
Opioids are broad spectrum analgesics that may be beneficial to alleviate the intense 
perception of algesia in patients suffering with pain. They have been one of the most 
controversial analgesics, in part because of their potential for addiction. Opioids or any 
currently available analgesic will not provide effective analgesia for every patient with 
chronic neuropathic pain (NP), but overall opioids are considered to be a second or third 
line class of analgesics that may provide reasonable analgesia to some patients with chronic 
NP. Although opioids may alleviate chronic NP, overall, NP tends to be less opioid responsive 
than nociceptive pain. The mechanisms that may contribute to neuropathic pain may 
simultaneously also contribute to diminishing the antinociceptive properties of opioids for 
neuropathic pain. Some of these mechanisms may also contribute to analgesic tolerance 
and/or opioid-induced hyperalgesia. Hyperalgesia consequently to nerve insult and opioid-
induced analgesic tolerance, may both involve the N-methyl-D-aspartate (NMDA) receptor 
and share part of intracellular events producing a state of neural hyperexcitation. Conversely, 
opioid therapy may contribute to nociceptive processes that may be involved in neuropathic 
pain such as opioid-induced cholecystokinin release. Furthermore, within NP, peripheral NP 
appears to be the most opioid responsive, followed by spinal NP while supraspinal NP tends 
to be the least responsive to opioids. Although, there is no robust evidence that any specific 
opioid agent is better than any other opioid at effectively treating NP, it is conceivable that 
some opioids/opioid-like analgesic agents may be particularly well suited to alleviate NP in 
certain patients suffering from neuropathic pain.
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n 1988 Arnér and Meyerson (1) published an article 
in Pain titled “Lack of an effect of opioids on 
neuropathic and idiopathic forms of pain.” Two 

years later, Portenoy and colleagues (2) published 
an article in the same journal criticizing Arnér and 
Meyerson (1), stating the following points: opioid 
responsiveness is a continuum, rather than a quantal 
phenomenon; opioid responsiveness is determined 
by a diverse group of patient characteristics and 
pain-related factors, as well as drug-selective effects; 
and a neuropathic mechanism may reduce opioid 
responsiveness, but does not result in an inherent 
resistance to opioid therapy.

Arnér and Meyerson (3) responded by stating that 
although the title of their paper had a somewhat pro-

vocative phrasing, it should be perfectly clear that 
nowhere in the text did they maintain that the issue 
of responsiveness of neuropathic pain (NP) to opioids 
is finally settled, nor did they suggest that any “pa-
tient in pain should be deprived of an open trial” of 
the analgetic efficacy of opioids. They further stated 
that they used opioids to treat some patients with 
NP in their clinical practice and that the essence of 
their message was to emphasize the need for further, 
well controlled studies of opioid responsiveness with 
particular regard to the pathophysiology of different 
pain mechanisms (3).

Over the next two decades multiple studies were 
published supporting the efficacy of opioids for NP 
(4-8). In 2005, 17 years after the initial Arnér and 
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feels it is likely that overall, nociceptive pain is some-
what more responsive to opioids than NP (14).

In 2009, Mercadante et al, (15) evaluated tools 
for identifying NP in cancer pain as well as the opi-
oid responsiveness of NP and non-NP in patients with 
cancer pain. They investigated the value of evalu-
ation tools such as the Neuropathic Pain Question-
naire (NPQ), both complete and short form (NPQ-
SF), the Leeds Assessment of Neuropathic Signs and 
Symptoms (LANSS), and the Neuropathic Pain Symp-
tom Inventory (NPSI) (15). The secondary outcome 
was to evaluate the response to opioid titration, ac-
cording to the hierarchical classification of definite, 
possible, and unlikely NP. Patients with uncontrolled 
cancer pain requiring adjustment of opioid therapy 
were clinically classified into tertiles according to the 
graded evidence of their nervous system lesion: defi-
nite NP, possible NP, or unlikely NP. Pain and symptom 
intensities were measured before (T0) and at the end 
of opioid titration (T1) (15). Sixty, 36, and 71 patients 
were clinically assessed as having definite NP, possi-
ble NP, or unlikely NP, respectively. A relationship be-
tween the values of the assessment tools and clinician 
rating was found. Patients with the highest values of 
assessment tools were also more likely to be clinically 
labeled as definite NP. Patients with a clinical diagno-
sis of definite NP, possible NP, or unlikely NP showed 
significant differences in their analgesic response to 
opioids (P < .0005). Patients with “unlikely NP” had 
a lower pain intensity at T1 (P < .05), and patients 
with “definite NP” required more intensive opioid 
treatment. Patients requiring more aggressive opioid 
treatment showed significantly higher values of Opi-
oid Escalation Index (OEI) milligrams (i.e., higher opi-
oid doses) (15). Thus, the research of Mercadante et 
al (15) appears to confirm that opioids are clinically 
effective for NP in cancer patients. Their findings also 
appear to support the notion that NP tends to be less 
responsive to opioids than non-NP (i.e., nociceptive 
pain) (15). 

Furthermore, as previously stated, although 
definitive evidence does not exist, and at least one 
investigator has reported otherwise (that opioid re-
sponsiveness is roughly equal in peripheral and cen-
tral NP) (9), it is likely that, overall, peripheral NP is 
somewhat more responsive to opioids than central 
NP (16). Additionally, within central NP it appears 
likely that supraspinal central NP is less responsive to 
the analgesic effects of opioids than spinal central NP 
(16) (Fig. 1).

Meyerson article, Eisenberg et al published a land-
mark article in the Journal of the American Medical 
Association which essentially should have put an end 
to any residual controversy regarding the efficacy of 
opioids for NP (9). In that article, Eisenberg and col-
leagues demonstrated that opioids can clearly pro-
vide effective analgesia for NP. This does not mean 
that opioids will alleviate all NP just as opioids will 
not alleviate all nociceptive pain, however, opioids 
may effectively provide clinically meaningful analge-
sia for a significant proportion of patients with NP 
(9). Eisenberg and colleagues (9) found that short-
term studies provide only equivocal evidence regard-
ing the efficacy of opioids in reducing the intensity of 
NP and intermediate-term studies demonstrate sig-
nificant efficacy of opioids over placebo for NP, which 
is likely to be clinically important. They reported 
adverse events of opioids are common but not life-
threatening and concluded that further randomized 
controlled trials (RCTs) are needed to establish their 
long-term efficacy, safety (including addiction poten-
tial), and effects on quality of life (9). A year later 
Eisenberg and colleagues (10) published that short-
term studies reveal opioids can reduce the intensity 
of dynamic mechanical allodynia and perhaps of cold 
allodynia in peripheral NP. They reported insufficient 
evidence precludes drawing conclusions regarding 
the effect of opioids on other forms of evoked NP, 
and that a meta-analysis of intermediate-term stud-
ies demonstrated the efficacy of opioids over placebo 
for evoked NP (10).

Other factors may play a role in determining opi-
oid responsiveness for specific NP states (11). Edwards 
and colleagues (11) demonstrated that basal heat 
pain thresholds predict opioid analgesia in patients 
with postherpetic neuralgia. During opioid treat-
ment, a greater reduction in pain and higher ratings 
of pain relief were observed in patients with rela-
tively higher heat pain thresholds at baseline. Other 
individual difference variables such as age and base-
line pain intensity also significantly predicted opioid 
responses (i.e., higher baseline pain and younger age 
were related to greater opioid-associated pain reduc-
tion, with nearly 20% of the variance in opioid anal-
gesia explained by these 2 factors) (11).

There is no robust evidence regarding the com-
parative effectiveness of opioids for neuropathic 
versus nociceptive pain. Multiple investigators have 
reported that opioids have similar efficacy for neuro-
pathic and nociceptive pain (9,12,13), however, Smith 
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PATHOPHYSIOLOGIC CHANGES IN 
NEUROPATHIC PAIN STATES

There are numerous alterations/perturbations that 
may occur in the nervous system after a neural insult. 
These changes may vary with the type and extent of 
injury. Furthermore, despite many decades of intense 
investigation, the precise changes that play a crucial 
role in the development and/or maintenance of NP in 
humans remain uncertain. It is likely that some changes 
that occur are essentially epiphenomena, some changes 
are primarily directed toward rebuilding and growth of 
the peripheral nerve as well as restoring normal axonal 
transport and target contact, and some changes may be 
vital in leading to the development of chronic NP. The 
many changes occurring with neural insult may include 
upregulation of neuropeptide Y (NPY), ATP release/
upregulation of purinergic receptors, altered gamma 
amino butyric acid (GABA) signaling, chemokine altera-
tions, ion channel alterations, changes in protein kinase 
C activity, changes in N-methyl-D-aspartate (NMDA) re-
ceptor activity, as well as changes in levels of nociceptin 

and nociceptin opioid peptide receptor (17-21).
If precise pathophysiologic mechanisms of various 

pain states were known for a particular patient, then 
attempts could be made in efforts to match particular 
treatment strategies targeted against these mecha-
nisms (e.g., giving “blockers of dynorphin receptors” 
[kappa opioid receptors, NMDA receptors] for an in-
crease in dynorphin).

Since the crucial pathophysiologic mechanisms of 
NP remain uncertain, it goes without saying that the 
precise mechanisms which may account for the reduced 
efficacy of opioids in certain NP states also remain elu-
sive. Some investigators have suggested that this re-
duced opioid responsiveness is due to disturbances of 
normal opioid mechanisms/signaling in the spinal cord 
(22,23), since the analgesic efficacy of opioids is sig-
nificantly reduced from an intrathecal opioid injection 
compared with an intraperitoneal opioid injection for 
NP states (24,25). One of the theories proposed for the 

Fig. 1. Relative overall opioid responsiveness of  different categories of  Pain
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reduced effectiveness of opioids for NP is due to a fun-
damental functional change in the dorsal horn spinal 
cord that occurs during NP states involving downregu-
lation or desensitization of μ-opioid receptors.

Functional downregulation and/or desensitization 
of μ-opioid receptors in the dorsal horn of the spinal 
cord (but not a significant decrease in number), has 
been observed in nerve-injury neuropathy (23,26) and 
diabetic neuropathy (27,28), and may be related to in-
creased production of protein kinase C (29-32). 

In the brain, it appears that mu-opioid receptors 
are also functionally downregulated or desensitized in 
NP states (33),which may contribute to the reduced effi-
cacy of opioids in NP. Hoot and colleagues demonstrat-
ed this in the thalamic region of mice in a rodent model 
of NP (34). [(3)H]Naloxone binding in membranes of the 
thalamus showed no significant differences in B(max) 
values between chronic constrictive injury (CCI) (and 
sham-operated mice, indicating that the difference in 
G-protein activation did not result from differences in 
μ-opioid receptor levels. CCI induced a region-specific 

adaptation of μ-opioid receptor-mediated G-protein 
activity, with apparent desensitization of the μ-opioid 
receptor in the thalamus and periaqueductal gray 
(PAG) .) which could have implications for treatment of 
NP (34).

Mu-opioid receptor (MORdesensitization second-
ary to NP appears to involve protein kinase A. It has 
been demonstrated that the MOR and the NMDA re-
ceptors coexist at certain postsynapses and that both 
receptors show an electrophysiological interaction in 
individual neurons (35). Therefore, protein kinase A 
(PKA) may be responsible for the dissociation of NR1 
subunits from MORs, which occurs as a result of N-
methyl-D-aspartate receptor (NMDAR)activation lead-
ing to MOR Ser phosphorylation and uncoupling from 
G-proteins (35) (Fig. 2).

Increased NMDA activity did not alter the normal 
morphine analgesic effect. Although NMDA did not 
promote a substantial reduction of MOR or NR1 sub-
units (NMDARs) in the PAGsynaptosomal preparation, 
it greatly increased the Ser phosphorylation of the 

Fig. 2 .Schematic of  Neuropathic Pain leading to desensitized MORs
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MOR and the uncoupling of the MOR from the regu-
lated G-proteins. These desensitizing changes were ac-
companied by reductions in MOR–NR1 coprecipitation 
(35). 

It is also conceivable that the increase of protein 
kinase C in the dorsal horn of the spinal cord, seen 
with various NP states, may be due in part to activa-
tion of NMDARs in postsynaptic cells (29,36), or due 
to an autophosphorylation of the TrkB  receptor by 
brain-derived neurotrophic factor (BDNF) (37-39). In 
fact, the development of the hyperalgesia and allo-
dynia in NP states is suppressed by administration of 
NMDA receptor antagonists, TrkB/Fc chimera protein 
(sequesters endogenous BDNF), or protein kinase C in-
hibitors (36,38-40).

It has been proposed that morphine stimulates 
the production of nitric oxide (NO) through MOR–
GEG–PI3K–Akt–nNOS (41), which releases zinc ions 
from endogenous stores to recruit PKCG and Raf-1 
to the HINT1 protein at the MOR C-terminus (42, 43). 
Then, PKCG causes MOR-NR1 separation and produces 
the sustained potentiation of NMDAR calcium currents 
by activating Src (44), and also the Raf-1-ERK1/2 cas-
cade (43). Afterwards, NMDAR-regulated CaMKII pro-
motes MOR phosphorylation and its uncoupling from, 
regulated G-proteins (35,45).

Thus it appears that morphine recruits PKC to sep-
arate both receptors in PAG e )neurons (35). Zinc ions 
promote PKC translocation from the soluble phase to 
the membrane, enhancing their affinity for phorbol 
esters or diacylglycerol, and since high zinc levels sta-
bilize their binding to the regulatory domain, PKC ac-
tivation persists for long intervals (42,46,47). 

An endogenous opioid peptide dynorphin A also 
is increased in the dorsal spinal cord after neural in-
sult. Immunoreactivity for dynorphin A and mRNA 
level of prodynorphin are increased in the ipsilateral 
dorsal spinal cord (48,49). Dynorphin A, originally 
identified as an endogenous N-opioid peptide, also 
acts as an agonist for the NMDA receptor. The admin-
istration of antiserum against dynorphin A inhibits hy-
peralgesia/allodynia after sciatic nerve ligation (SNL). 
Also, hyperalgesia/allodynia is not observed after SNL 
in dynorphin knockout mice (49). An increase in dyn-
orphin A has been suggested to be involved in the di-
minished opioid responsiveness that may be seen in 
NP states (50).

Hahm and colleagues (51) found that although 
the inhibitory effect of MOR activation on presynap-
tic GABA release is similar in both neuropathic and 

normal rats, NP may inhibit endogenous analgesia in 
the periaqueductal gray (PAG) through an increase in 
presynaptic GABA release (51). Thus, although the ef-
fect of MOR activation on presynaptic GABA release in 
neuropathic rats is similar to that in normal animals, 
exogenous opioid agonists may exert their analgesic 
actions less effectively in neuropathic rats due to the 
increased presynaptic GABA release from NP (51).

Changes in ion channel expression may also con-
tribute to the development or maintenance of NP. 
Following peripheral nerve insult, the expression of 
several subtypes of voltage-dependent Na+ channels 
(Nav1.1 Nav1.3, Nav1.7, Nav1.8, Nav1.9), may be al-
tered in the primary afferent neuron and secondary 
dorsal horn neuron (52,53). Pain-related behaviors 
after peripheral nerve injury are ameliorated by the 
suppression of Na+ channel expression by antisense 
oligodeoxynucleotides (52). 

Ion channel expression in peripheral neurons is 
dependent on target contact and neurotrophic sup-
port (54,55). It is possible that axotomy, by downregu-
lating Ca2+ channels (56), may impede the release of 
neurotransmitters from primary afferent terminals in 
the dorsal horn (57). This contrasts with the effects of 
chronic constriction injury (CCI), reported to increase 
the expression of N-type calcium channels in the dor-
sal horn (57).

There appears to be increased expression of the�
D2-G1 subunit of voltage-dependent calcium channels 
also reported after peripheral nerve injury (43,59). Ga-
bapentin, a calcium channel blocker binding to the D2-
G1 subunit of the N-type voltage-dependent calcium 
channel, can inhibit the hyperalgesia/allodynia occur-
ring after SNL (59). Selective antagonists for N-type 
calcium channels may also suppress the hyperalgesia/
allodynia of NP states (39, 60).

Nociception (NOCacts similarly to traditional 
opioids as it produces membrane hyperpolarization 
through the opening of potassium channels (61,62); 
however, in contrast to endogenous opioids (e.g., 
DYN), NOC does not act on any classical opioid re-
ceptors because of its lack of an N-terminal tyrosine 
(63-65) NOC (Phe-Gly-Gly-Phe-Thr-Gly-Ala-Arg-Lys-Ser-
Ala-Arg-Lys-Leu-Ala-Asn-Gln), which was previously 
known as orphanin FQ (OFQ) (66), is produced from 
the precursor prepronociceptin (PNOC); (67-70) and is 
an endogenous ligand of the nociceptin-opioid pep-
tide (NOP) receptor, which was previously known as 
opioid receptor like-1 (ORL1).

Multiple studies have supported the finding that 
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the analgesic effectiveness of NOC and other NOP 
receptor ligands is increased with neuropathic condi-
tions (71,72) and that this effect is associated with the 
upregulation of NOP receptor mRNA in the spinal cord 
and dorsal root ganglia (DRG) (73). The potentiation 
of morphine effectiveness by NOP antagonists in NP 
has also been reported in multiple papers (74-76).

After axotomy/nerve insult there is a significant up-
regulation of NOP receptor in the spinal cord as well 
as in the DRG) (77). Additionally, NOC is significantly 
increased in the DRG (77). Furthermore, NOC (73, 81-
85) and other NOP receptor agonists (71, 82, 86) may 
inhibit allodynia and/or hyperalgesia.

OPIOID ANALGESIC AGENTS FOR 
NEUROPATHIC PAIN 

Multiple opioids have been successfully utilized to 
treat NP including morphine (4), methadone (4), hy-
dromorphone (12), levorphanol (8), and transdermal 
fentanyl (87). However, “all opioids are not created 
equally.” Although definitive evidence does not exist, it 
is conceivable that some opioids (or opioid-like analge-
sic agents) may be relatively more effective at providing 
analgesia for patients with NP than others. Agents that 
may conceivably be particularly effective against NP 
may include: oxycodone, methadone, buprenorphine, 
tapentadol, and tramadol.

Mor Splice Variants
The importance of different splice variants cannot 

be overstated. Different splice variants can lead to en-
tirely different effects. This is well illustrated by exam-
ining the molecular basis of opioid-induced itch. Two 
MOR (MOR)  splice isoforms (MOR1 and MOR1D) have 
distinct C termini, are expressed in mutually exclusive 
subsets of spinal cord neurons, and mediate spinal opi-
oid-induced analgesia and itch, respectively. MOR1D in-
teracts with gastrin-releasing peptide receptor (GRPR) 
(a G protein-coupled receptor) in a unidirectional man-
ner, with resultant GRPR stimulation to specifically me-
diate opioid-induced itching (88). The MOR1D-GRPR 
interaction mediates opioid-induced itching alone 
and does not contribute to opioid-induced analgesia. 
Furthermore, blocking MOR1D-GRPR heterodimeriza-
tion may be a highly specific way to attenuate opioid-
induced itch (87). It is conceivable that a specific MOR 
splice isomer interaction with a specific G protein-cou-
pled receptor (GPCR)/GPCR subunit may be beneficial 
for alleviating NP (89).

G-Protein Subtypes
The G transducer proteins Gi, Go, Gz, Gll and Gq 

classes are involved in the supraspinal analgesic effects 
of opioids. Impairment of Gi2D, Gi3D, and GzD func-
tion led to weaker analgesic responses to various opi-
oids (e.g., methadone, buprenorphine) (90). Sánchez-
Blázquez and colleagues (90) demonstrated that the 
administration of an oligodeoxynucleotides (ODN) to 
the PTX-sensitive Gi2D subunits or to the PTX-insensi-
tive Gz subunits was followed by a significant decrease 
in the antinociceptive potency of all the agonists un-
der study. Though the impairment of Gi1D function did 
not change the response of the mice to morphine and 
buprenorphine, it did lead to a decrease in the effect 
of methadone. The antisense probe to Gi3D subunits 
reduced the antinociception of methadone and bu-
prenorphine while morphine-induced antinociception 
was unchanged (90).

The supraspinal antinociceptive effects of metha-
done were greatly reduced by the administration of the 
ODNs directed to both Go1D�or G11D� subunits, while 
neither buprenorphine nor morphine antinocicep-
tion was influenced by these treatments. Further, the 
antisense ODNs to Go2D�and GqD subunit-mRNAs also 
produced dissimilar effects; buprenorphine-induced an-
tinociception was reduced while the activity of metha-
done, as well as that exhibited by morphine, was unal-
tered (90).

It is possible that the interaction of different opi-
oids with different G-protein subtypes may be partly 
responsible for the different analgesic responses of dif-
ferent opioids in different individuals and/or different 
pain states. Therefore, if one opioid agent does not 
provide adequate analgesia it is still worthwhile pro-
ceeding with a trial of a different opioid agent (prefer-
ably one with different G-protein interactions).

In particular, it is conceivable that the interaction/
participation of Go- and Gq11-proteins may lead to an-
algesic effects that are especially beneficial in certain 
NP states (89). Methadone and buprenorphine interact 
with these G-protein subtypes but morphine does not. 
Methadone and buprenorphine are also significantly 
different from each other. Buprenorphine and metha-
done demonstrate a significant difference in activation 
of G proteins; G-i1D, G-o1, and G- l1D�are necessary for 
methadone-induced analgesia, but not buprenorphine-
induced analgesia; whereas, buprenorphine-induced 
analgesia requires G-o2D and G-q D but methadone 
does not (90). (Table 1).
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Specific Opioid Agents/Opioid-Like Analgesic 
Agents [Olas]

Oxycodone
The oxycodone (6-deoxy-7,8-dehydro-14-hydroxy-

3-O-methyl-6-oxomorphine) molecule consists of 2 pla-
nar and 2 aliphatic rings. Important groups for analge-
sic actions of the phenanthrene are linked to positions 
C3, C6, and N (91).

Oxycodone is a semisynthetic opioid analgesic de-
rived from the natural alkaloid thebaine and has been 
in clinical use since 1971. Oxycodone has a high oral 
bioavailability and when administered orally seems to 
provide potent analgesic effects “in the same ballpark” 
as oral morphine. Like other opioids, the analgesic ef-
fect of oxycodone is mediated through the activation at 
the µ-opioid receptor, although its affinity and intrinsic 
activity to -opioid receptor is lower than morphine (92, 
93). 

The affinity of oxycodone to the μ-opioid receptor 
is > 20 times less than that of morphine (94). Also, the 
concentration of oxycodone needed to activate the G-
protein as measured by the [35S]GTPcS agonist-stimu-
lated binding is 3–8 times higher than that of morphine 
(94-96). In spite of this, oxycodone is equally potent to 
morphine after systemic administration when differ-
ences in bioavailability are taken in account (97-99). 

Narita and colleagues (93) compared the pharma-
cological profiles of morphine and oxycodone under a 
rodent model NP -like state. There were no significant 
differences in spinal or supraspinal antinociception of 
morphine and oxycodone between sham operation and 
nerve ligation. Moreover, either morphine- or oxycodo-
ne-induced increase in guanosine-5’-o-(3-thio) triphos-
phate ([35S]GTPgammaS) binding in the spinal cord,  
thalamus in sciatic nerve-ligated mice was similar to 

that in sham-operated mice. Antinociception induced 
by subcutaneous (s.c).,define intrathecal, or intracere-
broventricular injection of the morphine metabolite 
morphine-6-glucuronide (M-6-G) was significantly de-
creased by sciatic nerve ligation. Furthermore, the in-
crease in the G-protein activation induced by M-6-G was 
eliminated in sciatic nerve ligation (93). These findings 
provide further evidence that oxycodone shows a sig-
nificant antinociceptive effect under an NP -like state. 
Furthermore, the reduction in G-protein activation in-
duced by M-6-G may, at least in part, contribute to the 
suppression of the antinociceptive effect produced by 
morphine under an NP -like state (93). 

Largent-Milnes and colleagues (100) investigated 
whether Oxytrex (oxycodone with an ultra-low dose of 
naltrexone) alleviates mechanical and thermal hyper-
sensitivities in an animal model of NP over a period of 7 
days, given locally or systemically (100). Chronic opioid 
administration may lead to a shift in μ-opioid receptor 
(MOR)-G protein coupling from G(i/o) to G(s) that can 
be prevented by co-treatment with an ultra-low dose 
opioid antagonist. Using lumbar spinal cord tissue from 
rats with L(5)/L(6) spinal nerve ligation  , Largent-Milnes 
et al demonstrated that SNL injury induces MOR link-
age to G(s) in the damaged (ipsilateral) spinal dorsal 
horn. This MOR-G(s) coupling occurred without chang-
ing G(i/o) coupling levels and without changing the ex-
pression of MOR or G alpha proteins (100). Repeated 
spinal oxycodone exacerbated the spinal nerve ligation 
-induced MOR-G(s) coupling, whereas ultra-low-dose 
NTX cotreatment slightly but significantly attenuated 
this G(s) coupling. Either spinal or oral administration 
of oxycodone plus ultra-low-dose NTX markedly en-
hanced the reductions in allodynia and thermal hyper-
algesia produced by oxycodone alone and minimized 
tolerance to these effects (100). 

Table 1. Different G-protein subtype interactions of  different opioids [data from Sánchez-Blázquez 2001 (89)]

G-Protein Subtype

Opioid Gi Go Gz Gq Gll

Morphine Gi2 --- Gz --- ---

Methadone
Gi1

Gi2

Gi3

Go1 Gz --- Gll

Buprenorphine Gi2

Gi3
Go2 Gz Gq ---

Sánchez-Blázquez P, Gómez-Serranillos P, Garzón J. Agonists determine the pattern of G-protein activation in mu-opioid receptor-mediated su-
praspinal analgesia. Brain Res Bull 2001; 54:229-235.
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In addition to µ-opioid receptors, oxycodone shows 
moderate affinity to morphine-insensitive component 
(probably putative N2b-opioid receptor) (101).  There is 
evidence to suggest that each opioid receptor can form 
a heterodimer with any other opioid receptor. Het-
erodimerization of opioid receptors results in changes 
in the pharmacology of the receptor (102). It has been 
proposed that the putative N2-opioid receptor repre-
sents the heterodimerization of N� and G-opioid recep-
tors (103). 

This additional mechanism of action has been pro-
posed as a potential benefit, which may make oxyco-
done well suited for treating NP (39). However, it ap-
pears that oxycodone is predominantly a mu-opioid 
agonist in producing analgesia, respiratory depression, 
euphoria, and addiction, which are all typical mu-opi-
oid receptor mediated effects. It also tends to cause 
less dysphoria than morphine and it does not exhibit 
diuretic properties which is another N-opioid receptor 
mediated effect (102). Preliminary data, of Minami and 
colleagues (104), however, suggested that the antino-
ciceptive effects of three opioids (oxycodone, fentanyl, 
morphine) in the femur bone cancer (FBC) model were 
completely antagonized by a μ-opioid receptor antago-
nist,�E�FNA, and not by a N�opioid receptor antagonist, 
nor-BNI . Therefore, they concluded the μ- opioid re-
ceptors appeared to mediate the analgesic effects of all 
three opioids (104). Kato et al (105), using the same FBC 
model, unlike morphine and fentanyl, oxycodone re-
lieved not only ongoing pain, but also ambulatory and 
NP, and that the analgesic profile of oxycodone could 
be different from that of either morphine or fentanyl .

Minami and colleagues (104) examined the effects 
of three opioids (morphine, oxycodone, fentanyl) in a 
sciatic nerve ligation (SNL) model of NP, and found that 
oxycodone was the most effective, producing an an-
tinociceptive effect without affecting the withdrawal 
threshold of sham-treated animals .

It has been reported that several receptors are 
known to couple to multiple effectors to initiate down-
stream signals and that different ligands can promote 
distinct relative efficacies in the downstream signals, re-
sulting in a ligand-dependent efficacy profile (106). An-
other possibility is that different types of the μ-opioid 
receptor splice variants are responsible for different ef-
ficacy of each opioid. Several μ-opioid receptor splice 
variants have been identified (107), and it is possible 
that each splice variant may utilize a different down-
stream signaling pathway or are expressed in different 
anatomical regions to exhibit a distinctive pharmaco-

logical profile. Moreover, heterodimerization of the 
μ-opioid receptor and other receptors is another pos-
sible mechanism for the different opioid efficacy since 
the intracellular signals including a coupled G-protein 
can be affected by receptor dimerization (108, 109). 

Research indicates that a major difference be-
tween oxycodone and morphine could be in the pas-
sage of these opioids through the blood–brain barrier 
(BBB). Both drugs appear to be equally hydrophilic, but 
oxycodone seems to be actively transported through 
the BBB by a transporter that has not been identified 
(110, 111). The concentrations of oxycodone are higher 
in the brain compared with the plasma, whereas the 
reverse is true with morphine.

Watson and Babul (112) conducted a randomized 
trial of oxycodone for the treatment of postherpetic 
neuralgia. Pain intensity and pain relief were assessed 
daily, and steady (ongoing) pain, brief (paroxysmal) 
pain, skin pain (allodynia), and pain relief were record-
ed at weekly visits (112). Compared with placebo, oxy-
codone resulted in pain relief (2.9+/-1.2 versus 1.8+/-1.1, 
P =0.0001) and reductions in steady pain (34+/-26 versus 
55+/-27 mm, P = 0.0001), allodynia (32+/-26 versus 50+/-
30 mm, P = 0.0004), and paroxysmal spontaneous pain 
(22+/-24 versus 42+/-32 mm, P = 0.0001) (112). Global 
effectiveness, disability, and masked patient preference 
also all showed superior scores with oxycodone relative 
to placebo (112). Watson and Babul (112) concluded 
that controlled-release oxycodone is an effective anal-
gesic for the management of steady pain, paroxysmal 
spontaneous pain, and allodynia, which frequently 
characterize postherpetic neuralgia . 

Wörz and colleagues (113) performed 2 postmar-
keting studies in Germany involving 603 patients with 
NP treated with controlled-release oxycodone (mean 
daily oxycodone dose was slightly more than 40 mg/
day). Mean pain intensity decreased from > 6 initially to 
about 4 after one week, and under 3 after 3 weeks of 
treatment. Impairment, quality of life and performance 
(daily activities, mood, sleep quality and enjoyment of 
life) improved significantly (113).

In 2003, 2 randomized controlled-trials (RCTs) (6, 7) 
of controlled-release oxycodone for NP (both for pain-
ful diabetic neuropathy) concluded that controlled-re-
lease oxycodone is effective and safe for the manage-
ment of NP.

Ong (114) conducted a retrospective observational 
study of controlled-release of Oxycodone in patients 
with moderate to severe NP despite treatment with an-
ticonvulsants and antidepressants. Thirty-five patients 
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had NP unrelated to cancer (average daily oxycodone 
dose = 25 mg) and 32 patients had NP secondary to can-
cer (average daily oxycodone dose = 40 mg) (114). The 
improvement in pain score seen in both groups sup-
ported the notion that oxycodone may be well suited 
for the treatment of NP.

In 2008 Núñez Olarte (115) performed a nonsys-
tematic, yet comprehensive review of the literature and 
found 3 RCTs and one open-label study on oxycodone 
and NP which he concluded supported a significant role 
for oxycodone for neuropathic cancer pain .

Tramadol
Tramadol, a centrally acting analgesic available as 

both immediate release (IR) and extended release (ER) 
formulations, is structurally related to codeine and 
morphine, consists of 2 enantiomers, both of which 
contribute to analgesic activity via different mecha-
nisms (116). (+)-Tramadol and the metabolite (+)-O-
desmethyl-tramadol (M1) are agonists of the mu opioid 
receptor. (+)-Tramadol inhibits serotonin reuptake and 
(-)-tramadol inhibits norepinephrine reuptake, enhanc-
ing inhibitory effects on pain transmission in the spinal 
cord (116).

Tramadol has a better potency ratio relative to 
morphine in NP than in nociceptive pain models (117). 
The doses of drug that were calculated to result in 50% 
pain inhibition (ED[50]) for tramadol and morphine 
were 2.1 and 0.9 mg/kg, respectively, in CCI rats and 
4.3 and 3.7 mg/kg, respectively, in SNL rats (117). In the 
tail-flick assay of acute nociception, the potency of the 
2 drugs differed markedly, as seen by ED(50) values of 
5.5 and 0.7 mg/kg intravenously for tramadol and mor-
phine, respectively. Accordingly, the analgesic potency 
ratio (ED[50] tramadol/ED[50] morphine) of both com-
pounds differed in neuropathic (potency ratio 2.3 in CCI 
and 1.2 in SNL) and nociceptive pain models (potency 
ratio 7.8), suggesting a relative increase in potency of 
tramadol in NP compared with nociceptive pain (117).

Thus, it appears that tramadol, likely due to its ac-
tions of inhibiting the reuptake of serotonin and nor-
epinephine, may be useful for the treatment of NP. 
Although clinical investigative results exist to support 
the effectiveness of tramadol for relief of NP, trama-
dol has not been shown to be better than any other 
opioids/OLAs at alleviating NP. Harati and colleagues 
(118) conducted a placebo-controlled, double-blind 
trial that showed tramadol was effective and safe in 
treating the pain of diabetic neuropathy . Harati et al 
(119) also evaluated the efficacy and safety of trama-

dol in a 6-month open extension, following a 6-week 
double-blind randomized trial (118). They concluded 
that tramadol safely provides long-term relief of the 
pain of diabetic neuropathy. Freeman and colleagues 
(120) conducted a randomized study of tramadol/acet-
aminophen versus placebo in painful diabetic periph-
eral neuropathy. Tramadol/acetaminophen was more 
effective than placebo and was well tolerated in the 
management of painful DPN (120). They identified 6 
eligible trials, 4 comparing tramadol with placebo, one 
comparing tramadol with clomipramine, and one com-
paring tramadol with morphine. In 2006, Hollingshead 
and colleagues (121) performed a Cochrane review on 
tramadol for NP. All 4 trials comparing tramadol with 
placebo showed a significant reduction in NP with 
tramadol. Three of the trials which compared trama-
dol to placebo (total 269 participants) were combined 
in a meta-analysis. The number needed to treat with 
tramadol compared to placebo to reach at least 50% 
pain relief was 3.8 (95% confidence interval 2.8 to 6.3). 
There were insufficient data to draw conclusions about 
the effectiveness of tramadol compared to either clo-
mipramine or morphine. One trial considered subcat-
egories of NP. It found a significant therapeutic effect 
of tramadol of aresthesiaallodynia, and touch-evoked 
pain. Numbers needed to harm were calculated for side 
effects resulting in withdrawal from the placebo con-
trolled trials. Three trials provided these data, and the 
combined number needed to harm was 8.3 (95% confi-
dence interval 5.6 to 17) (121). Hollingshead et al (121) 
concluded that tramadol is an effective treatment for 
NP. Tramadol was also found to provide effective anal-
gesia in the treatment of neuropathic cancer pain from 
a 2007 randomized, double-blind, placebo-controlled 
study (122) as well as in the treatment of NP after spi-
nal cord injury from a 2009 randomized, double-blind, 
placebo-controlled trial (123).

Tapentadol 
Tapentadol is a novel centrally acting analgesic, ini-

tially formulated as an immediate-release preparation. 
It is a potent Schedule II analgesic approved for use by 
the US Food and Drug Administration (FDA) in 2009. In 
2011, the FDA approved the extended-release formu-
lation. Tapentadol extended release is available as 50, 
100, 150, 200, and 250 mg tablets with a recommended 
interval between dosing of about 12 hours. Tapentadol 
immediate-release is available as 50, 75, and 100 mg 
tablets and provides 4–6 hours of analgesia. Tapent-
adol immediate-release was shown to provide analge-
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sia comparable with that of 10–15 mg of immediate-
release oxycodone in patients recovering from dental 
extraction pain and pain following bunionectomy. The 
controlled release formulation provides a 12-hour dura-
tion of activity, as well as the convenience and analgesic 
uniformity associated with twice per day dosing. It was 
also as effective as oxycodone in patients presenting 
with chronic osteoarthritis pain and chronic low back 
pain (124). Of importance in the comparator trials was 
the finding that patients treated with tapentadol had 
a lower incidence of adverse gastrointestinal events, in-
cluding nausea, vomiting, and constipation, than those 
treated with oxycodone.

Tapentadol produces potent analgesic effects via 
its dual mechanism of action, i.e., mu opioid receptor 
agonism and norepinephrine reuptake inhibition. In 
animal models, tapentadol behaves as a weak opioid 
agonist, with 50 times less affinity than morphine for 
the mu receptor (124). Tapentadol exists as a single ac-
tive enantiomer and is metabolized mainly by O-gluc-
uronidation. Its principal metabolite is inactive, having 
no affinity for the mu opioid receptor or the norepi-
nephrine transporter. Because the analgesic activity of 
tapentadol is limited to the primary molecule, no en-
zymes are needed to convert it to an active metabolite, 
as is the case for tramadol and codeine (124).

Tapentadol, but not morphine, selectively inhibits 
disease-related thermal hyperalgesia in a mouse model 
of diabetic NP (125). Tapentadol was more potent than 
morphine against heat hyperalgesia, with ED (50) (mini-
mal effective dose) values of 0.32 (0.316) and 0.65 (1)
mg/kg, respectively. Christoph and colleagues (125) hy-
pothesized that this superior efficacy profile of tapen-
tadol for NP is due to simultaneous activation of MOR 
and inhibition of NA reuptake (125).

Schröder and colleagues (126) analyzed the con-
tribution of opioid and monoaminergic mechanisms 
to the activity of tapentadol in rat models of nocicep-
tive and NP (126). Antinociceptive efficacy was inferred 
from tail withdrawal latencies of experimentally naive 
rats using a tail flick test. Antihypersensitive efficacy 
was inferred from ipsilateral paw withdrawal thresh-
olds toward an electronic von Frey filament in a spinal 
nerve ligation model of monoNP. Tapentadol showed 
clear antinociceptive and antihypersensitive effects 
(>90% efficacy) with median effective dose (ED(50)) 
values of 3.3 and 1.9 mg/kg, respectively. While the 
antinociceptive ED(50) value of tapentadol was shifted 
to the right 6.4-fold by naloxone (21.2mg/kg) and only 
1.7-fold by yohimbine (5.6 mg/kg), the antihypersensi-

tive ED(50) value was shifted to the right 4.7-fold by 
yohimbine (8.9 mg/kg) and only 2.7-fold by naloxone 
(5.2mg/kg) (126). Activation of both mu-opioid recep-
tors and alpha2-adrenoceptors contribute to the anal-
gesic effects of tapentadol. The relative contribution 
is, however, dependent on the particular type of pain, 
as mu-opioid receptor agonism predominantly medi-
ates tapentadol’s antinociceptive effects, whereas nor-
adrenaline reuptake inhibition predominantly medi-
ates its antihypersensitive effects (126).

Further support of the inhibition of norepineph-
rine reuptake being a major factor in tapentadol’s 
effects on NP was seen in a rat model (127). Bee and 
colleagues (127) performed a series of in vivo electro-
physiological tests in spinal nerve ligated and sham-
operated rats to show that systemic tapentadol (1 and 
5 mg/kg) dose-dependently reduced evoked responses 
of spinal dorsal horn neurones to a range of peripheral 
stimuli, including brush, punctate mechanical and ther-
mal stimuli. They also showed that spinal application of 
the selective �(2)-adrenoceptor antagonist atipamezole, 
or alternatively the mu-opioid receptor antagonist nal-
oxone, produced near complete reversal of tapentad-
ol’s inhibitory effects, which suggested not only that 
the spinal cord is the key site of tapentadol’s actions, 
but in addition that no pharmacology other than mu-
opioid receptor agonism norepinephrine reuptake inhi-
bition (MOR-NRI) is involved in its analgesia. Moreover, 
according to the extent that the antagonists reversed 
tapentadol’s inhibitions in sham and SNL rats, they sug-
gested that there may be a shift from predominant 
opioid inhibitory mechanisms in control animals, to 
predominant noradrenergic inhibition in neuropathic 
animals (127).

Thus, it is conceivable that tapentadol, likely due to 
its actions of inhibiting the reuptake of norepinephrine, 
may be useful for the treatment of NP. Schwartz and 
colleagues (128) conducted a randomized-withdrawal, 
placebo-controlled trial investigating the safety and ef-
ficacy of tapentadol ER in patients with painful diabetic 
peripheral neuropathy . Although clinical evidence ex-
ists to support the effectiveness of tapentadol for relief 
of NP, tapentadol has not been shown to be better than 
any other opioids/OLAs at alleviating NP.

Methadone
Methadone is structurally dissimilar to standard 

alkaloid-type ringed-type structures (129). It is distin-
guished as being an open-chain (linear-type) molecule. 
In this sense it is most similar to propoxyphene. Metha-
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done contains a single chiral carbon atom and so exists 
as two enantiomers. The 1(R)-enantiomer is primarily 
responsible for analgesia (130) with a 10-fold higher af-
finity for mu opioid receptors, and up to fifty times the 
analgesic activity of the d(S)-enantiomer (131). In the 
United States methadone is available in racemic form, a 
50:50 mixture of 2 enantiomers, 1 (R)-enantiomer and 
d(S)-enantiomer.

The l(R)-isomer is a potent pure full mu opioid- re-
ceptor agonist with low affinity for delta and kappa 
receptor (132). Multiple studies with cloned human 
receptors and with mu knock-out mice with full delta 
receptors show no significant effective methadone 
agonist action at delta opioid receptors (133). The d(S)-
enantiomer, although relatively inactive at the mu opi-
oid receptor, functions as a modest non-competitive 
N-methyl-d-aspartate (NMDA) antagonist and also pre-
vents the reuptake of 5-hydroxytryptamine and nor-
epinephrine (134). Because of the different properties 
of the methadone enantiomers, they exhibit different 
treatment profiles in different pain models. Specifically, 
in the case of nerve injury pain, l(R)-methadone has 
been shown to yield greater anti-allodynia action when 
compared against morphine, oxycodone, d(S)-metha-
done, dl(SR)-methadone [racemic] (135). Therefore, it 
has been proposed that methadone may be an especial-
ly useful as an analgesic in NP (5, 136-139). Additionally, 
since N-methyl-D-aspartate receptor antagonist activity 
may also reverse opioid tolerance, methadone may also 
function to ameliorate this phenomenon (140, 141). 

Lemberg and colleagues (135) studied the effects 
of the commonly used mu-opioid receptor agonists 
morphine, oxycodone, methadone and the enantio-
mers of methadone in thermal and mechanical models 
of acute pain and in the spinal nerve ligation model 
of NP in rats. In the spinal nerve ligation model of NP, 
subcutaneous administration of morphine, oxycodone, 
methadone and l-methadone had anti-allodynic effects 
in tests of mechanical and cold allodynia. l-methadone 
showed the strongest anti-allodynic effect of the tested 
drugs. d-methadone was inactive in all tests (135). Lem-
berg et al (135) suggested that l(R)-methadone should 
be studied for NP in humans .

Pelissier and colleagues (142) studied the antino-
ciceptive synergy resulting from the combination of 
opioid receptor agonists and N-methyl-D-aspartate 
(NMDA) receptor antagonists on NP, an isobolographic 
analysis of equianalgesic combinations of ketamine 
with methadone or morphine was performed in rats 
with mononeuropathy produced by placing four con-

strictive ligatures around the common sciatic nerve. 
Combinations produced synergy of a supra-additive na-
ture in the neuropathic paw, but only additive antino-
ciception in the normal paw. The ketamine/methadone 
combination was more effective to produce antinoci-
ception in the neuropathic paw than was the ketamine/
morphine association, as revealed by the lower ED25. 
The results indicate supra-additive synergy between 
NMDA receptor antagonists and opioids, especially 
methadone, to produce antinociception in experimen-
tal neuropathy (142).

Morley and colleagues (5) conducted a double-
blind randomized controlled crossover trial comparing 
the analgesic effects of low doses of methadone to pla-
cebo in the management of NP. In this study 18 patients 
with a range of chronic NP syndromes which had re-
sponded poorly to standard analgesic approaches were 
randomly assigned to treatment periods of 20 days. In 
one period they received doses of either methadone 5 
mg twice a day or placebo tablets on alternate even-
numbered days. In the other period they received doses 
of either methadone 10 mg twice per day or placebo 
tablets on alternate even-numbered days (5). Com-
pared to placebo there was statistically significant im-
provement in analgesic outcomes with 20 mg of metha-
done as compared to placebo (5).

Moulin and colleagues (139) published a case series 
of 50 consecutive noncancer pain patients who were 
seen at a tertiary care center who had failed multiple 
treatments including: antidepressants, anticonvulsants, 
opioids, and spinal cord stimulation who were treated 
with oral methadone for a variety of intractable NP 
states (139). Twenty-six patients (52%) reported mild (4), 
moderate (15), marked (6) or complete (1) pain relief and 
continued on methadone at a mean maintenance dose 
of 159.8 mg/day for a mean duration of 21.3 months. 
Fourteen patients (28%) reported improved function on 
methadone relative to previous treatments (139). 

Thus, it appears that methadone may be useful 
to combat NP due to its cooperative actions as an n-
methyl-d-aspartate (NMDA) receptor antagonist and 
mu-opioid receptor agonist (143). Although anecdotal 
reports and published articles appear to support a role 
for methadone in alleviating NP (136, 138-140, 144, 
145), there are not robust studies to show that it is a 
better analgesic for NP than other opioids/OLAs. 

Buprenorphine
Buprenorphine is classified as a partial mu opioid 

agonist. It has been available in the US in parenteral 
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formulation for pain and in sublingual tablets for opi-
oid dependence. In 2011 the FDA has approved a trans-
dermal formulation of buprenorphine, the Buprenor-
phine Transdermal System (BTS) (Butrans, Purdue 
Pharma, Stamford, CT) for treatment of moderate to 
severe chronic pain. Buprenorphine binds to the MOR 
with high affinity and slow dissociates from it (exhib-
iting prolonged receptor occupancy). In high doses it 
can act as a mu opioid antagonists. It is highly lipophilic 
and thus has a large volume of distribution. It tends 
to have a slow onset in the transdermal formulation 
(steady state achieved in about 3 days after initial ap-
plication). Buprenorphine is hepatically metabolized 
(slowly cleared by liver via CYP2A4 and conjugases) to 
an active metabolite, norbuprenorphine, and excret-
ed in the bile and urine. CYP3A4 accounts for about 
65% of norbuprenorphine production and CYP2C8 for 
about 30% (146). Minor metabolites include hydroxy-
buprenorphine and hydroxyl-norbuprenorphine (146). 
Its terminal half-life is roughly 26 hours. Although its 
predominant mechanisms of action are from being a 
mu-opioid receptor agonist, it may also exhibit actions 
as a partial/full agonist at the nociceptin opioid pep-
tide (NOP) receptor (formerly called orphan-related 
ligand-1 receptor) and as a kappa opioid receptor ago-
nist. It is conceivable that its action as a NOP agonist 
may be partially useful in certain NP states where NOP 
receptors may be upregulated.

Transdermal buprenorphine is available in three 
strengths delivering 5 μcg/h, 10 μcg/h, or 20 μcg/h. Pa-
tients who are opioid-naïve or taking an opioid equiva-
lent of less than 30 mg/d of oral morphine should start 
with the 5 μcg/h strength. The maximum dose is 20 
μcg/h since higher doses may lead to QTc prolongation. 
It is worn for 7 days and then changed and it should 
not be cut. It should be applied to hairless skin at one 
of the 8 possible sites: upper outer arm, upper back, 
upper chest or the side of the chest (on right and left 
sides of the body). After 7 days, a new transdermal sys-
tem should be applied to a new site thereby rotating 
sites. It is recommended to wait 21 days before re-using 
the same site. Heat from a heating pad or from a fever 
can increase absorption and serum concentration of the 
drug.

Kouya and colleagues (147) studied and compared 
the antinociceptive and anti-hyperalgesic effect of the 
partial opioid receptor agonist buprenorphine in nor-
mal and neuropathic rats (147). In normal rats, systemic 
buprenorphine produced dose-dependent antinocicep-
tion on the hot plate test. In rats with peripheral nerve 

or spinal cord injury, buprenorphine markedly alleviat-
ed NP-related behaviors, including mechanical and cold 
allodynia/hyperalgesia at doses comparable to that pro-
ducing antinociception. They suggested that buprenor-
phine may be a useful analgesic for treating NP (147).

It is possible that buprenorphine may show a dis-
tinct benefit in improving NP symptoms, which is con-
sidered a result of its specific pharmacological profile 
(148). The difference in analgesic responses between 
buprenorphine and other potent opioids may be due 
in part to different receptor G protein subtype interac-
tions, or to its actions as a NOP agent. 

Although anecdotal reports and published articles 
appear to support a role for buprenorphine in alleviat-
ing NP (148-153), there are no robust studies to show 
that it is a better analgesic for NP than other opioids/
OLAs.

Opioid-induced Block of Sodium Channels
One specific property of opioids which may con-

tribute to the reason why some opioids may be par-
ticularly well-suited to provide analgesia in various 
neuropathic pain states may be the ability of various 
opioids to inhibit voltage-gated sodium channels. It is 
becoming appreciated that various different mu-opioid 
receptor agonists may differ significantly in their abil-
ity/potency to inhibit voltage-gated sodium channels as 
well as the individual sodium channel type that they 
inhibit (Table 2).

Meperidine appears to be the best studied opioid 
with respect to blocking voltage-gated sodium chan-
nels and it has been shown to block skeletal muscle 
sodium channel Nav 14 in a state-dependent manner 
via the local anesthetic (LA)-binding site (154). Leffler 
has shown that buprenorphine may also act as a po-
tent local anesthetic and block voltage-gated sodium 
channels via the local anesthetic binding site (155). The 
potency of buprenorphine to block sodium channels is 
significantly higher than that of meperidine, lidocaine, 
or even bupivacaine when evaluated under identi-
cal experimental conditions (155-157). Buprenorphine 
blocked the generation of action potentials in isolated 
C-fibers with a higher potency and with slower onset 
and offset kinetics versus lidocaine (158). This is likely 
due in part to the high lipophilicity of buprenorphine 
(octanol: water partition coefficient roughly 2,000 ver-
sus about 200 for norbuprenorphine versus about 39 
for meperidine), since lipophilicity is a major factor for 
potency of local anesthetics acting on sodium channels 
(159). 
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Haeseler et al (160) found that sufentanil, fen-
tanyl, and tramadol (but not morphine) block neuronal 
Nav 1.2 in a state dependent manner. Morphine does 
appear to block neuronal excitability in an opioid-re-
ceptor independent manner (161,162); likely via tonic 
block of the tetrodotoxin (TTX) sensitive sodium chan-
nel Nav 1.7 (155).

Potential Future Opioids/OLAs that may be 
particularly effective for neuropathic PAIN

Amidino-TAPA is a tetrapeptide derivative of der-
morphin (163), showing extremely high affinity and 
relatively high selectivity to µ-opioid receptors (164). 
Unlike the many other mu-opioid receptor agonists the 
antiallodynic effects amidino-TAPA are not altered at 
all in the mouse model of nerve-injured neuropathy, 
perhaps in part because it may exhibit actions that may 
modulate dynorphin signaling in addition to its po-
tent effects as a mu-opioid receptor agonist (39). The 
endogenous mu-opioid peptide, endomorphin-2 also 
may show potent anti-allodynic effect against NP (165). 
Amidino-TAPA and endormorphin-2, may be opioids/
OALs that are also well-suited potential future agents 
to combat NP. 

RSA 504 and RSA 601 are novel bifunctional com-
pounds developed to target NP by simultaneously act-
ing as agonists at two distinct opioid receptors (mu and 
delta) and antagonizing cholecystokinin (CCK) recep-
tors in the CNS (166). RSA 504 and RSA 601 demon-
strate agonist activity in vitro and antihypersensitivity 
to mechanical and thermal stimuli in vivo using the spi-
nal nerve ligation model of NP. Intrathecal administra-
tion of RSA 504 and RSA 601 did not demonstrate anti-
nociceptive tolerance over 7 days of administration and 

did not display motor impairment or sedation using a 
rotarod (166). These compounds with G and μ opioid 
agonist activity and CCK antagonist activity within one 
molecule may offer a novel therapeutic approach with 
efficacy for NP while lacking the side effects typically 
caused by conventional opioid therapies (166).

CONCLUSION

The evaluation and treatment of neuropathic pain 
is extremely challenging and complex. However, it ap-
pears that for the foreseeable future it will remain an 
art, since every individual patient is different, individual 
opioid analgesic agents are different, opioid receptors 
and their splice variants are different (and may produce 
different effects), G-protein subtypes are different and 
neuropathic pain states are different. A greater appre-
ciation of these differences may help clinicians optimal-
ly manage disabling symptoms experienced by these 
patients “at the bedside.”
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