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Abstract
Objective—To review the epigenetic modifications involved in the transition from acute to
chronic pain and to identify potential targets for the development of novel, individualized pain
therapeutics.

Background—Epigenetics is the study of heritable modifications in gene expression and
phenotype that do not require a change in genetic sequence to manifest their effects.
Environmental toxins, medications, diet, and psychological stresses can alter epigenetic processes
such as DNA methylation, histone acetylation, and RNA interference. Since epigenetic
modifications potentially play an important role in inflammatory cytokine metabolism, steroid
responsiveness, and opioid sensitivity, they are likely key factors in the development of chronic
pain. Although our knowledge of the human genetic code and disease-associated polymorphisms
has grown significantly in the past decade, we have not yet been able to elucidate the mechanisms
that lead to the development of persistent pain after nerve injury or surgery.

Design—Focused literature review

Results—Significant laboratory and clinical data support the notion that epigenetic modifications
are affected by the environment and lead to differential gene expression. Similar to mechanisms
involved in the development of cancer, neurodegenerative disease, and inflammatory disorders,
the literature endorses an important potential role for epigenetics in chronic pain.

Conclusions—Epigenetic analysis may identify mechanisms critical to the development of
chronic pain after injury, and may provide new pathways and target mechanisms for future drug
development and individualized medicine.
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Introduction
In recent years, we have developed a better understanding of the cellular mechanisms that
link inflammation, peripheral sensitization, and pain(1). In addition, we have learned more
about the human genetic code(2) and mutations (particularly single nucleotide
polymorphisms (SNPs) and copy number variations (CNVs)) that are associated with
specific chronic pain syndromes(3, 4). These physiologic and genetic advances, however, do
not fully explain why one patient develops chronic pain following an injury, and another
patient does not. Despite recent improvements in techniques for acute pain management,
30%–50% of patients still develop chronic pain following surgeries such as amputation,
thoracotomy, hernia repair, and mastectomy(5).

It is also notable that monozygotic twins may exhibit significantly different inflammatory
and chronic pain phenotypes (6–8), indicating that the etiological basis of these disorders is
not due simply to differences in genetic sequence. We now appreciate that response to injury
is determined by complex interactions between the genome and the environment. These
alterations might well be epigenetic in nature, ie, heritable modifications that are not
intrinsic to the genetic code, but that affect gene expression in a tissue-specific manner,
resulting in an observable phenotype (Figure 3)(9).

Epigenetic processes are responsible for cellular differentiation during embryogenesis and
are critical for normal development(10). These processes also play an important role in
memory formation, as correlations between hippocampal activity, DNA methylation, and
histone phosphorylation in the brain have been found(11, 12). The spinal cord sensitization
seen in painful conditions shares common mechanisms with the neural plasticity of memory
formation(13), and it is likely that similar epigenetic mechanisms regulate both of these
neural processes.

Multiple examples of the importance of epigenetic influences in development are found
throughout nature. One of the best-described cases of environmental influence on gene
expression involves the control of bee development by ingesting Royal Jelly. This nutritive
substance induces changes in juvenile bee DNA methylation patterns and leads to
development of the bee’s phenotype to become a queen rather than a worker(14). The
concepts of epigenetic heritability and stability have also been described in plants(15) and
mammals(16). For instance, high-fat diets fed to paternal rats induce functional changes in
β-islet cells of female offspring(16). Similar modifications in DNA methylation were noted
in the fathers and offspring, suggesting the non-genetic heritability of this metabolic
disorder.

Non-developmental epigenetic modifications are also triggered by environment, nutrition,
and stress(17–19), and may play a role in the onset of chronic pain following nerve
injury(20, 21). We have long appreciated the importance of the psychosocial environment to
the incidence and severity of chronic pain(22–27), and mounting evidence suggests that
epigenetic mechanisms supply the link between disease expression and environment(18, 28).
Non-genetic factors are important in the development of cancer(29, 30), neurologic
disorders(31), and painful disorders such as bladder pain syndromes(7), myofascial pain(32),
and temporomandibular joint pain(8). Twin-disease models of neurodegenerative
conditions(33), inflammatory periodontal disease(34), and autoimmune disease(35)
demonstrate variable disease expression depending on the DNA methylation pattern(6).

Environmental factors alter gene expression and phenotype for painful disorders by inducing
epigenetic modifications such as histone acetylation, DNA methylation, and RNA
interference(36–38). Following injury, expression of transcription factors such as nuclear
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factor-κB (NF-κB) is increased(39), sodium channels in the injured axon are
upregulated(40), μ-opioid receptors in the dorsal root ganglion are downregulated(41, 42),
substance P expression is altered(43), and the dorsal horn of the spinal cord is structurally
reorganized through axonal sprouting(44). As with DNA variation, epigenetic modifications
may be inherited and may be propagated over multiple cell divisions; however, they are
flexible enough to respond to modifying influences. This concept may in part explain how
we interact with our environment at the (epi)genomic level, and is potentially of great
importance in understanding the relationship between gene expression and complex diseases
such as chronic pain.

Genetics, Epigenetics, and Pain
Over the past several decades, much has been written about the association of genetic
polymorphisms and the development of chronic pain(45, 46). It was believed that, through
knowledge of genetic variation, we could develop the foundation for individualized
medicine that optimizes therapy for each patient based on his/her specific genetic sequence
(47). Expectations for personalized medicine were high after completion of the human
genome project(2), but thus far, our ability to use the genetic code to prevent or improve
chronic pain has been somewhat limited(48). It is the heretofore unquantifiable
environmental effect that has been one of the limitations of genetic studies(45).

Multiple candidate gene association studies (CGAS) have been used for the investigation of
pain, but have been limited by their focus on genomic regions where the pathophysiology is
thought to be reasonably well understood. They are not designed to analyze painful
conditions that result from interactions of multiple genes(49). A few candidate gene
polymorphisms have been linked to pain susceptibility, including Catechol-O-
methyltranferase(COMT). This gene modulates nociceptive and inflammatory pain and has
been linked to temporomandibular joint pain syndromes(50). Even studies of COMT,
however, have demonstrated inconsistencies. Some investigators have found an association
between a COMT single nucleotide polymorphism (COMT SNP val158met)(4, 50) with
increasing pain responses, while others failed to replicate these findings(51, 52).

The SCN9A gene has also been studied as a marker for pain sensitivity. Mutations in this
gene, which codes for the alpha-subunit of a voltage-gated sodium channel (Nav1.7), are
known to result in alterations of pain perception(53), and have been noted in rare pain
disorders such as erythromelalgia and paroxysmal extreme pain disorder(54, 55). SCN9A
polymorphisms have also been described in individuals who are insensitive to pain(3, 56).
Although the implications of the SCN9A gene polymorphism are clear, clinical applications
of this knowledge remain limited(47).

Genome-wide association studies (GWAS) have been used in an attempt to overcome some
of the limitations of candidate gene analysis. These studies tell us where the genetic
variation exists, but do not always fully explain the underlying biology. Furthermore,
although GWAS have identified thousands of genetic variations in complex diseases, most
of the variants confer only a modest risk with an odds ratio for disease of < 1.5. These
genetic variants, therefore, account for only a small fraction of the population attributable
risk for heritable complex traits(57, 58), implying a strong non-genetic predisposition to
disease. GWAS directed toward painful conditions remain limited in number(45).
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Specific Epigenetic Modifications
Histone modifications

Histones octamers and their surrounding DNA form a nucleosome, the fundamental building
block of chromatin (Figure 1A). The N-terminal histone tails may be modified by more than
100 different post-translational processes including acetylation, phosphorylation, and
methylation (Figure 1B). Most of the histone complex is inaccessible, but the N-terminal tail
protrudes from the nucleosome and is therefore subject to additions that change the three-
dimensional chromatin structure and subsequent gene expression(59, 60). One of the more
common modifications involves acetylation. Histone acetyl transferases (HAT) add acetyl
groups, altering the histone protein structure. This change prevents the chromatin from
becoming more compact, allowing transcription factors to bind more easily. This state of
increased acetylation and “permissive chromatin” generally increases transcription activity
and RNA production from that genetic sequence, especially when located in gene promoter
regions(61, 62). Conversely, histone deacetylases (HDACs) remove acetyl groups from
histones, generally suppressing gene expression. In concert, these activities serve important
regulatory functions.

DNA methylation
Another ubiquitous epigenetic modification involves methylation of DNA cytosine
nucleotides. In this process, DNA methyltransferase enzymes (DNMT1, DNMT3A, and
DNMT3B) add a methyl group to the 5′carbon of the cytosine pyrimidine ring, converting it
to 5-methylcytosine. This methylation generally silences gene expression either by
preventing the binding of transcription factors(63, 64), or by attracting methylated DNA-
binding proteins such as MeCP2 that themselves repress transcription(Figure 1C)(65, 66).
The methylation process is vital for normal embryonic development and growth(67), and
these methylation patterns are propagated during cell division.

The degree of cytosine methylation tends to mirror the degree of tissue specialization. For
instance, DNA in neurologic tissue is highly methylated, while sperm DNA is relatively
unmethylated(68). More recent research has focused on the regulatory importance of
cytosine methylation in promoter regions where methylation may silence a previously active
gene sequence in the process of tissue specialization(69). In addition to the cytosine
nucleotides dispersed throughout the genome, there are “CpG islands” that contain regions
rich in cytosine-phosphate-guanine linear sequences(70). These “CpG islands” are found in
promoter regions or first exons of approximately 60% of human genes, and are often
unmethylated during development, allowing a transcriptionally active state(71). Although
promoter site methylation may silence gene expression during development, genes may still
be re-activated even in specialized neurologic tissues(72, 73). This potentially modifiable
plasticity of neural tissue methylation may hold promise for reversing the neurologic
molecular remodeling that occurs during the transition from acute to chronic pain.

Several disease states, including cancer, schizophrenia, and opioid addiction, are associated
with DNA methylation abnormalities(30, 74–76). In cancer, these altered methylation
patterns may lead to tumor growth by downregulating tumor suppressor genes(30).
Methylated gene domains demonstrate not only stability, but also heritability(70). The
epigenetic influence across generations is demonstrated in rodent studies in which
spermatogenesis is suppressed, and methylation patterns are altered for several generations
after using the anti-androgenic compound vinclozolin during embryonic development(77).
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Non-coding RNA
Gene expression can also be controlled by RNA interference, which involves endogenous
molecules such as small interfering RNA (siRNA), microRNA (miRNA), and short hairpin
RNA (shRNA). These small non-coding RNA molecules can silence gene expression by
binding to mRNA and inducing subsequent degradation of the direct gene product (Figure
1D)(78). These molecules can self-propagate through cell division and epigenetically
transmit regulatory information across generations(79). Interfering RNAs carry great
therapeutic promise and have been used in animal trials for chronic neuropathic pain(80) and
neurodegenerative disease(81), as well as in human clinical trials for cancer(82).

Our understanding of epigenetic processes has increased dramatically over the past decade.
Efforts are currently underway, through such groups as the International Human Epigenome
Consortium, to sequence and create maps of cell-specific DNA methylation and histone
modifications(83).

Techniques of Epigenetic Analysis
There are many challenges in defining the specific epigenetic changes that lead to a
particular disease state. Many earlier epigenomic studies have been limited by either
inadequate genome survey or small sample size, and the relationship in many diseases
between phenotypic expression and epigenomic variation remains unclear(84). It is unlikely
that single gene epigenetic modification will explain the complex pain phenotypes seen after
injury or surgery. Epigenome-wide association studies have been proposed as a possible
solution to improve our understanding of the links between disease state and epigenetic
modifications. Comprehensive epigenomic maps are currently being developed with
promising future applications(84).

Another challenge with epigenetic studies and disease variation is need for enhanced
comprehension of the distinction between cause and consequence(84). To fully understand if
a particular biomarker represents the cause OF a disease or the effect FROM a disease, we
will need to perform analyses at multiple time points before and after the development of a
disease. This initiative has already begun with the establishment of the US National
Institutes of Health Roadmap Epigenomics Mapping Consortium(85).

Regardless of the relationship between biomarkers and causation, however, epigenetic
modifications throughout the course of a chronic disease can be used as biomarkers. In
particular, DNA methylation is well suited as a potential predictive biomarker secondary to
its relative chemical stability. Reliable biomarkers are critical if we are to develop
personalized epigenetic interventions. Candidate markers would need to be found in an
accessible space (blood), but still reflect the neurobiological process occurring at the
proximal tissue (spinal cord/brain). Whether the circulating leukocyte epigenome can report
on more inaccessible tissues (such as CNS) is uncertain, but there is growing evidence that
methylation patterns tend to be similar between proximal tissue and more easily accessible
circulating blood cells. For example, it was recently shown that the pattern of CpG island
methylation in the promoter region of the prodynorphin gene in both human brain tissue
collected post-mortem and matched peripheral blood mononuclear cells is virtually identical
(86).

The burgeoning field of epigenetics is using novel technologies to measure these heritable,
yet modifiable, patterns of transcriptional regulation. DNA methylation is analyzed through
bisulfite sequencing which allows the epigenetic information present in the form of cytosine
methylation to be retained during amplification (Figure 2B). Traditional molecular analysis
of specific gene loci relies on the ability to amplify the DNA of interest using cloning and
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polymerase chain reaction (PCR) techniques. If this amplification is done, however, without
somehow immortalizing the methylation status of a particular cytosine, that information will
be lost after the first PCR cycle. To solve this problem, unmethylated cytosines can be
modified through the bisulfite reaction, deaminating them to uracil. Methylated cytosines,
however, are not deaminated by bisulfite, remaining unchanged during subsequent
amplification. Probes can then be designed to determine whether a specific promoter region
has retained a particular cytosine (previously methylated) or whether this cytosine has been
converted to uracil (previously unmethylated). The methylation status of the promoter can
then be determined using the cytosine/uracil ratio.

Histone protein modifications have also been studied since 1988 through a process of
chromatin immunoprecipitation (ChIP) (Figure 2A)(87). This process involves
fragmentation of the chromatin and immunoprecipitation using an antibody to the protein or
modification of interest. For example, an antibody to a specific acetylation site on histone
H3 is used to precipitate all DNA associated with that particular acetylated histone.
Following immunoprecipitation, the DNA fragments are then typically identified through
microarray hybridization. More recently, “next generation sequencing” (NGS) technologies
have been combined with ChIP (ChIP-seq), providing a high resolution, genome wide
analysis of histone modification. Whereas microarray techniques analyze regions of the
genome previously identified, NGS carries the possibility of capturing all the DNA
fragments isolated by immunoprecipitation(71). These NGS technologies will continue to
expand our understanding of epigenetic changes and the chromatin regulatory state
throughout the genome.

The Role of Epigenetic Modification in the Transition from Acute to Chronic
Pain

Prevention of chronic pain after injury has been the focus of numerous previous trials
involving interventions such as multimodal analgesics and catheter-based local anesthetic
infusions(88–90). Although these techniques are successful in reducing the burden of acute
pain(91), they have not succeeded in dramatically reducing the incidence of chronic post-
injury or post-surgical pain(92–94). The shortcomings of our preventive strategies are most
pronounced following surgeries that have a higher risk for developing chronic pain such as
amputation, thoracotomy, hernia repair, coronary artery bypass, and mastectomy(5, 95, 96).

Our therapeutic limitations may be partially due to our inability to prevent the epigenetic
changes that occur following injury and surgery. A patient’s gene expression profile changes
rapidly in the post-injury period(97), with over 1,000 genes activated in the dorsal root
ganglion alone after nerve injury(98). There is significant evidence for epigenetic control of
this gene activation in the transition from acute to chronic pain. First, immunologic response
and inflammatory cytokine expression are under epigenetic control(99, 100). Secondly,
glucocorticoid receptor (GR) function, which affects pain sensitivity, inflammation, and the
development of autoimmune disease, is modulated both through post-translational
mechanisms and DNA methylation(101–103). Thirdly, genes such as glutamic acid
decarboxylase 65 (GAD65) that code for pain regulatory enzymes in the central nervous
system are known to be hypoacetylated and downregulated in inflammatory and nerve injury
pain states(104). Finally, epigenetic modifications are involved in opioid receptor regulation
and function, with implications for endogenous pain modulation systems and pain
severity(63, 76).

The important link between epigenetic regulation and pain is also supported by studies
involving intervertebral disc degeneration and chronic low back pain. Tajerian et al found
that DNA methylation of an extracellular matrix protein SPARC (Secreted Protein, Acidic,
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Rich in Cysteine) is linked to accelerated disc degeneration both in humans and in animal
models of this disease(38). The correlation between pain and epigenetics is additionally
observed in a study of DNA methylation in human cancer where EDNRB (the gene that
codes for endothelin receptor type B) is heavily methylated and downregulated in painful
squamous cell carcinoma (SCC) lesions(105). The investigators noted similar findings in
their mouse model of SCC, and were able to improve mechanical allodynia when EDNRB
transcription was virally augmented(105). These human and animal studies strongly support
a role for gene methylation in regulating the pain experience.

Cytokines
Injury and autoimmune disease are characterized by excessive cytokine production, and
anti-cytokine therapies have been successfully used to treat painful conditions such as
ankylosing spondylitis(106, 107) and neuropathy(108, 109). The link between cytokine
expression and pain is supported by the demonstration of T-cell infiltration and
inflammatory interleukin (IL) release in animal models of neuropathic pain(110).
Furthermore, interventions that modify the immune response to injury also reduce pain.
Such modifications include depletion of mast cells(111), reduction of peripheral
macrophages using clodronate(112), and impairment of complement activation and
neutrophil chemotaxis(113).

One of the inflammatory master switches, nuclear factor-κB (NF-κB), induces multiple
cytokines(114) and cyclo-oxygenase(115). NF-κB is epigenetically regulated by acetylation
and remodeling of chromatin(114, 116, 117). When activated, this transcription factor
demethylates and induces cytokines such as TNF-α, IL-1, IL-2, and IL-6(118, 119).
Activation of NF-κB is associated with autoimmune and neurodegenerative disease(120).
Conversely, inhibition of NF-κB reduces pain behavior after peripheral nerve injury(121).

The link between epigenetically-induced cytokine production and pain intensity has been
noted in multiple disease models such as migraine headache(122), diabetes(114), and
osteoarthritis(99). In osteoarthritis, DNA demethylation at specific CpG sites in human
chrondrocytes produces aberrant expression of inflammatory cytokines (IL-1β) and
metalloproteinases(99). Thus, cytokine-induced painful joint damage appears to be
epigenetically modulated.

Glucocorticoid Receptors
Glucocorticoids are important endogenous regulators that appear to protect against excessive
inflammatory response following injury. Stress-induced glucocorticoid production
suppresses immune cell release of IL-6, TNF-α, and other inflammatory cytokines(123).
Exogenous glucocorticoids also have potent anti-inflammatory actions and are used
extensively in the treatment of autoimmune disease and painful conditions. However, not all
patients respond equally to their clinical effects, and it is believed that glucocorticoid
resistance is a likely mechanism in the development of autoimmune disease and chronic
pain(124).

The glucocorticoid receptor (GR) is controlled by a system of complex regulatory
mechanisms, and clinical response to glucocorticoids correlates with the number of
intracellular GRs(125). Normally, individuals demonstrate variable GR promoter
methylation(103) and variable response to glucocorticoid therapy(126). Diverse methylation
patterns are believed to lead to the use of alternative promoter sites and subsequent
alteration in GR sensitivity(103).

GR expression is also modified by maternal care, grooming, diet(127, 128), and early-life
stresses(129, 130). Human studies have demonstrated epigenetic alterations in
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glucocorticoid receptors of patients who previously suffered abuse(131). The style of
maternal care appears to specifically affect methylation patterns of exon 17 of the GR
promoter, epigenetically linking receptor function and early-life experience(132).
Abnormalities in GR-mediated immune cell function may lead to the development of
inflammatory adult phenotypes(133) and autoimmune disorders such as rheumatoid
arthritis(101, 134). GR dysfunction may also play a role in fatigue, chronic pain states, and
fibromyalgia(102, 135). These maternally influenced expression patterns, however, are not
necessarily permanent and have been reversed in cross-fostering parent studies(136). The
GR appears to provide a potential link between injury, environmental stresses, and the
severity of chronic pain.

Opioid Receptors
Both demethylating agents and histone deacetylase inhibitors increase expression of the μ-
opioid receptor(137), indicating that the endogenous opioid system is under significant
epigenetic control. Consistent with these laboratory findings, increased CpG methylation has
been noted in the promoter regions of the μ-opioid receptors of heroin users, consistent with
receptor downregulation(76), Likewise, DNA methylation of the proenkephalin gene
promoter inhibits transcription and gene expression of this opioid peptide(63).

Beyond the direct role of methylation in the regulation of opioid peptide expression, spinal
opioid receptor activity also appears to be partially modulated by central glucocorticoid
receptors(138). This association is of particular importance given the synergy between the
increased central expression of GR following peripheral nerve injury(139) and direct
epigenetic manipulation of the endogenous opioid system(63, 137). The interaction between
modifications of the GR and the opioid receptor demonstrates the complex role that
epigenetic alterations play in controlling the inflammatory and pain-modulating pathways.

“Epigenetic Intervention” to Prevent Chronic Pain
Genetic studies have taught us that variability in pain sensitivity results from multiple
genetic and environmental factors. Environmental influences upon pain severity have been
previously described and linked to early-life stress(47, 140–143). Although precise
mechanisms have yet to be elucidated, epigenetic modifications are increasingly appreciated
as a likely factor in this linkage(36, 104, 122).

Our need for targeted therapies has never been greater. Multiple analgesic drugs are now in
use; however, most of these share a common function with opioids or anti-inflammatory
medications. These medications have improved symptoms in some patients, but have created
the additional morbidities of systemic toxicity, opioid tolerance, and addiction. Our options
for safe and effective treatments for chronic pain remain limited with few recent
“breakthroughs.”

Since the sequencing of the human genome, there have been increasing calls for
“personalized medicine” that tailors drug therapy to a patient’s pain phenotype(47, 144).
Although such therapies have demonstrated some efficacy as cancer treatments(145–147),
we have not yet had great success with targeted pain therapies. We will now review some of
the potential targets for “personalized epigenetic intervention.”

Intervention: HDAC Inhibition
Given the association between histone deacetylation and cancer, neurodegenerative disease,
and pain, histone deacetylase inhibitors (HDACis) have been evaluated as therapeutic agents
for these diseases(30, 36, 148). Thus far, HDACis are primarily used in cancer therapy. In
these patients, HDACis alter the balance of acetylation/deacetylation and activate genes that
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suppress tumor growth and invasion(30, 149–152). In neurodegenerative disease, HDACis
have been evaluated secondary to their ability to induce neural growth and to improve
memory(153). HDACis have also demonstrated evidence for analgesia in both inflammatory
and neuropathic pain(151, 154, 155). The clinical effect of many of these drugs is thought to
be partially attributed to reduced production of inflammatory cytokines such as TNF-α and
IL-1β(156).

HDACis are organized into several different structural groups. Trichostatin A (TSA) and
suberoylanilide hydroxamic acid (SAHA) are hydroxamate-based HDACis. TSA inhibits
both class 1 (ubiquitously expressed) and class 2 (selectively expressed) HDACs, whereas
SAHA exhibits greater selectivity for class 1 HDAC. TSA produces analgesia in animal
models with an associated decrease in expression of transient receptor potential type-1
cation channel (Trpv1) and protein kinase Cε (PKCε)(157). SAHA reduces the nociceptive
response of animals during the second phase of the formalin test(154). These drugs increase
acetylation of the transcription factor p65/Re1A, which enhances gene expression of the
metabotrobic glutamate receptors (mGlu2) in dorsal root ganglia neurons. Activation of
these mGlu2 receptors inhibits primary afferent neurotransmitter release in the dorsal horn
of the spinal cord and provides analgesia in animal models of neuropathic pain(158). TSA
also enhances μ-opioid receptor transcription(159), indicating partial HDAC modulation of
the endogenous opioid system.

Another HDACi, Givinostat, has not only demonstrated evidence of analgesia in animal
models, but also efficacy in a human trial for juvenile idiopathic arthritis. Although
randomized studies have not yet been performed, its use for this autoimmune inflammatory
disease is especially encouraging given its relative lack of systemic toxicity(160).

The most commonly used HDACi, Valproic acid (VPA), is part of the aliphatic-based drug
class that inhibits class I and II HDACs(151, 161), and is effective following systemic or
intrathecal administration(162, 163). VPA is of particular interest because it has been
successful with long-term clinical use(164). Although it is now used predominantly to treat
chronic painful conditions(163–165), its inhibition of HDAC and potential to prevent
specific epigenetic alterations may lead to preemptive use in the acute setting. It is not yet
clear whether VPA-induced analgesia results from HDAC inhibition or its ability to
potentiate gamma amino butyric acid (GABA) in the central nervous system.

Although therapies based on HDAC inhibition have been effective in treating pain and
oncologic disease, non-specific HDACis such as TSA affect the regulation of multiple
genes, which increases the possibility of side effects with this therapy(166, 167). The
success of future drug development will likely depend upon our ability to target specific
subclasses of HDACs that selectively alter pain processing without the toxicities of non-
selective agents. The importance of this selectivity concept has been demonstrated in a
mouse model in which a full knockout of the HDAC4 gene (a Class IIa HDAC) is lethal,
whereas a conditional knockout of this gene provides analgesia(168). Further investigations
of HDAC subclass function are needed in order to identify novel drug targets.

Intervention: DNA Methylation
DNA methylation is another key epigenetic mechanism. Methylation patterns, although
generally stable throughout the genome, are responsive to pharmacologic intervention. One
common medication that appears to act through epigenetic mechanisms is
glucosamine(169). In arthritis models, it has been demonstrated that glucosamine prevents
demethylation of the IL-1β gene promoter, thereby decreasing expression of this cytokine.
Decreased IL-1β subsequently reduces NF-κB expression and downstream inflammatory
cytokine production(119, 170).

Buchheit et al. Page 9

Pain Med. Author manuscript; available in PMC 2013 November 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



In addition to its function as an HDAC inhibitor, VPA induces demethylation of multiple
genes(171). One of these important genes encodes for Reelin, a glycoprotein synthesized by
GABAergic neurons of the central nervous system(172, 173). Reelin modulates N-methyl-
D-aspartate (NMDA) receptor function(174), and is important for sensory processing(175).
Mutations of this gene cause alterations in mechanical and thermal hypersensitivity(173),
which indicates the potential significance of VPA regulation of Reelin in the development of
chronic pain.

L-methionine administration has also been tested as a potential drug for epigenetic
intervention. This amino acid appears to increase methylation patterns of the glucocorticoid
receptor gene, thereby altering the hypothalamic-pituitary-adrenal (HPA) response to
stress(176). In addition, dietary methyl supplementation in an animal model improves the
health and longevity of offspring(177). Both of these findings suggest that nutritional status
partially controls the activity of the glucocorticoid receptor and its role in inflammatory
disease.

The combined action of pharmacologic DNA demethylation and HDAC inhibition increases
activity at the proximal promoter site of the μ-opioid receptor gene, increasing μ-opioid
receptor expression(137). Carried out in concert, these processes may represent an important
balance that allows less stable histone modifications to lead to more stable changes in DNA
methylation, thus facilitating longer-term modifications in the endogenous opioid receptor
system.

Intervention: RNA Interference
Epigenetic therapies based on RNA interference (RNAi) also hold promise for preventing
and treating chronic pain. These methods target specific disease pathways.

RNAi is an endogenous mechanism for gene silencing in plants(178) and mammals(179),
and involves subgroups such as small interfering RNA (siRNA), microRNA (miRNA), and
short hairpin RNA (shRNA). Given their ability to silence undesirable gene products in
malignancy, these small RNA molecules have been used for cancer therapy(82). They have
also been shown to improve chronic neuropathic pain(80).

SiRNA targeted for the NR2 subunit of NMDA receptors abolishes formalin-induced pain
behavior in rats(180). Likewise, injection of siRNA aimed at the NR1 subunit of the NMDA
receptor alleviates experimentally induced allodynia in mice(181). Successful RNA
interference studies have targeted TRPV1 channels(182), brain-derived neurotrophic
factor(183), cytokines such as TNF-α(184), and pain-related cation channels (P2X3)(80).
Importantly, direct intrathecal administration of siRNA targeting P2X3 in animals has not
demonstrated significant toxicity(80), indicating that this intervention may be applicable to
humans in coming years.

Conclusions
The transition from acute to chronic pain is a complex process involving local inflammation
and nociceptor activation that may resolve in some patients and may lead to the
development of chronic pain in others. As we learn more about the various ways that injury
and environment change gene expression, we can begin to elucidate disease mechanisms and
gain insight into potential therapies. Epigenetic alterations such as DNA methylation,
histone acetylation, and RNA interference are necessary for normal tissue specialization and
neurologic development. However, these same modifications play a significant role in the
induction of the chronic pain phenotype following neurologic injury.
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In contrast to the genetic determinism inherent in genomic studies, the field of epigenetics
strives to understand the environmental control over gene expression. Such knowledge will
open up opportunities for developing novel analgesics. Future personalized therapies will
likely be based on epigenetic interventions that alter the transcriptional expression that
occurs in chronic pain states. Given the strong mechanistic implications of epigenetic
modifications in the development of chronic pain, and our current treatment limitations, we
possess both the promise of epigenetic tools and the imperative to prevent the transition
from acute to chronic pain.
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Figure 1. Epigenetic Mechanisms
A) DNA wraps around histone octamers to form a nucleosome, the fundamental building
block of chromatin. B) Histone proteins may be modified through several processes,
including acetylation. The addition of an acetyl group to histone tails generally opens the
chromatin structure and facilitates transcription factor binding, enhancing gene expression.
C) Methylation of cytosine nucleotides in C-G rich sequences (“CG Islands”) prevents the
binding of transcription factors and generally silences gene expression. These CG Islands
are often found near promoter regions and serve a significant role in gene regulation. D)
Post-transcriptional regulatory mechanisms include short hairpin RNA (shRNA), small
interfering RNA, (siRNA) and micro RNA (miRNA) that bind RNA and induce their
degradation.
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Figure 2. Laboratory Techniques in Epigenetics
A) In ChIP-Seq analysis, an antibody is used on chromatin to immunoprecipitate and select
for acetylation and other histone modifications. The results may then be analyzed through
several techniques including genome-wide next generation sequencing. In this manner, the
histone acetylation patterns of a particular tissue may be determined. B) The analysis of
DNA methylation employs bisulfite sequencing to convert unmethylated cytosines to uracil.
This process does not affect the methylated cytosines. The methylation patterns can be
calculated by comparing the ratio of cytosine to uracil.
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Figure 3. Epigenome and Chronic Pain
Twin A and Twin B demonstrate similar “epigenomes” at birth with few (if any) differences
in methylation and acetylation patterns. Environmental factors throughout development
affect histone acetylation patterns and cytosine methylation patterns, resulting in phenotypic
differences by adulthood. With surgery or nerve injury, these epigenetic differences may
result in differing risks of chronic pain.
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Table 1

Epigenetically Active Drugs and their Mechanisms

Epigenetics Mechanism Drug Action Clinical Use Comments

Histone Deacetylase Inhibitor
Valproic Acid

Inhibits Class I and II
HDAC Seizures, Pain

Effective for migraine
prophylaxis

Givinostat
Inhibits Class I and II
HDAC Juvenile idiopathic arthritis

Effective in human
arthritis trial

Tricostatin A (TSA)
Inhibits Class I and II
HDAC Laboratory only

Produces analgesia in
animal models.
Enhances μ-opioid
receptor transcription

Suberoylanilide
hydroxamic acid
(SAHA) Inhibits Class I HDAC Laboratory only

Produces analgesia in
animal models

DNA Methylation

Glucosamine

Prevents
demethylation of
IL-1β gene promoter Arthritis pain

Common clinical use.
Effect on IL-1β reduces
inflammatory cytokine
production

Valproic Acid
Induces demethylation
of Reelin promoter Seizures, Pain

Reelin modulates
NMDA function and
pain processing

L-methionine

Induces methylation at
glucocorticoid
receptor promoter
gene Dietary Supplement

Alters experimental
stress response. Used as
dietary supplement for
arthritis

RNA Interference SiRNA targeted to
NMDA receptor
subunits

Gene silencing of
NR1 and NR2
subunits of NMDA Experimental

Produces analgesia in
animal models

SiRNA to P2X3
Gene silencing of
P2X3 Experimental

Produces analgesia in
animal models. No
observed neurotoxicity
with intrathecal use.

SiRNA to TNF-α
Gene silencing of
TNF-α Experimental

Produces analgesia in
animal models
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