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Abstract: Nuclear factor (erythroid-derived 2)-like 2 (Nrf2; encoded in humans by the NFE2L2 
gene) is a transcription factor that regulates the gene expression of a wide variety of cytoprotec-
tive phase II detoxification and antioxidant enzymes through a promoter sequence known as the 
antioxidant-responsive element (ARE). The ARE is a promoter element found in many cyto-
protective genes; therefore, Nrf2 plays a pivotal role in the ARE-driven cellular defense system 
against environmental stresses. Agents that target the ARE/Nrf2 pathway have been tested in a 
wide variety of disorders, with at least one new Nrf2-activating drug now approved by the US 
Food and Drug Administration. Examination of in vitro and in vivo experimental results, and 
taking into account recent human clinical trial results, has led to an opinion that Nrf2-activating 
strategies – which can include drugs, foods, dietary supplements, and exercise – are likely best 
targeted at disease prevention, disease recurrence prevention, or slowing of disease progression 
in early stage illnesses; they may also be useful as an interventional strategy. However, this rubric 
may be viewed even more conservatively in the pathophysiology of cancer. The activation of 
the Nrf2 pathway has been widely accepted as offering chemoprevention benefit, but it may be 
unhelpful or even harmful in the setting of established cancers. For example, Nrf2 activation 
might interfere with chemotherapies or radiotherapies or otherwise give tumor cells additional 
growth and survival advantages, unless they already possess mutations that fully activate their 
Nrf2 pathway constitutively. With all this in mind, the ARE/Nrf2 pathway remains of great 
interest as a possible target for the pharmacological control of degenerative and immunological 
diseases, both by activation and by inhibition, and its regulation remains a promising biological 
target for the development of new therapies.
Keywords: Nrf2, detoxification, antioxidant

Introduction
Nrf2 and ARE
Cells respond to oxidative stress or electrophilic xenobiotics mainly through the tran-
scription factor Nrf2 (nuclear factor [erythroid-derived 2]-like 2). Nrf2 upregulates a 
series of phase II detoxification and antioxidant genes,1,2 as well as cell survival, anti-
inflammatory, energy metabolism, and other groups of genes that contain a cis-acting 
element in their promoter region recognized as the antioxidant response element (ARE) 
or electrophile response element (EpRE). Although there is some level of variability 
allowed in the specific nucleotide positions, the consensus sequence for the core ARE 
is generally identified as TGACnnnGC.3–7 The additional functional sequence content 
of the binding site is referred to as the extended ARE (TMAnnRTGAYnnnGCRwwww) 
which is proposed to define a more sufficient, functional ARE.7,8
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Nrf2, sometimes referred to as the master regulator of 
antioxidant, detoxification, and cell defense gene expres-
sion, was initially identified and cloned 20 years ago.9 This 
discovery occurred just a few years after the initial reports 
of the ARE,4,10,11 and was coincident with identification of 
the chemicals that induce phase II enzymes through the ARE 
response.6,12,13 Prior to these discoveries, for years scientists 
had suspected the existence of oxidative stress-sensing 
mechanisms to explain corresponding gene regulation pat-
terns. In fact, the upregulation of antioxidant and detoxifi-
cation genes was noted for a variety of chemical inducers 
prior to the discovery and knowledge of the ARE, Nrf2, or 
Nrf2-regulating molecules.

Nrf2 activation
Under normal conditions, Nrf2 is bound in the cytoplasm to 
Keap1 (Kelch-Like ECH-Associated Protein 1, also known as 
an inhibitor of Nrf2, INrf2) and targeted for ubiquitination and 
proteasomal degradation. So called Nrf2 activators (oxidants, 
electrophiles, and other agents) stabilize Nrf2 to allow it to 
migrate to and accumulate in the nucleus.14,15 This typically 

occurs by reaction with cysteine thiols on Keap1 and interfer-
ence with its Nrf2 binding, thereby decreasing the ubiquitin 
E3 ligase activity of the overall Keap1 complex,16–19 and also 
possibly occur via kinase-dependent phosphorylation of Nrf2, 
although the relative contribution of kinases to Nrf2 activation 
has been suggested to be lower than the Keap1 sensor activity 
(Figure 1).20–23 Demonstration of the regulation of the Nrf2 
pathway by phosphorylation of Nrf2 at serine and threonine 
residues through phosphatidylinositol 3-kinase (PI3K), c-Jun 
N-terminal kinase (JNK), and extracellular signal-regulated 
protein kinase (ERK) creates opportunities for new approaches 
to controlling Nrf2 activation in future work.24

The mechanism of activation is potentially relevant to 
additional effects of Nrf2 activators and should be kept in 
mind during new drug development. For example, drug can-
didates that act as electrophiles and react with Keap1 thiol 
groups could act on other electrophile-sensitive pathways, 
such as histone deacetylase enzymes.25 Hundreds of genes 
contain the ARE in their regulatory promoter regions.26 
Stabilized Nrf2 that migrates into the nucleus can form het-
erodimers with other proteins such as small Maf proteins,3,27 
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Figure 1 Schematic representation of the Nrf2/Keap1 intracellular pathway. 
Notes: Under normal conditions, Keap1 binds Nrf2 in the cytoplasm and promotes both the Cullin-3 containing ubiquitin E3 ligase ubiquitination of Nrf2 and its targeting 
for degradation by the proteasome. When Nrf2 is stabilized through electrophiles, oxidants, or other agents that can interact with Keap1 cysteine thiols, or by agents that 
increase kinase-dependent phosphorylation of Nrf2, it can accumulate in the nucleus, form heterodimers with small Maf proteins, and bind with the ARE of target genes.
Abbreviations: Nrf2, nuclear factor (erythroid-derived 2)-like 2; ARE, antioxidant response element; Keap1, Kelch-Like ECH-Associated Protein 1.
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and then bind to and interact with gene promoter ARE 
sequences and modulate gene transcription. This is usually 
discussed in terms of Nrf2-responsive gene upregulation, but 
some genes are downregulated following Nrf2 activation as 
well. Following translocation to the nucleus, Nrf2 repres-
sion has been demonstrated based on Keap1 import into 
the nucleus and either degradation of Nrf2 in the nucleus,28 
or export of Nrf2 out of the nucleus and degradation in the 
cytosol,29 both of which constitute a means of turning off 
Nrf2 signaling and preventing permanent induction of Nrf2-
regulated genes.

Recently, Narasimhan et al documented the direct 
involvement of microribonucleic acids (miRNAs) to mediate 
posttranscriptional tuning of Nrf2 and its associated redox 
homeostasis mechanism.30 In another study, Cheng et al31 
have highlighted how Nrf2 can be regulated indirectly by 
miRNAs via control of redox signaling. It has also been 
shown that a closely related family member (Nrf1) can also 
engage the ARE and either compete with or inhibit Nrf2 from 
activating ARE-dependent gene transcription.32,33

Nrf2 has established functions in endo/xenobiotic detox-
ification, antioxidants, and antiinflammatory response. 
Based on numerous biochemical studies and global gene 
expression profiling,26,34–36 it is now evident that both the 
Keap1-dependent and Keap1-independent Nrf2 pathways 
control the gene expression of a battery of cytoprotective 
and detoxifying enzymes and play a vital role in maintain-
ing redox cellular homeostasis.37–39 A substantial literature 
documents that an imbalance of cellular redox status 
contributes to the pathogenesis of degenerative and immu-
nological disorders. Thus, Nrf2 activation or inhibition 
responding to cellular oxidative and electrophilic stress, 
and designed to restore redox homeostasis, paves a new 
way to understand, prevent, or even cure these complex 
diseases.

In the present work, Nrf2 transcription factor (NFE2L2) 
binding sites were identified in the 25 genes with the high-
est fold-induction from our previous phytochemical Nrf2 
activation study using Protandim® (LifeVantage, Inc., Sandy, 
UT, USA; a mixture of extracts of milk thistle, bacopa, ash-
wagandha, green tea, and turmeric)40 and used to generate a 
sequence logo using Weblogo 3 (http://weblogo.threeplusone.
com/).41,42 The ARE motif sequence logo generated from the 
upregulated genes in our prior study is shown in Figure 2; 
however, while it is only based on sequence information and 
not bona fide Nrf2 binding studies, it allows for comparisons 
against the consensus ARE and chromatin-immunoprecip-
itation (ChIP)-verified Nrf2 binding sequences. It depicts, 

as expected, a match between the gene data and the corre-
sponding bases from the central part of the extended ARE 
(RTGAYnnnGCR),7,8 where R A or G, and Y C or T.

Review of genes and results for 
degenerative and immunological 
disorders pertaining to Nrf2
Nrf2 target genes
Thimmulappa et al investigated Nrf2-regulated genes induced 
by the chemopreventive agent sulforaphane using oligonucle-
otide microarray.34 In the study, a transcriptional profile of 
the small intestine of wild-type (nrf2 / ) and knock out 
(nrf2 / ) mice treated with vehicle or sulforaphane was gen-
erated. Seventy seven Nrf2-upregulated genes were identified, 
including NAD(P)H:quinone reductase (NQO1),  glutathione 
S-transferase (GST), -glutamylcysteine synthetase, uridine 
diphosphate-glucuronosyltransferases, and epoxide hydrolase. 
Also identified were genes encoding for cellular nicotinamide 
adenine dinucleotide phosphate (NADPH)-regenerating 
enzymes, including the following: glucose 6-phosphate dehy-
drogenase, 6-phosphogluconate dehydrogenase, and malic 
enzyme; various xenobiotic metabolizing enzymes; antioxi-
dants such as glutathione peroxidase, glutathione reductase, 
ferritin, and haptaglobin; and biosynthetic enzymes of the 
glutathione and glucuronidation conjugation pathways.

To identify direct targets of Nrf2, Malhotra et al used 
mouse embryonic fibroblasts with either constitutive nuclear 
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Figure 2 Typical ARE sequence logo. An ARE sequence logo was generated using 
predicted Nrf2 binding sites in the regulatory regions of the highest upregulated 
genes from Hybertson et al,40 in which cultured human umbilical vein endothelial 
cells were treated with a phytochemical Nrf2 activator mixture.
Notes: Using oPOSSUM 3.0 web-based software (http://opossum.cisreg.ca/
oPOSSUM3/) we evaluated Nrf2 binding sites in the 25 genes with the highest 
fold-induction from our previous phytochemical Nrf2 activation study using 
Protandim® (LifeVantage, Inc., Sandy, UT, USA; a mixture of extracts of milk thistle, 
bacopa, ashwagandha, green tea, and turmeric),40 examining 10,000 bases upstream 
and 5,000 bases downstream of the transcription start site and aligning potential 
Nrf2 binding sites.43,44 Thirty one Nrf2 binding sites were identified in 14 of the 25 
genes that were upregulated by the Nrf2 activator.40 
Abbreviations: Nrf2, nuclear factor (erythroid-derived 2)-like 2; ARE, antioxidant 
response element.
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accumulation (Keap1 / ) or depletion (Nrf2 / ) of Nrf2 
to perform ChIP with parallel sequencing (ChIP-Seq) and 
microarray profiling.45 Integrating ChIP-Seq and microarray 
analyses, 645 basal and 654 inducible direct targets of Nrf2 
were identified, with 244 genes at the intersection. Further 
gene ontology (GO) analysis revealed that ‘cell prolifera-
tion’ dominates the basal gene set and ‘response to oxidative 
stress’ genes are the most prominent in the inducible gene 
set. Recently, Chorley et al conducted ChIP-sequencing 
experiments in lymphoid cells treated with the dietary 
isothiocyanate (sulforaphane) and carried out follow-up 
biological experiments on candidates.26 They found 242 
high confidence, Nrf2-bound genomic regions; 96% of 
these regions contained Nrf2-regulatory sequence motifs. 
A microarray gene expression study revealed that 508 genes 
changed by 1.3-fold or greater, with 70 of them having both 
ChIP-Seq peaks and gene expression changes. Hirotsu et al 
used the ChIP-Seq approach to identify binding sites of Nrf2 
and MafG throughout the genome. They found a correlation 
with ARE motifs that was not seen in Nrf2-binding sites that 
did not also bind MafG. They also observed that Nrf2-MafG 
target genes included genes involved in cytoprotective and 
metabolic functions.3

It is, of course, important to note that the specific condi-
tions such as sampling protocol, Nrf2 activation approaches 
(eg, chemical or genetic), potency of Nrf2 activators utilized, 
and cell/tissue types studied are all critical to monitoring the 
transcriptional activation of any gene. That is, the different 
experimental conditions and different antibodies used in 
unique assays may result in identification of different Nrf2-
dependent gene profiles, although cytoprotective genes are 
mostly observed. A comprehensive description of all Nrf2-
regulated genes is beyond the scope of this review, though 
here we do include some example genes and their products.

The NQO1 (NAD(P)H Dehydrogenase, Quinone 1) gene 
is one of the most robust responders to both chemical and 
genetic activation of Nrf2.46,47 This gene is a member of the 
NAD(P)H dehydrogenase (quinone) family and encodes a 
cytoplasmic 2-electron reductase which reduces quinones 
to hydroquinones. Lower NQO1 activity caused by gene 
mutations has been associated with tardive dyskinesia,48 an 
increased pulmonary susceptibility to ozone,49 and suscepti-
bility to various forms of cancer.50,51 In addition, NQO1 binds 
and protects the tumor suppressor p53 against proteasomal 
degradation; thus, it has even broader cytoprotective roles, 
beyond its enzymatic functions.52

The aldo-keto reductases (AKRs) are some of the most 
inducible Nrf2 target genes in human cells and tissues.53 

The AKR superfamily comprises enzymes that catalyze the 
NADPH-dependent reduction of a wide variety of carbonyl 
compounds such as glucose, steroids, glycosylation end-
products, and lipid peroxidation products, as well as xeno-
biotic aldehydes and ketones.54 Working together, the AKRs 
get the carbonyl group ready for consequent conjugation, for 
instance, glucuronidation and sulfation, and eventually for 
excretion. As a result, AKRs play an important role in the 
phase II detoxification of a large number of pharmaceuticals, 
drugs, and xenobiotics.

Heme oxygenase-1 (HO-1) is an enzyme that catalyzes 
the degradation of heme. This reaction generates carbon 
monoxide, biliverdin, and free iron which are responsible for 
much of the biologic activity of HO-1, including antiinflam-
matory and antioxidant effects.55–57 Nrf2 participates in the 
regulation of the gene expression of HO-1, which in concert 
with bilirubin reductase generate the antioxidants carbon 
monoxide and bilirubin.58 The upstream regulatory regions 
of the gene-encoding heme oxygenase 1 contain multiple 
AREs, which are responsible for its robust inducibility by 
various small-molecule Nrf2 activators.6

Glutathione reductase is another Nrf2-regulated enzyme 
which plays a critical role in maintaining cells’ reducing 
environment and in battling oxidative stress.59,60 Furthermore, 
transcription of SLC7A11 (solute carrier family 7 [anionic 
amino acid transporter light chain, xc-system], member 11, 
also known as xCT) is regulated by Nrf2 and plays an impor-
tant role in cellular cystine-glutamate exchange, thereby 
contributing to regulation of glutathione synthesis and 
intracellular glutathione levels.61–63

Degenerative and immunological 
disorders
Degenerative and immunological disorders – examples of 
which include atherosclerosis, inflammatory bowel disease 
(IBD), diabetes, rheumatoid arthritis, human immunodefi-
ciency virus/acquired immunodeficiency syndrome (HIV/
AIDS), neurological disorders, sepsis, cancer, and many 
others – affect more than 45 million people worldwide. 
Though the illnesses are very different, the Nrf2 pathway 
plays a role in many of them.

Atherosclerosis
Atherosclerosis is a disorder of the arterial vasculature marked 
by inflammation and plaque formation. Collins et al have found 
that myeloid-derived Nrf2 activity attenuates atherosclerosis 
development, liver inflammation, and fibrosis associated with 
obesity in an obese hypercholesterolemic mouse model.64 
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Similarly, in low-density lipoprotein receptor-deficient mice, 
Ruotsalainen et al found that Nrf2 deficiency specific to bone 
marrow-derived cells aggravates atherosclerosis, and that 
Nrf2 deficiency in macrophages promotes inflammation and 
foam cell formation.65 Prior research in our laboratory using 
primary human umbilical vein endothelial cells revealed that 
19 genes that have been associated with atherosclerosis in 
the literature were up or downregulated by treatment with a 
phytochemical mixture Nrf2 activator;40 we also found that 
16 of them (84%) were regulated by Nrf2 activation in the 
opposing direction to that taken by the atherosclerosis disease 
process.40 On the other hand, Barajas et al found that in apo-
lipoprotein E-deficient (Apoe [-/-]) male mice, knocking out 
Nrf2 decreases aortic atherosclerosis.66,67 Combined, the work 
suggests the need to consider roles for both Nrf2 activators 
and Nrf2 inhibitors in future atherosclerosis research.

IBD
IBD is a group of chronic inflammatory disorders of the 
intestine. Khor et al investigated the role of Nrf2 in the regula-
tion of dextran sulfate sodium-induced experimental colitis 
in mice and concluded that Nrf2 contributed to intestinal 
protection through regulation of proinflammatory cytokines 
and induction of phase II detoxifying enzymes.68 Arisawa 
et al found that a Nrf2 gene polymorphism that reduces the 
activity of Nrf2 was associated with increased risk of IBD 
ulcerative colitis in a Japanese study population.69 Because 
inflammation and oxidative stress feature prominently in 
IBD,70 studies of the potential benefits of Nrf2 activation and 
relevant drug development are warranted.

Type I diabetes
Type I diabetes is a disorder of the human immune system in 
which the patient’s pancreas produces little or no insulin. In 
promising cell culture work, Nrf2 overexpression made model 

-cells resistant to nitric oxide-induced apoptosis.71 In a study 
of the link between oxidative stress and insulin resistance in 
cardiac cells, Tan et al found that ERK-mediated suppression 
of Nrf2 activity leads to the oxidative stress-induced insulin 
resistance in adult cardiomyocytes and downregulated glucose 
utilization in the diabetic heart.72 Zheng et al induced diabetes 
in Nrf2 (+/+) and Nrf2 (-/-) mice by streptozotocin injection 
to determine whether Nrf2 activators sulforaphane or cin-
namic aldehyde attenuate renal damage and preserve renal 
function.73 They found that both sulforaphane and cinnamic 
aldehyde significantly attenuated common metabolic disorder 
symptoms associated with diabetes in Nrf2 (+/+) but not in 
Nrf2 (-/-) mice, suggesting that targeting Nrf2 activation might 

be used therapeutically to improve metabolic disorders and 
attenuate renal damage induced by diabetes.73

HIV/AIDS
HIV/AIDS is a chronic immunological condition in 
which HIV attacks the immune system, which can lead 
to AIDS. Zhang et al studied the effect of Nrf2 on Tat-
induced HIV-1 transcription in multinuclear activation of 
galactosidase indicator cells.74 Their data show that Nrf2 
is involved in inhibiting Tat-induced HIV-1 long-terminal 
repeat transactivation, suggesting that Nrf2 might be an 
important molecular target for inhibiting HIV-1 transcrip-
tion. Because evidence suggests that HIV infection causes 
oxidative stress and damages epithelial barrier function 
in the lung, Fan et al studied alveolar epithelial cells from 
HIV-1 transgenic rats cells in vitro and found that Nrf2 
activation both improved the expression of tight junction 
proteins and also restored the ability of the cells to form 
tight barriers.75

Rheumatoid arthritis
Increasing evidence indicates that oxidative stress may play 
a key role in the development of rheumatoid arthritis.76,77 
Wruck et al used antibody-induced arthritis in Nrf2-knockout 
and Nrf2-wild-type control mice to study the role of Nrf2 
against oxidative stress in rheumatoid arthritis; they con-
cluded that oxidative stress is significantly involved in car-
tilage degradation in experimental arthritis, and the presence 
of a functional Nrf2 gene is a major requirement for limiting 
cartilage destruction.78 Maicas et al analyzed the relevance 
of Nrf2 in the effector phase of a rheumatoid arthritis animal 
model and found that Nrf2 deficiency accelerates the inci-
dence of arthritis and aggravates joint disease.79 The results 
support a protective role for Nrf2 against joint inflammation 
and degeneration in rheumatoid arthritis.77

Neurodegenerative disorders
In several studies, Nrf2 has been shown to play an important 
role in mouse models of neurodegenerative diseases such as 
Parkinson’s disease and Huntington’s disease.80 83 Additionally, 
Nrf2 has been reported to be relevant to acute neurological 
disorders such as stroke.84,85 Oxidative stress plays an impor-
tant role in these neurodegenerative disorders, including 
the degeneration of dopaminergic neurons in Parkinson’s 
disease,86,87 and Nrf2 may contribute to the beneficial role of 
the neuroprotective Parkinson Protein 7 (PARK7, also known 
as DJ-1).86 The protective results from small molecule acti-
vators of Nrf2 in neurological disorders such as Parkinson’s 

www.dovepress.com
www.dovepress.com
www.dovepress.com


Clinical Pharmacology: Advances and Applications 2014:6submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

24

Gao et al

disease provide a rationale for additional disease model studies 
and the potential for human clinical trials in the future.80

Sepsis
Several studies have outlined a role for Nrf2 in sepsis or 
Systemic Inflammatory Response Syndrome.88 Studies in 
mouse models have indicated that Nrf2 plays a critical role in 
improving survival during sepsis.88 Recently, Kong et al dem-
onstrated that disruption of Keap1 in leukocytes protected 
against injury and mortality in a mouse cecal ligation and 
puncture model of sepsis. Their findings indicate Nrf2 acts 
as an immunomodulator in leukocytes and protects against 
sepsis by contributing to control of the host inflammatory 
response to bacterial infection.89

Review of Nrf2 in cancer  
and chemotherapy
There have been several interesting publications in recent 
years pertaining to the role of Nrf2 in both cancer prevention 
and in cancer development/progression.90–93 This is a very 
active field of research.94 Nrf2 activation has been shown to 
have chemopreventive benefits and effects that can support 
cancer development and progression.

Recent research has indicated a distinctly negative role for 
persistent Nrf2 activation in some cancer cells.95–98 The main 
idea is that certain types of cancer cells, including some lung, 
endometrial, skin, breast, and prostate cancers, gain function by 
constitutively activating the Nrf2 cell survival pathway.90,99–104 
This can occur by multiple mechanisms including mutations in 
genes directly involved in the pathway such as Keap1,102,103,105 
methylation of genes such as p66Shc (also known as SHC-
transforming protein 1) leading to their repression and sub-
sequent overexpression of Nrf2,106 increased expression of 
Bcl-xL (B-cell lymphoma-extra large),107 increased expression 
of BRCA1 (Breast Cancer 1, Early Onset),108 or other mecha-
nisms. For example, the adaptor protein p62 (Sequestosome 
1, SQSTM1) is a target gene for Nrf2 and it is also capable of 
binding to Keap1, which can lead to a positive feedback loop in 
its transcriptional regulation and dysregulation of apoptosis and 
autophagy.93,109,110 The net result is that these types of cancer 
cells remain proliferative in oxidatively-stressed environments, 
have increased Nrf2-dependent metabolic activities that can 
support cell proliferation,111 and can gain resistance against 
some types of cancer drugs.101

The predominant way that Nrf2 activation has been stud-
ied in cancer has been constitutive, continuous utilization 
of the pathway (for example, through mutations in Keap1 
or Nrf2), but there may also be a possible role for increases 

in Nrf2 signaling in some types of cancer that are not based 
on Nrf2 or Keap1 mutations.112 This differs from the inter-
mittent activation of Nrf2 that occurs naturally through 
consumption of certain foods (like broccoli) and spices, 
Nrf2-activating dietary supplements, exercise, and Nrf2-
activating drugs. The Nrf2 pathway has been described as 
having hormetic behavior, with beneficial effects observed 
for intermediate levels of Nrf2 activation and deleterious 
effects observed when there is too little or too much Nrf2 
activation; in addition, it has been proposed that dietary con-
sumption of Nrf2 activators in foods and spices likely falls 
within the healthy middle part of the activation range.24,113 
Constitutive Nrf2 activation has been shown to have nega-
tive effects, but intermittent activation has not, although it 
might still have undiscovered negative effects.

Cancer cells that do not constitutively upregulate the Nrf2 
pathway might still benefit from its activation by other mecha-
nisms.95 It has been shown that Nrf2 activation gives cancer 
cells a survival benefit95 and that Nrf2 activation may also 
participate in resistance to chemotherapy or radiation therapy.114 
For example, Nrf2 activation has been shown to contribute to 
multi-drug resistance to chemotherapeutic agents in cultured 
H69 lung cancer cells through the Multidrug Resistance Asso-
ciated Protein 1 gene (MRP1, also known as ABCC1).115 This 
paradigm – that some types of cancer cells may resist chemo-
therapy by an Nrf2-dependent mechanism – has led to studies 
that target Nrf2 inactivation in an attempt to make the cancer 
cells more susceptible to the chemotherapeutic drug. Ren et al 
used an Nrf2 inhibitor, brusatol, to decrease chemoresistance 
of cancer cells to treatment with cisplatin and other drugs.116

Based on such findings, it may be logical to avoid 
intentional Nrf2 activation during chemotherapy in case the 
cancer cells utilize Nrf2 for survival or for drug resistance, 
or at least attempt targeted strategies that do no benefit the 
cancer cells. One reason for discontinuing intentional Nrf2 
activation during cancer therapy is that it is unclear whether 
it might alter the chemotherapy or radiotherapy response by 
the cancer cells and/or normal cells, perhaps allowing cancer 
cells to gain survival benefit against the therapy. An additional 
reason is that some chemotherapy agents like tamoxifen 
are prodrugs that require processing by liver cytochrome 
P450 enzymes such as CYP2D6, the levels of which might 
be changed by Nrf2 activation, because this could change 
the patient’s response to the drug.117,118 Additionally, other 
xenobiotic metabolism enzymes such as CYP2A6 can be 
upregulated by Nrf2 activation and have been implicated in 
the activation of nitrosamines which could affect levels of 
carcinogenesis.119,120 Notably, Wu et al recently concluded 
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that Nrf2 plays a central role in xenobiotic metabolism and 
detoxification, but that Nrf2 activation had only a modest 
effect on the regulation of the CYP enzyme genes.121

Drugs targeting Nrf2
Because Nrf2 has been shown to participate in cytoprotec-
tion against common pathophysiological pathways involv-
ing inflammation and oxidative stress, it has emerged as an 
attractive drug target.122–127 In recent years, research has been 
highly focused toward the discovery of new Nrf2-related 
drugs, including high-throughput screening approaches,127–132 
structure-based modeling,133 and the testing and development 
of molecules that target the Nrf2 pathway.80,134–140

Dimethyl fumarate
Multiple sclerosis (MS) is an inflammatory disease in which 
the myelin sheaths around nerve cell axons are damaged by 
the immune system, leading to deterioration of function and 
to neurological symptoms. About 80% of MS patients initially 
present with the relapsing-remitting subtype, which is char-
acterized by disease relapses followed by periods (months to 
years) of remission, making prevention of relapse/extension 
of remission period a good target for intervention.

In recent years, an oral formulation of dimethyl fumarate 
(formerly known as BG-12 and marketed as Tecfidera®; Biogen 
Idec, Inc, Weston, MA, USA), has been developed for treatment of 
relapsing-remitting MS.141–143 Notably, dimethyl fumarate has been 
shown to activate the Nrf2 pathway in vitro, which is thought to 
contribute to the drug’s dual antiinflammatory and neuroprotective 
effects. Other mechanisms may also be relevant to the beneficial 
effects of dimethyl fumarate in MS, including NF- B inhibition.144 
In Biogen’s DEFINE (Determination of the Efficacy and Safety 
of Oral Fumarate in Relapsing-Remitting MS) Phase III clinical 
trial, Tecfidera® significantly reduced the proportion of patients who 
relapsed within 2 years compared with placebo.145–147

After receiving US Food and Drug Administration 
approval on March 27, 2013,148,149 Biogen quickly launched 
their Nrf2-activating dimethyl fumarate drug (marketed as 
Tecfidera®) for treatment of multiple MS into the US market. 
Interestingly, the drug rapidly became a major sales success 
in the marketplace by mid-2013. Greatly exceeding expecta-
tions, Biogen reported quarterly sales valued at $192 mil-
lion for the second quarter (reported on July 25, 2013).150 It 
remains to be seen whether the volume of sales will continue 
to increase, but from an Nrf2 science perspective the success-
ful product launch helps validate overall biomedical interest 
in the Nrf2 signaling pathway. Furthermore, the associated 
postmarketing surveillance of the new drug will continue to 

improve knowledge about the efficacy and safety of chronic 
consumption of Tecfidera® – thought to exert its beneficial 
effects by acting as a pharmaceutical Nrf2 activator – in a 
large number of patients.

CDDO-Me
CDDO-Me (Methyl 2-cyano-3,12-dioxoleana-1,9(11)-dien-
28-oate, a synthetic oleanane triterpenoid, also known as 
bardoxolone methyl) has been studied for its Nrf2 activation 
properties and has been deemed a promising drug candidate 
for treating many different degenerative illnesses, including 
diabetic complications.88,151–154 Research in animal models of 
chronic kidney disease (CKD) indicated that functional Nrf2-
Keap1 signaling is important to limiting the effects of oxidative 
stress in CKD and its progression.155 The agent was also studied 
in humans, and because CDDO-Me improved the estimated 
glomerular filtration rate (eGFR) in patients with advanced 
CKD in a randomized, placebo-controlled Phase II trial,151,152 
a follow-up Phase III trial enrolling over 2,000 patients was 
initiated (ClinicalTrials.gov Identifier: NCT01351675).156 
Unfortunately the CDDO-Me trial was forced by its Inde-
pendent Data Monitoring Committee to be terminated in 
November 2012 due to undisclosed safety concerns.

Activation of Nrf2 appears less suitable for reversing 
advanced pathological conditions than for preventing initial 
damage or slowing it once it starts. This is evident in the Phase 
II CDDO-Me clinical results in which patients with early 
stage CKD showed some benefit in measured eGFR.157

One possible reason suggested for the adverse events that 
halted the CDDO-Me clinical trial was that the measured 
eGFR benefit was a result of increased intraglomerular pres-
sure leading to not only short-term hyperfiltration but also 
to longer-term accelerated nephropathy and renal function 
loss.144,158 Another reason is the possibility that CDDO-Me 
interacts with other targets in addition to the Nrf2 pathway, as 
has been noted for structurally related compounds.159 As noted 
by Zhang, the original development of CDDO-Me was not 
specifically targeted at Nrf2 activation, and new efforts at drug 
discovery might yield comparably effective drugs addressing 
the Nrf2 pathway, but with fewer off-target effects.157

A few examples of potential new agents
Wang et al recently used a high-throughput screening approach 
from a synthetic library of 1.2 million small molecule com-
pounds to identify candidate ARE-inducing molecules, and 
further studied candidate AI-3 (ARE Inducer-3).131 The AI-3 
molecule was shown to activate Nrf2 by inducing an ARE-
luciferase reporter gene in vitro, by increasing the production 
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of ARE-driven NQO1 protein production in cultured cells 
in vitro, by inducing SKN-1-driven (analog of Nrf2) GST4 
in Caenorhabditis elegans in vivo, and by increasing ARE-
regulated NQO1 expression levels in mouse liver and kidney 
following intraperitoneal injection in vivo.131

Recent demonstration of a role for miRNA molecules in 
the regulation or tuning of Nrf2 activation and signaling30,31 
suggests a possibility for the development of miRNA-based 
therapies that address activating or inhibiting the Nrf2 path-
way if off-target effect can be avoided.

Traditional Chinese medicine’s Si-Wu-Tang (SWT, which 
translates as Four-Agents-Decoction)160 has been demon-
strated by gene array and pathway analysis studies to induce 
gene expression via the Nrf2 pathway.63 SWT has been used 
throughout Asia for about 1,000 years for treatment of men-
strual symptoms and menopausal difficulties, and continues to 
play a role in the treatment of estrogen-related illnesses.161–163 
In recent years SWT has also been shown in mice to have ben-
efit against radiation-induced bone marrow damage.164,165

Cureveda LLC is a company (Baltimore, MD, USA) 
focused on the development of therapeutics targeting the 
Nrf2 antioxidant pathway. It has reported current activities to 
develop a small molecule Nrf2 activator called VEDA-1209; 
preclinical pharmacokinetic and pharmacodynamics testing 
is underway and studies are planned for testing in animal 
models of ulcerative colitis.

Evgen Ltd is a company (Liverpool, UK) focused on 
the development of sulforaphane-based pharmaceuticals.166 
For new drugs that utilize Nrf2 activation, it has developed 
a synthetic sulforaphane-cyclodextrin complex, called 
Sulforadex®, with improved shelf stability over sulforaphane 
alone. It reports completion of a first-in-man clinical study 
of Sulforadex®, and indicates that a prostate cancer trial is 
planned for 2014.

Potential development of Nrf2 inhibitors
There are cases where Nrf2 inhibition may be preferable 
to Nrf2 activation. As noted above, some cancers gain an 
advantage over therapy by utilizing constitutive Nrf2 activa-
tion to enhance survival mechanisms and facilitate increased 
drug resistance. The idea of inhibiting those mechanisms 
with another drug while treating with chemotherapy may 
be worthwhile. Shutting down the Nrf2 signaling pathway 
might restore chemotherapy sensitivity of some cancer 
cells, and Nrf2 inhibitors might have benefits against other 
disease processes as well.116 Some candidate inhibitors are 
summarized in Table 1.

Effects of diet, nutritional 
supplements, and exercise  
on the Nrf2 pathway
Diet
One interesting aspect of phytochemical activation of the 
Nrf2 pathway is the possibility that the historical origination 
of the use of certain Nrf2-activating foods and spices in the 
human diet could have stemmed from perceived salutary 
health effects of these agents,175 with possible contemporary 
significance to healthy human diets.176–178

Recommendations for influencing Nrf2 activation by 
dietary means have typically pertained to the demonstrated 
activity of readily available food products like curcumin 
from turmeric root and sulforaphane from broccoli and 
other sources;179–181 many other relevant whole plant materi-
als and isolated phytochemicals have been identified.24,176 
In one recent example, seaweed-based extracts (from 
green alga Ulva lactuca, with focus on monounsaturated 
fatty acid derivatives, active fraction selected by bioassay-
guided fractionation) have been shown to activate the Nrf2 
pathway, upregulating Nqo1 gene transcription in mouse 
hearts 12 hours after a single gavage treatment in vivo.182 In 
another recent example, Heber et al found that sulforaphane, 

Table 1 Potential Nrf2 inhibitors

Retinoic acid All-trans retinoic acid was found to inhibit Nrf2-
mediated induction of ARE-driven genes. The 
mechanism of retinoid-related Nrf2 repression 
involves retinoid X receptor alpha binding to 
Nrf2.167,168

6-Hydroxy-1-
methylindole-
3-acetonitrile 
(6-HMA)

Protective effects were observed for 6-HMA on 
cisplatin-induced oxidative nephrotoxicity via Nrf2 
inactivation.169

Luteolin Luteolin has been shown in separate studies to both 
inhibit and activate Nrf2-mediated induction of ARE-
driven genes.170–173

Bleomycin Part of the mechanism of bleomycin-induced 
pulmonary fibrosis has been shown to involve 
suppression of Nrf2 activation. Although not the 
goal of the study, this result suggests the possibility 
that bleomycin could be a candidate for Nrf2 
inhibitor drug development.174

Brusatol Brusatol was identified as a selective inhibitor of the 
Nrf2 pathway. It acts by increasing ubiquitination 
and degradation of Nrf2. In cultured cancer cells 
and xenografts, brusatol was shown to decrease 
chemoresistance to treatment with cisplatin and 
other drugs.116

Abbreviations: Nrf2, nuclear factor (erythroid-derived 2)-like 2; ARE, antioxidant 
response element.
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administered as an extract but given in a dose that could be 
achieved by dietary broccoli consumption, offered benefits 
against particulate pollution in human subjects, suggesting 
that such treatment might be beneficial against asthma or 
allergies.183 Likewise, phytochemical components of garlic, 
tomatoes, grapes, green tea, coffee, and berries have been 
shown to have Nrf2 activating properties,184 supporting the 
possibility that dietary means of Nrf2 activation might be a 
simple but effective strategy for prevention or treatment of 
illnesses.178,185

Dietary supplements
An extensive amount of research has been done and 
information gathered about phytochemical activation of 
Nrf2, with dozens of plant-based activators identified and 
studied.40,176–178,186–192 Since the discovery of Nrf2 and its well-
ness potential in regulating cell survival genes and protecting 
tissues against oxidative and other insults, and in light of the 
phytochemical activation data, several nutritional supple-
ments have been developed to help consumers address health 
and wellness issues by activating the Nrf2 pathway.40,135

Several dietary supplement companies have developed 
specific mixtures for increasing antioxidant enzyme defenses 
(some companies working in this space include New Chapter, 
Inc, LifeVantage, Inc, Xymogen, and Nuley).40,135 In each case, 
a mixture of Nrf2-activating ingredients is blended together. 
For some of the materials, studies were done to show activity 
of the mixture, but in other cases reliance was simply made 
on known properties of the individual ingredients. In at least 
one case, Protandim (LifeVantage, Inc, Sandy, UT, USA), the 
complete mixture has been extensively studied, not just the indi-
vidual ingredients.40,186,191–200 Study of the combined ingredients 
allowed demonstration of synergistic interaction between the 
ingredients; each of which separately was previously known 
to be a Nrf2 activator.191 Furthermore, as a branded product, 
Protandim was shown to decrease oxidative stress in labora-
tory models in vivo, as well as in human subjects.193 While 
some dietary supplement products highlight the role of Nrf2 
activation as part of their health and wellness benefit, others 
(eg, Supercritical Antioxidants; New Chapter, Brattleboro, VT, 
USA) indicate their antioxidant gene regulation activity without 
specifying a role for the Nrf2 pathway. Perhaps not surprisingly 
based on their ingredient profile and reported benefits, some of 
these products likely also activate the Nrf2 pathway.

To demonstrate Nrf2 activation by two dietary supple-
ments, one marketed as a Nrf2 activator and the other 
marketed as supportive of antioxidant enzymes, we examined 

both using a promoter/reporter cell line responsive to Nrf2 
activation. Briefly, this widely used assay is based on the 
AREc32 cell line, developed and generously provided by 
Dr C R Wolf and colleagues of the University of Dundee.201 
The AREc32 cell line is based on the MCF7 (Michigan Can-
cer Foundation-7) human breast cancer cell line, and is stably 
transfected with a construct containing a promoter with eight 
copies of the ARE from the rat glutathione-S-transferase-A2 
gene, along with the SV40 (Simian virus 40) promoter 
sequence upstream of a firefly luciferase reporter gene. As 
shown in Figure 3, both of the tested dietary supplements 
activated the Nrf2 pathway in the AREc32 cells. This type of 
experimental approach can be utilized to make comparisons 
and help define the mechanism for materials purported to 
increase antioxidant and detoxifying enzymes.

Exercise
Recently, a relationship between exercise and Nrf2 activation 
has been demonstrated.200,202–205 For example, activation of 
Nrf2 was induced by acute exercise in a mouse model, and 
exercise-induced oxidative stress was higher in Nrf2 /  mice 
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Figure 3 Luciferase activity versus concentration of two nutritional supplements. 
Notes: Both of the tested nutritional supplements Protandim® (Lifevantage, Inc, 
Sandy, UT, USA) – reported by the manufacturer to be an Nrf2 activator – and 
Supercritical Antioxidants™ (New Chapter, Inc, Brattleboro, VT, USA), not 
reported by the manufacturer to be an Nrf2 activator – upregulated the Nrf2-driven 
luciferase reporter gene expression in the AREc32 cell line, depicted as relative 
light units. Briefly, AREc32 cells were grown by standard methods, then trypsinized, 
counted and seeded at 20,000 cells/well on 24-well plates. After 24 hours the cells 
were reattached and growing, and were treated with varied concentrations of the 
test material extracts in duplicate. Protandim® was obtained by BG as a gift from 
Professor Joe McCord; Supercritical Antioxidants™ was obtained by retail purchase. 
The agents were extracted overnight with 95% ethanol in 15 mL tubes on a rocking 
table. The extract was obtained by centrifugation and then added to the wells in an 
appropriate concentration range by dilution into phosphate buffer solution, with final 
volumes added to culture wells ranging from 1 to 10 L/well. An ethanol blank at the 
highest 10 L/well level was used as the zero control. The cells were incubated for 
24 hours, then washed and lysed, after which the lysate was assayed for luciferase 
activity by measuring luciferin-dependent chemiluminescence, reported as relative 
light units for the contents of each well. Each assay was performed in duplicate. 
Luciferase activity correlates directly in this case with Nrf2 activation. 
Abbreviations: Nrf2, nuclear factor (erythroid-derived 2)-like 2; ARE, antioxidant 
response element.
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due to lower expression of Nrf2-dependent antioxidant genes.204 
Notably, results from Gounder et al indicate that age-related 
impairment of Nrf2 signaling and antioxidant enzyme pathways 
may contribute to increased cardiovascular disease risk in the 
elderly, but that this deficit was reversible in old mice subjected 
to moderate physical exercise, restoring their heart Nrf2-depen-
dent antioxidants to near-normal, young mouse levels.202

Genes downregulated  
by Nrf2 activation
One interesting concept that has not had very much coverage 
in the literature is downregulation of gene expression by Nrf2 
activation. Previous work by ourselves and others has shown 
that Nrf2 activation upregulates the expression of hundreds of 
genes,26,40,206,207 but another direct or indirect consequence of Nrf2 
activation is the downregulation of a large number of genes.3,40 
In most cases, this downregulation is likely a consequence of 
downstream effects of Nrf2 activation and its regulation of 
genes that subsequently lead to downregulation of other genes, 
but the possibility also exists that Nrf2 binding to some ARE 
sequences of genes directly suppresses their transcription. For 
example, in work by Jiang et al, a possible negative regulation of 
TGF 1 (transforming growth factor beta 1) by Nrf2 activation 
was observed, raising the question of whether Nrf2 negatively 
regulates TGF 1 expression by direct binding to the promoter 
region of its gene or by other, downstream effects.208 Further-
more, treatment of cultured mouse hepatoma cells with the Nrf2 
activator diethyl maleate induced genes related to antioxidant, 
detoxification, and other functions, but also repressed some 
genes, including ones that contain Nrf2-MafG or Nrf2 binding 
sites;3 however, the mechanism of repression is not yet clear.

Identification of genes directly regulated by Nrf2 requires 
both sequence verification of a suitably located ARE motif 
and evidence of Nrf2 binding and transcriptional activation. 
Accordingly, Chorley et al conducted ChIP-Seq experiments 
in lymphoid cells treated with the known Nrf2-activator sul-
foraphane, and also carried out follow-up Illumina human 
Ref-8 microarrays to assess Nrf2-mediated gene expression 
in the six sequenced lines.26 They found 242 high confidence, 
Nrf2-bound genomic regions and the expressions of 508 genes 
changed by 1.3-fold or greater. Among genes with both ChIP-
Seq peaks and gene expression changes, there were significantly 
more ChIP-Seq peak regions near upregulated genes (20.6%; 
60/291) than downregulated genes (4.6%; 10/217; P 0.0001, 
Fisher’s exact test).26 Notably, none of the downregulated genes 
displayed high-confidence ChIP-Seq peaks, suggesting that 
the downregulation of these genes may be due to secondary, 
downstream effects rather than direct effects of Nrf2 binding.

Fourtounis et al reported downregulation of Eotaxin-1/
CCL11 in human lung fibroblasts by small interfering RNA 
(siRNA) to inhibit Keap1 and also by treatment with known 
Nrf2 activators sulforaphane and CDDO.35 Briefly, they used 
a custom Affymetrix Gene array to study gene expression 
in normal human lung fibroblasts transfected with siRNA 
specific for Nrf2 or Keap1, or treated with the small molecule 
Nrf2 activators sulforaphane or CDDO. The key eosinophil 
chemokine Eotaxin-1/CCL11 was found to be upregulated 
when Nrf2 was inhibited and downregulated when Keap1 was 
inhibited, whereas no effect had been found on the secretion 
of a set of other chemokines and cytokines. Furthermore, 
the known Nrf2 small molecule activators CDDO and sul-
phoraphane dose-dependently inhibited Eotaxin-1 release 
from human lung fibroblasts. The mechanism for Eotaxin 
regulation by Nrf2 is not known. For example, an ARE 
motif was not found in the 5  region upstream of the human 
Eotaxin-1 gene, suggesting that its downregulation by Nrf2 
may be an indirect effect, possibly as a downstream effect of 
NF- B inhibition or other antiinflammatory signaling.35

Conclusion
The Nrf2 cell signaling pathway has been demonstrated 
to  contribute to the regulation of a wide variety of antioxi-
dant, detoxification, and cell survival genes. Under normal 
conditions, Nrf2 activation plays a largely protective, ben-
eficial role, which has led researchers to examine ways in 
which individuals might harness Nrf2 activation for health 
benefits, including exercise, diet, dietary supplements, and 
 pharmaceuticals.  However, in other instances Nrf2 inhibition 
may be  therapeutic. Efforts at laboratories around the world are 
underway to develop new agents for either activation or inhibi-
tion of the Nrf2 pathway and to demonstrate their efficacy for 
the treatment of degenerative and immunological disorders.
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