mimic neuronal alterations observed in neuropathological conditions. In addition, prevention of LPO has been demonstrated to be neuroprotective in a variety of neuropathological paradigms [25]. It is known that LPO, as a consequence of oxidative stress, indirectly reflects intracellular ROS generation, and ROS are known to be implicated in the etiology of pain, one of the most prominent symptoms in FM, by inducing peripheral and central hyperalgesia [26].

Our results show an important significant correlation between LPO levels and headache symptoms in FM patients. Antioxidants (CoQ10 and catalase) levels also showed a significant negative correlation with headache symptoms. CoQ10 has two important functions in cells: first, CoQ10 is a mitochondrial cofactor with the potential to boost mitochondrial function, and second, CoQ10 is a powerful free radical scavenger that can mitigate lipid peroxidation and DNA damage caused by oxidative stress [27]. In our study, we have observed a marked improvement in headache

Table 1. Characteristic finding of FM patients and control groups.

<table>
<thead>
<tr>
<th></th>
<th>Patients (n = 20)</th>
<th>Control (n = 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td>46.6 ± 5</td>
<td>44.9 ± 4</td>
</tr>
<tr>
<td>Tender points</td>
<td>14.8 ± 1.7</td>
<td>---</td>
</tr>
<tr>
<td>Duration of disease (years)</td>
<td>10.1 ± 4.2</td>
<td>---</td>
</tr>
<tr>
<td>FIQ Total score, range 0–100</td>
<td>60.2 ± 5.6*</td>
<td>7.1 ± 1.4</td>
</tr>
<tr>
<td>VAS, range 0–10</td>
<td>6.9 ± 1.3*</td>
<td>0.8 ± 0.3</td>
</tr>
<tr>
<td>HIT-6, range 36–78</td>
<td>61.8 ± 1.3*</td>
<td>36.1 ± 1.1</td>
</tr>
</tbody>
</table>

VAS: Visual Analogue Scale; FIQ: Fibromyalgia Impact Questionnaire; HIT-6: Headache Impact Test. Values are means ± SD, *P < 0.001.

doi:10.1371/journal.pone.0035677.t001

Figure 2. Correlation of CoQ10, catalase or lipid peroxidation levels in BMCs from FM patients and HIT-6 levels.

doi:10.1371/journal.pone.0035677.g002

Oxidative Stress and Headache in Fibromyalgia

PLoS ONE | www.plosone.org 4 April 2012 | Volume 7 | Issue 4 | e35677
produce oxygen free radicals, consuming CoQ. In addition, the inflammatory component of migraines may etiology of migraines, although a direct link has not been identified involved in the pathophysiology of headache symptoms in FM.

CoQ

Table 2. Clinical symptoms and biochemical markers after CoQ10 treatment.

<table>
<thead>
<tr>
<th></th>
<th>Pre-treatment (n = 10)</th>
<th>Post-treatment (n = 10)</th>
<th>Control levels (n = 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tender points</td>
<td>13.9 ± 1.2</td>
<td>9.0 ± 0.5†</td>
<td>—</td>
</tr>
<tr>
<td>FIQ total score, range 0–100</td>
<td>59.2 ± 4.2‡</td>
<td>30.1 ± 2.8‡</td>
<td>7.1 ± 1.4</td>
</tr>
<tr>
<td>VAS, range 0–10</td>
<td>7.1 ± 1.2‡</td>
<td>3.5 ± 0.8‡</td>
<td>0.8 ± 0.3</td>
</tr>
<tr>
<td>HIT-6, range 36–78</td>
<td>60.8 ± 1.4‡</td>
<td>36.9 ± 1.7‡</td>
<td>36.1 ± 1.1</td>
</tr>
<tr>
<td>CoQ10 (pmol/mg protein)</td>
<td>135.6 ± 6.3‡</td>
<td>221.6 ± 11.3‡</td>
<td>224.4 ± 12.3</td>
</tr>
<tr>
<td>ATP (nmol/mg protein)</td>
<td>61.3 ± 4.9‡</td>
<td>191.1 ± 6.7‡</td>
<td>202.8 ± 22.1</td>
</tr>
<tr>
<td>Cytokase (U/mg protein)</td>
<td>35.6 ± 10.1‡</td>
<td>85.2 ± 15.3‡</td>
<td>96.5 ± 14.8</td>
</tr>
<tr>
<td>MDA in BMCs (nmol/million cells)</td>
<td>30.3 ± 5.9‡</td>
<td>5.1 ± 1.6*</td>
<td>6 ± 1</td>
</tr>
</tbody>
</table>

VAS: Visual Analogue Scale; FIQ: Fibromyalgia Impact Questionnaire; HIT-6: Headache Impact Test; MDA: Malondialdehyde; BMCs: Blood mononuclear cells. Values are means ± SD.

*P < 0.001 between pretreatment and control.

We thank all patients for participating in the study.

Author Contributions

Conceived and designed the experiments: MDC JASA. Performed the experiments: MDC EAG. Analyzed the data: MDC FJCG EAG MDM. Contributed reagents/materials/analysis tools: MDC MDM JASA. Wrote the paper: MDC JASA.

References

Acknowledgments

We thank all patients for participating in the study.

