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Abstract
Bacopa monnieri has been used in Ayurvedic medicine to improve memory and cognition.

The active constituent responsible for its pharmacological effects is bacoside A, a mixture

of dammarane-type triterpenoid saponins containing sugar chains linked to a steroid agly-

cone skeleton. Triterpenoid saponins have been reported to be transformed in vivo to me-

tabolites that give better biological activity and pharmacokinetic characteristics. Thus, the

activities of the parent compounds (bacosides), aglycones (jujubogenin and pseudojujubo-

genin) and their derivatives (ebelin lactone and bacogenin A1) were compared using a com-

bination of in silico and in vitro screening methods. The compounds were docked into 5-

HT1A, 5-HT2A, D1, D2, M1 receptors and acetylcholinesterase (AChE) using AutoDock and

their central nervous system (CNS) drug-like properties were determined using Discovery

Studio molecular properties and ADMET descriptors. The compounds were screened in
vitro using radioligand receptor binding and AChE inhibition assays. In silico studies

showed that the parent bacosides were not able to dock into the chosen CNS targets and

had poor molecular properties as a CNS drug. In contrast, the aglycones and their deriva-

tives showed better binding affinity and good CNS drug-like properties, were well absorbed

through the intestines and had good blood brain barrier (BBB) penetration. Among the com-

pounds tested in vitro, ebelin lactone showed binding affinity towards M1 (Ki = 0.45 μM) and

5-HT2A (4.21 μM) receptors. Bacoside A and bacopaside X (9.06 μM) showed binding affini-

ty towards the D1 receptor. None of the compounds showed any inhibitory activity against

AChE. Since the stimulation of M1 and 5-HT2A receptors has been implicated in memory

and cognition and ebelin lactone was shown to have the strongest binding energy, highest

BBB penetration and binding affinity towards M1 and 5-HT2A receptors, we suggest that B.
monnieri constituents may be transformed in vivo to the active form before exerting their

pharmacological activity.
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Introduction
Bacopa monnieri (Linn.) Pennell (Scrophulariaceae), also known as Brahmi, is a reputed Ayur-
vedic herb noted to improve memory and cognition [1]. These traditional claims have been
supported by extensive in vitro, in vivo and clinical studies conducted over the last two decades
using the plant extract and its constituents [2]. A meta-analysis of randomized controlled trials
on the cognitive effects of B.monnieri extract also suggests that B.monnieri has the potential to
improve cognition [3]. Other important pharmacological activities shown by B.monnieri in-
clude antiepileptic, anxiolytic, antidepressant, sedative, antioxidant and anti-inflammatory ac-
tivities [4]. Various mechanisms of action for its cognitive effects have been proposed
including acetylcholinesterase (AChE) inhibition, β-amyloid reduction, antioxidant neuropro-
tection, neurotransmitter modulation (acetylcholine [ACh], 5-hydroxytryptamine [5-HT], do-
pamine [DA]), choline acetyltransferase activation and increased cerebral blood flow [5].

Characteristic saponins called ‘bacosides’, especially bacoside A, have been considered to be
the main bioactive constituents responsible for the cognitive effects of B.monnieri [6–8]. Baco-
side A is a mixture of four triglycosidic saponins, namely bacoside A3, bacopaside II, bacopasa-
ponin C and the jujubogenin isomer of bacosaponin C (bacopaside X) [9]. These bacosides are
dammarane types of triterpenoid saponins with jujubogenin or pseudojujubogenin moieties as
the aglycone units (Fig 1) [10].

Saponins are susceptible to glycosidic cleavage at various sites to form secondary metabo-
lites and finally the aglycone [11]. Triterpenoid saponins from other neuropharmacologically
active plants such as ginsenoside [12] and jujuboside [13, 14] have shown that instead of the
parent saponins, the metabolites transformed in vivo give better biological activity and phar-
macokinetic characteristics. A recent study by Le et al. [15] showed that a B.monnieri extract

Fig 1. Structures of bacoside A saponin glycosides and aglycones. Bacoside A is a mixture of bacoside A3, bacopaside II, bacopaside X and
bacopasaponin C. These bacosides are dammarane-type triterpenoid saponins that have three sugar chains linked to a nonpolar triterpene
aglycone skeleton.

doi:10.1371/journal.pone.0126565.g001
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had a negligible effect on the in vitro activity of AChE of brain tissues, whereas its daily system-
ic administration reduced the ex vivo activity of AChE in brain tissues. The study proposed
that chemical constituent(s) of B.monnierimay be converted to their active form(s) in vivo
with the ability to inhibit the activity of AChE in the brain. A recent report shows B.monnieri
extracts inhibit some human cytochrome P450 (CYP) drug metabolizing enzymes [16]. It can
also alter the expression of rat hepatic and intestinal CYP drug metabolizing enzymes and in-
testinal P-glycoprotein [17]. Thus, it is conceivable that the bacoside constituents present in B.
monnieri extracts may be metabolized in vivo to active forms before exerting their pharmaco-
logical activities. Through sequential deglycosylation, bacoside A3, bacopaside II, bacopaside X
and bacopasaponin C can be transformed to their aglycones jujubogenin or pseudojujubo-
genin. Jujubogenin and pseudojujubogenin can be further acid hydrolyzed to form ebelin lac-
tone and bacogenin A1, respectively (Fig 2) [18].

Fig 2. Formation of ebelin lactone and bacogenin A1. Bacoside A components form aglycone jujubogenin and pseudojujubogenin through
deglycosylation and further acid hydrolysis yields ebelin lactone and bacogenin A1.

doi:10.1371/journal.pone.0126565.g002
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Therefore, in this study, we aim to compare the activity of the parent compounds (baco-
sides) with the aglycones (jujubogenin and pseudojujubogenin) and their derivatives (ebelin
lactone and bacogenin A1) by studying the central nervous system (CNS) receptor (muscarinic,
serotonin and dopamine) binding and AChE inhibition activities using a combination of in sil-
ico and in vitro screening methods. These assays were chosen because most CNS-related disor-
ders such as schizophrenia, Alzheimer’s disease, epilepsy, and Parkinson's disease are related to
neurotransmitters such as acetylcholine, dopamine, 5-hydroxytryptamine (5-HT) and their re-
ceptors [19]. In addition, physicochemical and ADMET (Absorption, Distribution, Metabo-
lism, Excretion and Toxicity) properties of the compounds were calculated using web-based
applications and software to predict whether the compounds are orally active and have CNS
drug properties. To the best of our knowledge, this is the first study on bacoside A aglycone
and its derivatives.

Materials and Methods

Chemicals and reagents
Recombinant human membrane preparations for M1 (expressed in CHO cells; Lot no.
1706299), 5-HT1A (HEK293 cells; no. 1812363), 5-HT2A (CHO cells; no. 1813092), D1 (L cells;
no. 1840059), and D2S (CHO cells; no. 1820984) receptors and MicroScint-O scintillation cock-
tail were procured from Perkin Elmer (Waltham, MA, USA). [3H] N-methylscopolamine
(NMS), [3H] 8-OH-DPAT, [3H] ketanserin, [3H] SCH 23390 and [3H] methylspiperone were
purchased from American Radiolabeled Chemicals (St. Louis, MO, USA). Atropine, 5-carboxa-
midotryptamine (5-CT), ketanserin, SCH 23390 hydrochloride, haloperidol, serotonin hydro-
chloride, mianserin, human recombinant acetylcholinesterase expressed in HEK 293 cells,
acetylthiocholine iodide (ATChI), 5, 5’-dithiobis [2-nitrobenzoic acid] (DTNB) and donepezil
hydrochloride were obtained from Sigma-Aldrich (St. Louis, MO, USA). Bacoside A, bacoside
A3, bacopaside II, bacopaside X and bacopasaponin C were purchased from Chromadex Inc.
(Irvine, CA, USA). Jujubogenin and ebelin lactone were purchased from Shanghai IS Chemical
Technology Ltd. (Jinshan, Shanghai, China). Unless stated otherwise, all other reagents of ana-
lytical grade were obtained through standard commercial sources.

In silico studies
Molecular docking. The two-dimensional (2-D) structures of the ligands (compounds)

were built using ChemBioDraw Ultra 11.0 (Perkin Elmer) and converted to 3-dimensional
(3-D) structures using Chem3D Pro 12.0 (Perkin Elmer). The resulting structures were sub-
jected to energy minimization by MM2 force field and saved as MOL files. Finally the pdbqt
formats (the input format of the docking software) of the ligands were prepared with Auto-
DockTools 1.5.6 [20] using default parameters.

For AChE, crystal structures of human AChE (hAChE) in complex with donepezil (2.35 Å)
(PDB ID: 4EY7) and hAChE in complex with fasciculin II (2.76 Å) (PDB ID: 1B41) were ex-
tracted from the protein data bank (PDB) as a pdb file. The heteroatoms and water molecules
were removed using Discovery Studio Visualizer 3.1 (Accelrys, San Diego, CA, USA). Hydro-
gens were added and double coordinates were corrected using HyperChem Pro 6.0 (Hypercube
Inc., Gainesville, FL, USA). Then, hydrogens were added again, non-polar hydrogens were
merged and the missing atoms were repaired using AutoDockTools 1.5.6. Finally, Kollman
charges were added and AutoDock 4 type atoms were assigned to the protein. For the CNS re-
ceptors [serotonin: 5-HT1A, 5-HT2A; dopamine: D1, D2 and muscarinic acetylcholine (mACh):
M1], validated homology models built from the previous work of our group were used [21, 22].
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Docking studies were performed with AutoDock 4.2 [20], using a Lamarckian genetic algo-
rithm [23] with a flexible ligand and a rigid receptor, a population size of 300, a maximum of
250,000 generations and 2,500,000 evaluations for 100 GA runs. The root mean square devia-
tion (RMSD) tolerance was set to 2.0 Å for the clustering of docked results. Docking grids and
the grid box was set to cover the transmembrane (TM) domain (for CNS receptors) and entire
protein (for AChE enzyme). Ligand-receptor interactions were viewed using Discovery Studio
Visualizer 3.1. Maestro 9.2 and PyMOL 1.3 (Schrödinger, LLC, New York, USA) were used to
produce 2-D and 3-D figures.

Drug-like properties
Discovery Studio 4.0 molecular properties and ADMET descriptors were used to determine the
CNS drug-like properties of the compounds. The ADMET descriptor estimates a range of
properties for the compounds using QSAR models. Since these compounds are taken orally
and were screened for CNS activity, intestinal absorption properties and blood brain barrier
(BBB) penetration were evaluated. The molecular properties include molecular weight, polar
surface area (PSA), log P (octanol-water partition coefficient), H-bond donors, H-bond accep-
tors and number of rotatable bonds.

In vitro radioligand receptor binding assay
The assay was performed according to the methods published previously [24, 25]. Bacoside A,
bacopasaponin C, bacopaside X and bacoside A3 were assayed up to 100 μMwhereas bacopaside
II, jujubogenin and ebelin lactone were only assayed up to 30 μMdue to poor solubility. Pseudoju-
jubogenin and bacogenin A1 were not available for purchase at the time when the work was car-
ried out. All compounds were dissolved in dimethylsulfoxide (DMSO) and the solvent was kept
below 1% (v/v) in the final reaction mixture. Briefly, in each well, 100 μl of the respective mem-
brane preparations (μg/well), 50 μl of the respective [3H]-ligand and 50 μl of the test compounds
were added and the total assay reaction volume was made up to 200 μl by adding assay buffer. In
place of the test compounds, 50 μl of 4x concentration of atropine (M1), serotonin (5-HT1A),
mianserin (5-HT2A) and haloperidol (D1, D2) was added to respective wells to determine the
non-specific binding (NSB) (or 100% inhibition) whereas 50 μl of assay buffer was added to deter-
mine the total binding (TB) of radioligand (or 0% inhibition). The reaction mixture was incubated
for 60 or 120 min at room temperature or 37°C for the respective membranes. The reaction was
stopped by rapid filtration onto GF/C filter plates (presoaked in 0.5% polyethyleneimine) using
FilterMate (Perkin Elmer) cell harvester and washed with wash buffer (200 μl for 5 times) to re-
move unbound ligands. The filter plates were dried at 60°C for 15 minutes before the application
of Bottom Seal and addition of 50 μl MicroScint-O scintillation cocktail. The top of the plate was
then sealed with TopSeal A. Radioactivity (CPM) was counted using TopCount NXTmicroplate
scintillation counter (Perkin-Elmer). A summary of the reaction components and the assay condi-
tions are listed in Table 1. The data were analyzed by non-linear regression using Prism Version
5.0 (GraphPad Inc., San Diego CA, USA). The percentage of specific binding of radioligand in the
presence of test compounds was calculated using the standard data reduction algorithm:
([B-NSB] / [TB-NSB]) × 100) where B is the binding in the presence of test compounds, NSB is
the non-specific binding in the presence of excess reference ligand and TB is the total binding. Ki

values were calculated from the IC50 values using the Cheng-Prusoff equation [26].

In vitro AChE inhibition assay
The inhibitory activity of the compounds toward AChE was determined by following the meth-
od of Ellman et al. [27] with minor modifications using human recombinant AChE and
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acetylthiocholine as a substrate. Fifty-microliters (50 μl) of AChE enzyme (0.1 ng/well) in assay
buffer [0.1 M sodium phosphate, 0.05% (w/v) Brij35], pH 7.5 and 25 μl of 4× concentrations of
the test compounds were mixed in a microplate and left to incubate at room temperature for
30 minutes. Subsequently, 25 μl of a 4× ATChI / DTNB mixture (final concentration 200 μM /
100 μM) was added to the respective wells. This substrate mixture was prepared 5 min prior to
being added to the plate in equal volumes of ATChI and DTNB. The hydrolysis of acetylthio-
choline was monitored by measuring the absorbance due to yellow 5-thio-2-nitrobenzoate
anion in a kinetic mode at a wavelength of 405 nm for 10 min. The enzyme activity was mea-
sured in the presence (Asample) and in the absence (Acontrol) of the test compounds. All the tests
were carried out in triplicate and the enzyme inhibition was calculated as: % Inhibition = 100 –
[(Asample) / (Acontrol) x 100].

Results

The aglycones show better docking than the parent bacosides
Docking results were analyzed and the best-docked conformation was chosen based on the num-
ber of conformations in a cluster and the estimated free energy of binding. Higher numbers of
conformations and the lowest binding energy indicate better affinity of the compound to the
CNS receptor and AChE enzyme. As shown in Table 2, the docking of the parent compounds,

Table 1. Summary of radioligand receptor binding assay components and reactions according to each receptor.

Assay Components Muscarinic (M1) Serotonin
(5-HT1A)

Serotonin (5-HT2A) Dopamine (D1) Dopamine (D2s)

Assay Buffer PBS pH 7.4 50 mM Tris-HCl
pH 7.4, 5 mM
MgSO4

50 mM Tris-HCl pH
7.4, 4 mM CaCl2,
0.1% Ascorbic acid

50 mM Tris-HCl pH 7.4,
1.5 mM CaCl2, 5 mM
MgCl2, 5 mM EDTA, 5
mM KCl

50 mM Tris-HCl pH 7.4, 120
mM NaCl, 5 mM KCl, 5 mM
MgCl2, 1 mM EDTA

[3H] Ligand, nM 0.1 nM ([3H]-
NMS)

2 nM ([3H]-
8-OH-DPAT)

1 nM ([3H]-
Ketanserin)

0.2 nM ([3H]-SCH 23390) 0.2 nM ([3H]-
Methylspiperone)

NSB Ligand Atropine (10 μM) Serotonin (10 μM) Mianserin (20 μM) Haloperidol (20 μM) Haloperidol (10 μM)

Human
Recombinantmembranes

17.5 μg/well 16 μg/well 5 μg/well 2 μg/well 3 μg/well

Incubation 120 min @ 27°C 120 min @ 37°C 60 min @ 27°C 60 min @ 27°C 120 min @ 27°C

Wash Buffer 50 mM Tris-HCl
pH 7.4, 154 mM
NaCl

50 mM Tris-HCl
pH 7.4

50 mM Tris-HCl pH
7.4

50 mM Tris-HCl pH 7.4 50 mM Tris-HCl pH 7.4, 154
mM NaCl

Washes (200 μl/well) 5 5 5 5 5

doi:10.1371/journal.pone.0126565.t001

Table 2. Total number of conformations in a cluster and binding energy of compounds for 5-HT1A, 5-HT2A, D1, D2 and M1 receptors and AChE (in
complex with fasciculin or donepezil) enzyme.

Compound Total number of conformations in a cluster (estimated binding energy kcal/mol)

5-HT1A 5-HT2A D1 D2 M1 AChE (fasciculin) AChE (donepezil)

Bacopa-saponin C 13 (-9.99) 6 (-12.25) 1 (-11.12) 4 (-13.33) 4 (-12.94) 5 (-8.63) 5 (-10.90)

Bacopaside X 7 (-6.97) 6 (-12.25) 2 (-10.50) 1 (-10.64) 1 (-11.68) 3 (-9.61) 5 (-8.35)

Bacopaside II 8 (-6.43) 1 (-11.18) 7 (-10.51) 2 (-10.44) 5 (-12.06) 3 (-8.02) 3 (-7.88)

Bacoside A3 3 (-6.03) 1 (-11.38) 1 (-9.74) 1 (-9.75) 3 (-12.23) 6 (-8.21) 4 (-7.30)

Jujubogenin 41 (-9.31) 25 (-8.54) 63 (-8.93) 50 (-8.90) 70 (-10.68) 99 (-11.65) 99 (-11.63)

Psuedo-jujubogenin 79 (-9.42) 24 (-8.28) 16 (-8.99) 63 (-9.26) 100 (-11.33) 90 (-11.41) 96 (-11.40)

Ebelin Lactone 97 (-9.58) 38 (-10.79) 28 (-9.27) 78 (-11.06) 79 (-11.71) 83 (-11.59) 83 (-11.59)

Bacogenin A1 49 (-9.07) 24 (-9.19) 38 (-8.56) 28 (-9.52) 68 (-10.71) 74 (-9.26) 65 (-11.59)

doi:10.1371/journal.pone.0126565.t002
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bacopasaponin C, bacopaside X, bacopaside II and bacoside A3 in the CNS receptors and AChE
gave a very low number of conformations in a cluster and were not able to fit into the orthosteric
site of the CNS receptors and AChE. In contrast, the aglycones (jujubogenin, pseudojujubogenin,
ebelin lactone and bacogenin A1) with higher number of conformations in a cluster, docked bet-
ter than the parent compounds in the CNS receptors and AChE. These results indicate that the
binding pockets of the CNS receptors and AChE were not able to accommodate the large glyco-
side groups on the bacosides. Among these compounds, ebelin lactone showed the strongest
binding towards all the CNS receptors, with the lowest estimated free energy of binding.

The aglycones have better CNS drug-like properties than the parent
bacosides
Since B.monnieri is taken orally and has neuropharmacological activities, the active constitu-
ents that give the pharmacological activity are necessarily orally and CNS active, i.e., the com-
pound must be absorbed through the intestine and penetrate the BBB. Through various
studies, the accepted criteria for CNS drug properties have been found to include molecular
weight< 450, polar surface area (PSA)< 60–70 Å2 (upper limit is 90 Å2), Log P< 5, H-bond
donor< 3, H-bond acceptor< 7 and number of rotatable bonds< 8 [28]. From Table 3, the
parent bacosides (bacopasaponin C, bacopaside X, bacopaside II, bacoside A3) fail to meet all
but one (Log P< 5) criteria of oral CNS drug candidates. In particular, they fail to meet the cri-
teria for molecular weight (> 899 Da), hydrogen-bonding capacity (hydrogen bond acceptors,
17 to 18; hydrogen bond donors 9 to 10) and molecular flexibility (number of rotatable bonds,
9 to 10). These unfavorable physiochemical traits of the parent bacosides most likely result in
poor membrane permeability through the intestine and BBB. However, the aglycones (jujubo-
genin, pseudojujubogenin, ebelin lactone and bacogenin A1) showed better CNS drug-like
properties by meeting four of the required criteria. The removal of the sugar moieties decreases
the molecular weight, hydrogen-bonding capacity and molecular flexibility, and increases the
lipophilicity of the aglycones (Log P, 5.46 to 7.22) compared to the corresponding parent baco-
sides (Log P, 3.30 to 3.72). Although the molecular weight for the aglycones are slightly more
than 450, according to Hansch et al. [29] small molecules may undergo significant passive
lipid-mediated transport through the BBB when the molecular mass is kept in or below the
400–600 Da range. Furthermore, increasing lipophilicity of aglycones also tends to increase
their brain permeation [28].

Compounds that are taken orally for CNS activity should be able to be absorbed from the in-
testines and penetrate the BBB. The ADMET human intestinal absorption (HIA) and BBB pen-
etration model are defined by 95% and 99% confidence ellipses in the ADMET_PSA_2D,

Table 3. The physicochemical properties of bacopasaponin C, bacopaside X, bacopaside II, bacoside A3, jujubogenin, pseudojujubogenin, ebelin
lactone and bacogenin A1.

Compounds Molecular Weight
(< 450)

PSA (< 60–70
Å2)

Log P
(< 5)

H-bond donor
(< 3)

H-bond acceptor
(< 7)

No. of rotatable bonds
(< 8)

Bacopasaponin C 899.07 256 3.72 9 17 9

Bacopaside X 899.07 256 3.54 9 17 9

Bacopaside II 929.10 279 3.48 10 18 10

Bacoside A3 929.10 279 3.30 10 18 10

Jujubogenin 472.70 59 7.22 2 4 1

Psuedojujubogenin 472.70 59 6.89 2 4 1

Ebelin Lactone 454.68 47 6.77 1 3 3

Bacogenin A1 472.70 67 5.46 2 4 2

doi:10.1371/journal.pone.0126565.t003
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ADMET_AlogP98 plane (Fig 3) [30, 31]. These ellipses describe the regions where compounds
that are both well-absorbed and able to penetrate the BBB are expected to be found. Com-
pounds outside the 95% and 99% confidence ellipsoids are considered to have very low intesti-
nal absorption and BBB penetration. The ADMET descriptor gives four prediction levels
within the 95% and 99% confidence ellipsoids for HIA and BBB. The four levels for HIA are 0
(good), 1 (moderate), 2 (poor), 3 (very poor); whereas for BBB, 0 (very high penetrant), 1
(high), 2 (medium), 3 (low) and 4 (undefined). As shown in Fig 3, parent compounds bacopa-
saponin C, bacopaside X, bacopaside II and bacoside A3 had no BBB penetration and showed
very poor intestinal absorption. In contrast, the aglycones jujubogenin, pseudojujubogenin,
ebelin lactone and bacogenin A1 were well absorbed through the intestine and had high BBB
penetration. Among the compounds ebelin lactone had the highest BBB penetration and pre-
dicted to be moderately absorbed through the intestine.

Overall, the in silico studies demonstrated that the parent bacosides with glycones attached
were not able to dock into CNS receptors and AChE, and had poor molecular and ADMET
properties as CNS drugs. On the other hand, the aglycones and their acid hydrolysis derivatives
showed better binding affinity towards the CNS receptors and AChE enzyme and conform to
the required criteria for intestinal absorption and penetration of the BBB.

Fig 3. BBB penetration and intestinal absorption properties by ADMET descriptors. (A) bacoside A3, (B) bacopaside II, (C) bacopasaponin C, (D)
bacopaside X, (E) jujubogenin, (F) pseudojujubogenin, (G) bacogenin A1, (H) tacrine, (I) donepezil and (J) ebelin lactone. Tacrine and donepezil were used
as standard orally active CNS drugs. ADMET prediction level for Human intestinal absorption (HIA)- 0 (good), 1 (moderate), 2 (poor), 3 (very poor); Blood
brain barrier (BBB)- 0 (very high penetrant), 1 (high), 2 (medium), 3 (low) and 4 (undefined). The aglycones and its acid hydrolysis derivatives showed better
intestinal absorption and BBB penetration compared to the parent bacosides.

doi:10.1371/journal.pone.0126565.g003
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Ebelin lactone interacts with M1 and 5-HT2A receptors
At the time of this study, pseudojujubogenin and bacogenin A1 were not available for purchase.
Hence, bacopasaponin C, bacopaside X, bacopaside II, bacoside A3, bacoside A (mixture of the
four bacosides), jujubogenin and ebelin lactone were further analyzed by in vitro assays. The
compounds were assayed in vitro, for their ability to displace [3H] NMS, [3H] 8-OH-DPAT,
[3H] ketanserin, [3H] SCH 23390 and [3H] methylspiperone fromM1, 5-HT1A, 5-HT2A, D1,
and D2 receptors, respectively, and to inhibit AChE activity. The results of the receptor binding
assays are shown in Table 4.

Most of the parent bacoside compounds did not show binding affinity towards M1, 5-HT1A,
5-HT2A, D1 and D2 receptors except bacoside A and bacopaside X, which showed some affinity
towards D1 receptor. Since bacopaside X is part of the mixture in bacoside A (Ki = 12.14 μM),
the binding might be due to bacopaside X (Ki = 9.06 μM). Contrary to the in silico result, the
aglycone jujubogenin did not show binding affinity towards all the receptors tested here. How-
ever, its derivative ebelin lactone showed affinity towards M1 (Ki = 0.45 μM) and 5-HT2A (Ki =
4.21 μM) receptors, which are implicated in memory and learning processes [32, 33]. The Ki

values of ebelin lactone for M1 and 5-HT2A are comparable to that of M1 agonists acetylcholine
and pilocarpine (Ki = 59 and 2.7 μM, respectively) [25] and 5-HT agonist serotonin (Ki =
23.9 μM) [34]. However, none of the compounds showed any inhibitory activity against AChE.

Ebelin lactone may act as an allosteric modulator of M1 and 5-HT2A

receptors via non-polar interactions
The investigation of the complexes obtained from the docking of ebelin lactone into M1 musca-
rinic acetylcholine receptor (mAChR) and 5-HT2A models revealed that it does not fit into their
primary/orthosteric binding sites (Fig 4). In the case of the M1 mAChR, ebelin lactone bound to
a cavity directly above the orthosteric site and established interactions with a set of residues that
formed the binding pocket, mainly through non-polar interactions (Figs 4 and 5). Among these
interacting residues, L183 (from the extracellular loop 2), Y82 and L86 are postulated to be re-
sponsible for the muscarinic subtype selectivity. These residues are non-conserved residues
among the subtypes, located above the orthosteric site that was identified by site-directed muta-
genesis experiments [35–40]. It is also obvious that there is an overlapping of the ebelin lactone
binding pocket with the orthosteric binding pocket, as Y106, T192, Y381, and Y404 from the

Table 4. CNS receptor binding affinities of bacosides and aglycones.

Compounda IC50 (μM)

M1 5-HT1A 5-HT2A D1 D2

Bacoside A > 100 > 100 > 100 24.65 ± 3.76 (Ki, 12.14 ± 1.68 μM) > 100

Bacopa-saponin C > 100 > 100 > 100 > 100 > 100

Bacopaside X > 100 > 100 > 100 19.49 ± 3.07 (Ki, 9.06 ± 1.36 μM) > 100

Bacoside A3 > 100 > 100 > 100 > 100 > 100

Bacopaside II > 30 > 30 > 30 > 30 > 30

Jujubogenin > 30 > 30 > 30 > 30 > 30

Ebelin Lactone 0.80 ± 0.19 (Ki, 0.45 ± 0.11 μM) > 30 14.48 ± 4.98 (Ki, 4.21 ± 1.45 μM) > 30 > 30

Values are expressed as the mean ± S.D. of three determinations with two independent experiments.
aBacoside A, bacopasaponin C, bacopaside X and bacoside A3 were assayed up to 100 μM whereas bacopaside II, jujubogenin and ebelin lactone were

assayed up to 30 μM due to poor solubility.

doi:10.1371/journal.pone.0126565.t004
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orthosteric site are found within 4 Å from the bound ebelin lactone. The superposition of the re-
cent crystal structure of M2 mAChR in complex with an allosteric modulator LY2119620 (PDB
code: 4MQS) [41] and the docked ebelin lactone in M1 mAChR showed that both ligands share
part of the binding cavity, suggesting that ebelin lactone could be an allosteric modulator, with
a good selectivity profile (Fig 6) [42]. However, further studies are required to definitively deter-
mine the selectivity of ebelin lactone on other muscarinic subtypes.

Ebelin lactone docked to the 5-HT2A receptor in a very distinct way. It did not bind to the
cavity on top of the orthosteric site but, instead, almost half of the structure (the tricyclic terpe-
noid moiety) is found fitted in the cavity in between TM4 and TM5. The pocket seems to be an
almost horizontal extension of the orthosteric binding pocket in 5-HT2A. Ebelin lactone is co-
ordinated by a set of residues only through non-polar interactions, including those that are
found in the orthosteric site, such as, D155, S159, S242, W336, and F339 (Fig 7) [43–47]. This
unique binding of ebelin lactone is possible as the recent crystal structure of free-fatty acid re-
ceptor 1 [48] in complex with an allosteric modulator, TAK-875 (PDB code: 4PHU), revealed
that the ligand binds to a non-canonical binding pocket, between TM3 and TM4 (Fig 8). Over-
all, binding interactions of ebelin lactone with the M1 and 5-HT2A receptor models suggest that
ebelin lactone is most likely an allosteric modulator that interacts with the residues mainly
through non-polar interactions.

Discussion
The memory enhancing and cognitive effects of B.monnieri are believed to be mediated by
bacoside A, a mixture of bacoside A3, bacopacide II, bacopasaponin C and bacopaside X. How-
ever, evidence regarding the bacoside components responsible for the activity and the mecha-
nisms of action are still unclear. This study shows that bacoside A is unlikely to be absorbed
through the intestine or to penetrate the BBB, using in silicomodels. Therefore, the bacosides
are likely to undergo transformation in vivo to remove the sugar units as well as other biotrans-
formations, that result in metabolites that may mediate the memory enhancing and cognitive
activities. This is consistent with other neuropharmacologically active plants such as ginseng
[12], Ginkgo biloba [49] and jujube (red date) [13, 14], where their respective active constitu-
ents are formed via the metabolism of the parent compounds in vivo.

Fig 4. Docking of the ebelin lactone to (A) the M1 mAChR and (B) the 5-HT2A models. Iperoxo (sphere) from the crystal structure of M2 mAChR (PDB
code: 4MQS) was used to show the orthosteric site in the M1 mAChR, and the transparent surface represents the orthosteric site of the 5-HT2A receptor.
Ebelin lactone bound to a cavity directly above the orthosteric site suggesting it could be an allosteric modulator. For the purpose of clarity, some of the loops
and transmembrane helix are not shown.

doi:10.1371/journal.pone.0126565.g004
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Unlike bacosides, the aglycones (jujubogenin and pseudo-jujubogenin) and their acid hy-
drolyzed derivatives (ebelin lactone and bacogenin A1) produced higher predicted binding af-
finity towards all the CNS receptors and stronger docking to AChE in silico. They also had
CNS drug-like properties which suggested that they would show better oral absorption and
penetration through the BBB. Among the ligands, ebelin lactone had the strongest binding of
all the CNS receptors and the highest expected BBB penetration.

Fig 5. 2-D interaction map of ebelin lactone in complex with the M1 mAChRmodel.Negatively-charged,
polar and hydrophobic residues are depicted with red, light blue and green circles, respectively. The
hydrogen bond between the OH group at position-3 and Y85 residue is indicated by a purple dashed arrow.
Ebelin lactone established non-polar interactions with L183, Y82 and L86 (non-conserved residues) which
are postulated to be responsible for the allosteric subtype selectivity in muscarinic receptors.

doi:10.1371/journal.pone.0126565.g005

Fig 6. Superposition of ebelin lactone (blue) in complex with the M1 mAChRmodel and LY2119620
(green) in complex with the M2 mAChR. Superposition of the crystal structure of the allosteric modulator
LY2119620 in complex with M2 mAChR (PDB code: 4MQS) with the docked ebelin lactone in M1 mAChR
shows the overlapping binding positions of these ligands, suggesting ebelin lactone could be a M1 allosteric
modulator. Iperoxo is shown in spheres to depict the orthosteric site of the receptor.

doi:10.1371/journal.pone.0126565.g006
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Although until now there are no pharmacokinetics studies on bacosides, similar studies on
other saponin glycosides such as ginsenoside [50] and flavonoid glycosides such as quercetin
glucoside [51] have been reported. In these studies, the parent glycosides were not found in the
plasma after oral administration, while their metabolites were detected. This poor intestinal ab-
sorption of the glycosides is most likely due to their low membrane permeability. Therefore,
prior to intestinal absorption into the systemic circulation, these glycosides undergo deglycosy-
lation in the intestinal tract. In the case of ginsenoside RB1, deglycosylation of the glycosides is
by gastric acid, which remove the sugar units [52]. Another proposed mechanism is the

Fig 7. 2-D interaction map of ebelin lactone in complex with the 5-HT2A receptor model.Negatively-
charged, polar and hydrophobic residues are depicted with red, light blue and green circles, respectively.
Ebelin lactone is coordinated by a set of residues only through non-polar interactions.

doi:10.1371/journal.pone.0126565.g007

Fig 8. Superposition of ebelin lactone (cyan) in complex with the 5-HT2A receptor and TAK-875 (green) in complex with free-fatty acid receptor 1. A.
Front view and B. Top view (from the extracellular surface). Superposition of ebelin lactone in complex with the 5-HT2A receptor from the docking studies and
the allosteric modulator TAK-875 in complex with the free-fatty acid receptor 1 from the crystal structure (PDB code: 4PHU) shows both ligands bound to
cavities in between the transmembrane helices suggesting ebelin lactone could be a 5-HT2A allosteric modulator. The transparent surface represents the
orthosteric site of the 5-HT2A receptor. For the purpose of clarity, some of the loops and transmembrane helix are not shown.

doi:10.1371/journal.pone.0126565.g008
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hydrolysis of glycosides by lactase phloridzin hydrolase (LPH) and cytosolic β-glucosidase
(CBG). LPH, a β-glucosidase found on the outside of the brush border membrane of the small
intestine, hydrolyzes the glycosides and the liberated aglycones can then be absorbed into the
systemic circulation from the small intestine through passive diffusion [53]. CBG on the other
hand is located intracellularly in the enterocytes and so requires active transport of the hydro-
philic glycosides into the cells via the sugar transporter sodium-dependent glucose co-trans-
porter 1 (SGLT-1). CBG is capable of hydrolyzing a broad range of glycosides including
glucosides, galactosides, xylosides, arabinosides, and fucosides [54]. Besides this, glycosides
that are not substrates for LPH, CBG and SGLT-1, will be transported towards the colon where
they may be hydrolyzed by colonic bacteria to release the aglycones, which can then be ab-
sorbed into the systemic circulation via passive uptake [12, 14, 55].

The absorbed aglycones in the systemic circulation can then cross the BBB into the brain.
This mechanism is supported by the findings that 18β-glycyrrhetinic acid, a metabolite of gly-
cyrrhizin [56], and kaempferol and isorhamnetin [49] are detected in the brain after oral ad-
ministration of the parent glycosides. In other instances, the absorbed aglycone from the
intestine may go through conjugation (methylation, sulphatation and glucuronidation) and
exist in the plasma in the conjugated forms as with flavonoid aglycones [57]. Flavonoids in the
form of aglycones and conjugated forms are able cross the BBB. During passage of the BBB, the
conjugates may be metabolized back to the parent aglycone, which then enters the central ner-
vous system [58]. Therefore, similar to glycosides from other CNS active plants and our in sil-
ico results here a similar pharmacokinetics behavior is expected for the bacosides.

The findings from the in vitro radioligand receptor binding assays confirmed the favorable
affinity of the aglycone derivative, ebelin lactone towards M1 (Ki = 0.45 μM) and 5-HT2A

(4.21 μM) receptors, where the binding activities are similar to other knownM1 and 5-HT ago-
nists. In contrast, the aglycone jujubogenin did not give significant binding affinity towards the
receptors. This difference could be explained by the presence of the carbonyl oxygen of the lac-
tone ring in ebelin lactone, which is lacking in jujubogenin. The carbonyl oxygen of a lactone
ring has previously been reported to be essential for the activity of pilocarpine at M1 receptors
[59]. In the current work, the in silico studies were unable to identify the precise role of the car-
bonyl oxygen in the binding of ebelin lactone, perhaps due to limitations in the docking and
scoring functions used, such as not allowing full conformational flexibility in the receptor.
However, they did suggest that ebelin lactone could act as an allosteric modulator via non-polar
interactions. Such allosteric binding of the aglycone derivatives to the M1 and 5-HT2A receptors,
distinct from orthosteric interaction, may offer greater selectivity and reduced side effects, and
may conceivably contribute to the cognitive function and safety of B.monnieri [60–63].

M1 mAChR and serotonin 5-HT2A receptors are expressed abundantly in brain regions es-
sential for cognitive functions such as the prefrontal cortex and hippocampus. The stimulation
of these receptors by their respective agonists has been shown to improve cognition and to en-
hance learning in humans and animal models [33, 64]. M1 receptors are associated with cholin-
ergic transmission whereas 5-HT2A receptors are associated with both cholinergic and
glutamatergic transmission, and are implicated in cognition by regulating the release of these
and other neurotransmitters [32, 33]. Cognitive functions are said to be dependent on the abili-
ty of neurons to change their function i.e. neural plasticity [65]. The pyramidal neurons (pyra-
midal cells) are the primary excitation units in the mammalian cortical structures which play
important roles in cognition through their neural plasticity (synaptic plasticity) function and
are also expressed abundantly in the prefrontal cortex and hippocampus [66]. At cellular levels
the M1 receptors are located on the dendrites of cortical pyramidal cells [67, 68] whereas the
5-HT2A receptors are located on both the dendrites of cortical pyramidal cells and the interneu-
rons [69]. Activation of M1 and 5-HT2A metabotrobic receptors in pyramidal cells activates
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phospholipase C (PLC), which subsequently promotes the release of diacylglycerol (DAG) and
inositol triphosphate (IP3), stimulate protein kinase C (PKC) activity and Ca2+ release, leading
to activations of signal transduction pathways that result in increased neural plasticity [70, 71].
In addition, the location of 5-HT2A receptors in the cortex and hippocampus on cholinergic
[72] and glutamatergic [73] axon terminals serves to regulate the release of these transmitters
where the increased release of acetylcholine and glutamate are expected to enhance learning
[33]. Pyramidal cells use glutamate as their excitatory neurotransmitter, and GABA as their in-
hibitory neurotransmitter [74].

There is evidence that the mechanisms of action of B.monnieri could be attributed to a
combination of cholinergic modulation especially through the muscarinic cholinergic receptor.
B.monnieri extract has been reported to alleviate the amnesic effects of scopolamine, a musca-
rinic receptor antagonist, suggesting a crucial role of muscarinic receptors in the action of B.
monnieri [15, 75]. Furthermore, the administration of B.monnieri for two weeks reversed the
depletion of acetylcholine, reduced choline acetylase activity and decreased muscarinic cholin-
ergic receptor binding in the frontal cortex and hippocampus of rats with AD, induced by the
neurotoxin colchicine [76]. In addition to this, B.monnieri extract was found to induce neurite
and neuronal dendritic growth [77, 78], and studies have shown that muscarinic receptor acti-
vation plays a key role in neurite outgrowth [79, 80]. Previous work has demonstrated that
treatment with B.monnieri extract caused an increase in 5-HT levels in the hippocampus, hy-
pothalamus and cerebral cortex of rats [8, 81]. Charles et al. [82] also found that B.monnieri
extract caused a significant up-regulation in the synthesis of 5-HT and altered the ACh level,
and proposed that the elevated 5-HT level may activate their receptor to facilitate the release of
ACh and thus enhance learning ability and memory.

In vitro studies suggest B.monnieri extract did not inhibit AChE directly [15, 83]. However,
brain homogenate obtained from rats fed with B.monnieri extract showed anti-AChE activity
[15, 84]. Treatment with bacosides on aged rats for a 3 months period appeared to enhance the
synthesis and availability of acetylcholine rather than affecting the activity of AChE [85]. Our
in silico findings suggest that the aglycones dock on the catalytic site of AChE better than the
parent bacosides. However, the same pattern is not reflected in the in vitro AChE inhibition
study. The reason for the discrepancy has not been determined. It is conceivable that the crystal
structure of AChE for this study optimized for fasciculin and donepezil is not suitable for baco-
sides and their aglycones as their structures are quite different. It is also worth while noting
that pseudojujubogenin and bacogenin A1, which have not been tested, may bind to AChE and
cause inhibition.

Our findings are based on bacoside A (bacoside A3, bacopaside X, bacopaside II, bacopasa-
ponin C), its aglycones (jujubogenenin and pseudojujubogenin) and its derivatives (ebelin lac-
tone and bacogenin A1). Although both pseudojujubogenin and bacogenin A1 were evaluated
by in silico studies, they were not evaluated with in vitro receptor binding assays and the AChE
inhibition assay. It is conceivable that they may interact with the CNS receptors and bind to
the catalytic site of AChE to contribute to the cognitive effect of B.monnieri.

This study used validated in silico receptor and AChE models from our previous work to
predict the activities of bacosides, aglycones and their derivatives. However, the adopted in sil-
icomodels were built and validated using ligands structurally different from that of the baco-
sides tested. Therefore, the models may not be fully reliable for bacosides. Nevertheless, this
combination of in silico and in vitro studies gives an overall picture of absorption (pharmacoki-
netics) and pharmacodynamics of bacosides.
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Conclusions
In this study, we have demonstrated through a combination of in silico and in vitro experi-
ments that the bacoside aglycone derivative, ebelin lactone, has better CNS drug-like and re-
ceptor-binding properties compared to the parent compound. Hence, we suggest B.monnieri
constituents may be transformed and metabolized to the active form in vivo before exerting
their pharmacological activity. Additional studies are required to determine the actual metabo-
lites of B.monnieri in order to further elucidate the memory enhancing and cognitive actions
of this plant. Ebelin lactone may also be an interesting CNS drug candidate that is worthy of
further investigation. The results from such studies will give more of an indication of the po-
tential of B.monnieri for the treatment of AD.
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