The Effects of Gabapentin on Acute Opioid Tolerance to Remifentanil Under Sevoflurane Anesthesia in Rats

Delia Aguado, DVM, † Mariana Abreu, DVM, † Javier Benito, DVM, † Javier García-Fernández, MD, PhD, § and Ignacio A. Gómez de Segura, DVM, PhD, DECLAM, DECVAA*

BACKGROUND: Tolerance to remifentanil during sevoflurane anesthesia may blunt the ability of this drug to reduce anesthetic requirements. Gabapentin has been shown to be effective in reducing postoperative narcotic usage, a reduction that may be associated with a reduction in opioid-induced tolerance and hyperalgesia. We sought to determine whether gabapentin might prevent the observed acute opioid tolerance (AOT) produced by remifentanil in sevoflurane minimum alveolar concentration (MAC).

METHODS: Wistar rats were anesthetized with sevoflurane and the effects of gabapentin alone on sevoflurane MAC were determined at doses of 150 and 300 mg·kg⁻¹. In a second experiment, gabapentin 300 mg·kg⁻¹ was administered before remifentanil (120 and 240 μg·kg⁻¹·h⁻¹). The MAC was determined before gabapentin administration and 3 more times at 1.5-hour intervals after drug administration to assess AOT. MAC was determined from intratracheal gas samples using a sidestream gas analyzer; tail clamping was used as a supramaximal stimulus. Statistical analysis was performed with the 1-way analysis of variance test.

RESULTS: Remifentanil reduced MAC (2.5% ± 0.2%) by 16% ± 5% and 36% ± 6% (120 and 240 μg·kg⁻¹·h⁻¹, respectively, P < 0.01) with a further reduction produced by coadministration with gabapentin 300 mg·kg⁻¹ to 39% ± 12% and 62% ± 14%, respectively (P < 0.01 versus remifentanil alone). Gabapentin given alone at 150 and 300 mg·kg⁻¹ reduced MAC by 26% (both doses, P < 0.01). AOT was observed with remifentanil and characterized by a lower degree of MAC reduction, approximately 1.5 hours later (P < 0.05). However, when remifentanil was administered with gabapentin, the AOT to remifentanil was not observed (P > 0.05).

CONCLUSIONS: Gabapentin reduced the sevoflurane MAC and enhanced the MAC reduction produced by remifentanil. This enhancement may limit AOT in rats. (Anesth Analg 2012;115:40–5)
IV) with a 12-hour light/12-hour dark cycle at a relative humidity of 40% to 70% and 20°C ± 2°C ambient temperature. Food (B&K Universal, Grimston, UK) and water were provided ad libitum. Animals were allowed to acclimatize for at least 1 week. All of the studies were performed during the morning (starting at 8:30 AM).

Rats were placed in an induction chamber into which 8% sevoflurane was directed in a continuous oxygen flow of 3 L · min⁻¹ (sevoflurane vaporizer, Sevorane, Dräger Vapor 2000; Dräger Medical, Lubeck, Germany). Endotracheal intubation was performed using a 14-gauge polyethylene catheter (Terumo Surflo IV Catheter; Terumo Europe NV, Leuven, Belgium) with the animal positioned in sternal recumbency. A flexible, blunt-tipped wire guide was inserted into the trachea with an otoscope and used to direct the endotracheal catheter. After the catheter was properly positioned, it was connected to a small T piece breathing system with minimum dead space. Fresh gas flow to the T piece was adjusted to 1 L · min⁻¹ of oxygen (100%), and the sevoflurane concentration was adjusted to 1.5× MAC (3.5%–4% vol). Rats were kept under spontaneous ventilation throughout the experiment. Gabapentin capsules were diluted in saline and administered per os (orally) by gavage using a polyvinyl chloride catheter (suction catheter 2.0 mm × length 270 mm; Vygon, Ecouen, France). Remifentanil was administered IV with an infusion pump (syringe pump, model Sep11S; Ascova SA, Warsaw, Poland) using a 22-gauge polyethylene catheter inserted in a tail vein.

Monitoring
Heart rate and arterial oxygen hemoglobin saturation (via pulse oximetry) as well as respiratory rate were recorded continuously (RGB; Medical Devices, Madrid, Spain). Rectal temperature was also monitored and maintained between 37.0°C and 38.5°C using a water-circulating warming blanket (Heat Therapy Pump, model Tp-220; Gaymar, Orchard Park, NY) and a heating light.

Determination of the MAC
Intratracheal gas sampling was used to measure the anesthetic gas concentration and to determine the MAC. A fine catheter with a 0.9-mm external diameter was inserted through the endotracheal catheter with the fine catheter tip located at the level of the carina, and gas samples were assayed using a sidestream infrared analyzer (Capnomac Orchard Park, NY) and a heating light.

A supramaximal noxious stimulus was applied with a long hemostat (8-in. Rochester Dean Hemostatic Forceps) clamped to the first ratchet lock on the tail for 60 seconds, or until positive response was observed, immediately before the gas sample was obtained from the trachea. The tail was always stimulated proximally to a previous test site when the previous response was negative, or it was stimulated more distally if the response was positive, starting 6 cm from the tail base. A positive response was considered to be a gross purposeful movement of the head, extremities, or body. A negative response was considered to be the lack of movement or grimacing, swallowing, chewing, or tail flicking. When a negative response was seen, the sevoflurane concentration was reduced in decrements of 0.2% vol until the negative response became positive. Similarly, when a positive response was seen, the sevoflurane concentration was increased by 0.2% vol until the positive response became negative. The MAC was considered to be the concentration midway between the highest concentration that permitted movement in response to the stimulus and the lowest concentration that prevented such movement. Determination of the MAC was performed in a laboratory 650 m above sea level, which decreases the barometric pressure and results in MAC values that are higher than those obtained at sea level. Therefore, MAC values were corrected to the barometric pressure at sea level using the following formula: MAC (%) at sea level barometric pressure (760 mm Hg) (altitude adjusted MAC) = measured MAC (%) × measured ambient barometric pressure (700 mm Hg in Madrid)/sea level barometric pressure (760 mm Hg).

Experimental Design and Drug Groups
The MAC was determined 4 times in each animal (MAC-1, MAC-2, MAC-3, and MAC-4) (Fig. 1). In the first experiment, 3 groups of animals (n = 6 per group) were anesthetized, instrumented, and administered gabapentin (150 and 300 mg · kg⁻¹ orally) or saline (1 mL, control group) just after induction. Periods of 30 minutes were allotted between MAC determinations, and periods of 40 to 60 minutes were usually necessary to determine the MAC value. Overall, each experiment lasted >6 hours.

In the second experiment, to evaluate the interaction of gabapentin with remifentanil during AOT, another 4 groups of animals (n = 6 per group) were administered both drugs. Gabapentin (300 mg · kg⁻¹) or saline was given orally combined with remifentanil (120 or 240 µg · kg⁻¹ · h⁻¹, low and high doses, respectively) administered IV without an initial loading dose using a constant rate of infusion into the tail. A baseline MAC was determined (MAC-1), and each animal acted as its own control. Gabapentin or saline was then administered, and the MAC was redetermined (MAC-2). Next, remifentanil (120 or 240 µg · kg⁻¹ · h⁻¹) was administered, and MAC was redetermined twice (MAC-3 and MAC-4). Animals were euthanized with an overdose of potassium chloride given IV while they were still deeply anesthetized.

Doses of drugs used in rats are frequently higher compared with humans and their extrapolation between species should be based on allometric escalation.13 Gabapentin doses were based on their ability to produce analgesia in rats14 and block AOT or hyperalgesia9,10,15; otherwise, remifentanil doses were those previously reported to achieve a significant MAC reduction.6

Statistical Analysis
Sample size calculations indicated that an n value of 6 was necessary to determine differences in MAC reduction produced by remifentanil and the remifentanil-induced AOT with a power of 80% and a P value of 0.05 to determine at least a 10% change in MAC.6 The mean and SD were obtained from a previous study,6 and the statistical package used was N Query Advisor (version 2.0; Statistical Solutions, Saugus, MA).
Results are presented as the mean ± SD. Rats in each experiment were randomly allocated using a random number generator (Excel 2007, Microsoft Office). The data were tested for normality with the Kolmogorov-Smirnov test. To assess the effects of remifentanil, gabapentin, and the combination of both drugs on the absolute and relative (percentage of variation) MAC values, the repeated-measures analysis of variance, with dose as the between-subjects factor, was used. To assess the appearance of AOT, a 1-way analysis of variance was used to compare MAC-3 and MAC-4. The Bonferroni post hoc test was used to compare groups. A *P* value of <0.05 was set to indicate statistical significance. All analyses were performed using the SPSS statistical package (version 19 for Windows, 2010; SPSS Inc., Chicago, IL).

RESULTS

Gabapentin Reduced the MAC

The MAC determined in the group administered saline alone (n = 6) was 2.3% ± 0.2% vol, with no difference over time (MAC-1 to -4; *P > 0.05*) (Fig. 2). Gabapentin reduced the MAC by 26% at MAC-3 (1.7% ± 0.3% vol and 1.7% ± 0.1% vol, with 150 and 300 mg · kg⁻¹ orally, respectively), and by 25% to 30% at MAC-4 (1.6% ± 0.2% vol and 1.7% ± 0.2% vol, with 150 and 300 mg · kg⁻¹ orally, respectively). There were no differences between the MAC values (MAC-1 to -4) at either gabapentin dose (150 or 300 mg · kg⁻¹ orally).

Gabapentin Enhanced the Remifentanil-Induced MAC Reduction

The baseline MAC (MAC-1) determined in all rats was 2.2% ± 0.3% vol (n = 24) and was similar between groups (*P > 0.05*) (Fig. 3, A and B). When administered alone, remifentanil dose-dependently reduced the MAC (MAC-3) by 16% ± 5% and 36% ± 6% when given at the low and high doses, respectively (*P < 0.01*). When gabapentin (300 mg · kg⁻¹) was administered before the remifentanil infusion, the MAC reduction was enhanced to 39% ± 12% and 62% ± 14% when remifentanil was given at the low and high doses, respectively (*P < 0.01* versus remifentanil group).

Gabapentin Blunted the Remifentanil-Induced AOT in the MAC

A remifentanil-induced AOT was observed approximately 1.5 hours later with a lower MAC reduction (MAC-3 versus MAC-4; *P = 0.03, P < 0.01*) when remifentanil was administered alone at either dose (Fig. 3, A and B). When gabapentin was administered before the remifentanil infusion was started (immediately after MAC-1 determination), the MAC reduction was not different (MAC-4 versus MAC-3; *P = 0.51, P = 0.05* at the low and high remifentanil dose, respectively), suggesting a lack of remifentanil-induced AOT.

Figure 1. Experimental design. PO = per os; MAC = minimum alveolar concentration; CRI = constant rate infusion.

Figure 2. Reduction of the minimum alveolar concentration (MAC) of sevoflurane (% vol) produced by gabapentin (150 and 300 mg · kg⁻¹ orally) or saline. Data are expressed as the mean ± SD. The n value is always 6 animals per group. *Significantly different from control group (saline instead of gabapentin); P < 0.01.*
Gabapentin reduces the MAC in rats (25%–30%) to a clinically significant extent with a delayed onset and without differences between the 2 doses assessed. However, gabapentin similarly decreased the MAC in an additive manner when it was combined with remifentanil at either dose studied. Furthermore, preemptive gabapentin administration prevented or blunted remifentanil-induced AOT, although an additive effect of both drugs on the MAC cannot be excluded. The combined effects of gabapentin and remifentanil in the intraoperative period have not been determined previously nor has the potential preventive or therapeutic effect of gabapentin in hyperalgesia or remifentanil-induced opioid tolerance.

An analgesic effect of gabapentin has been described in rodents and humans, although there are also reports in which no analgesic effect could be established. Preemptive gabapentin administration has been reported to reduce postoperative pain and analgesic consumption. No previous studies have demonstrated a potential anesthetic-sparing effect of gabapentin on the MAC in humans, but it has been recently determined in rats. In fact, the MAC reduction determined in this study was lower and may reflect differences in the timing of drug administration because gabapentin was given only 15 minutes before MAC determination, probably before maximum blood levels and the effect on MAC were achieved. A previous work in cats failed to demonstrate this sparing effect, unlike the results in rats in the present study. The lack of effect could have been due to several reasons, such as an insufficient plasma concentration of gabapentin or delayed onset of the effect on the MAC, although steady-state plasma concentrations in past studies were maintained similar to studies performed in humans for up to 2.5 hours. Nevertheless, in our study in rats, 2 doses of gabapentin were used and produced a similar effect on the MAC, suggesting that no further reduction in the MAC would be expected by increasing the dose. It is likely that the saturable absorption of gabapentin may account for this finding.

The MAC reduction produced by gabapentin gradually increased over the course of the experiment. Gabapentin was given orally 40 minutes before starting the MAC determination, and the last MAC determination was measured approximately 4 hours later. Therefore, this drug should be given well in advance of anesthetic induction to ensure maximum plasma levels and effects on the MAC. In fact, most clinical studies have reported that gabapentin was administered 1 to 2 hours before the induction of anesthesia.

Gabapentin administration has been reported for perioperative pain management in a multimodal analgesic approach. The drug may enhance the analgesic effect of morphine, decreasing its consumption during the postoperative period. However, there are also studies in which gabapentin failed to produce these effects on postoperative pain. In animal models, the combination of gabapentin and opioids also produced contradictory results. An enhancement of the analgesic action has been determined with tramadol and morphine using the tail-flick test, but not with fentanyl using the paw pressure test. The additive action of gabapentin and remifentanil in the MAC in this study may also suggest an enhancement of the analgesic effect.

A preventive effect of gabapentin in the development of opioid-induced hyperalgesia and delayed opioid tolerance has been assessed in animals, but only a few studies have assessed a similar action in humans, and the results are controversial.

Remifentanil administered alone dose-dependently reduces the MAC in rats, although an AOT rapidly develops, characterized by a smaller MAC reduction approximately 1.5 hours later. This lower efficacy of remifentanil for reducing the MAC of sevoflurane in the short term was determined in this study, but the administration of gabapentin prevented the phenomenon. Nevertheless, it could not be determined whether this lack of tolerance to remifentanil was attributable to an additive effect between the 2 drugs or by some impairment in the development of
Gabapentin and Remifentanil Interactions on MAC

tolerance. However, a gradual increase in the MAC values despite the maintenance of the remifentanil infusion (MAC-3 versus MAC-4, \(P = 0.051 \) with the high dose of gabapentin and remifentanil) suggests that a tolerance effect may be still present.

The possibility of interference of gabapentin in the development of tolerance could not be excluded. Gabapentin has been shown to interact with receptors directly involved in the development of hyperalgesia and AOT by interacting with a subunit of voltage-gated calcium channels, \(^{34} \) involved in pain transmitters into the spinal cord, \(^{35} \) or with glutamate receptors, \(^{36} \) such as N-methyl-D-aspartate receptors, \(^{37} \) involved in opioid-tolerance and hyperalgesia mechanisms. \(^{38} \)

Extrapolation of the results of the present study to the clinical setting has limitations. The effects of gabapentin and remifentanil on the MAC were assessed in rats, and potential differences may account for the efficacy of this drug when combined with opioids in reducing the MAC and blunting AOT in humans. Nevertheless, there are certain similarities between rats and humans; the pharmacokinetics of gabapentin are similar in both rats and humans, achieving a maximum concentration in the blood within 2 to 3 hours, \(^{39} \) suggesting that it should be administered in advance for optimal results, i.e., before remifentanil induces AOT \(^{44} \) at approximately 1.5 hours. Unfortunately, the plasma levels of the drugs used in this study were not determined. Therefore, further studies should be conducted to determine whether the interaction observed in the rat is of clinical relevance.

Another limitation of the study is the method used to determine the interaction of gabapentin and remifentanil (MAC reduction). \(^{40} \) A direct link between analgesic potency and MAC reduction cannot be established intraoperatively during inhaled anesthesia. Potent analgesic drugs, such as opioids, \(^{41} \) and sedatives, \(^{42,43} \) decrease the MAC to a clinically relevant extent. Therefore, anesthetic immobility and analgesia are not necessarily linked, \(^{44} \) and a variable effect on the MAC has been determined when different types of analgesic drugs are considered. Nevertheless, the MAC method mimics the intraoperative period and is of clinical relevance.

In conclusion, gabapentin enhanced the effect of remifentanil, preventing AOT in the rat. Further studies are needed to determine the clinical relevance of these findings.

REFERENCES

2. Angst MS, Clark JD. Opioid-induced hyperalgesia: a qualitative systematic review. Anesthesiology 2006;104:570–87
30. Zhao M, Joo DT. Enhancement of spinal N-methyl-D-aspartate receptor function by remifentanil action at delta-opioid receptors as a mechanism for acute opioid-induced hyperalgesia or tolerance. Anesthesiology 2008;109:308–17