Gabapentin reverses microglial activation in the spinal cord of streptozocin-induced diabetic rats

Article in *European journal of pain (London, England)* · November 2008

<table>
<thead>
<tr>
<th>CITATIONS</th>
<th>READS</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>100</td>
</tr>
</tbody>
</table>

5 authors, including:

- **Rachel Wodarski**
 Imperial College London
 10 publications 308 citations
 [SEE PROFILE]

- **Anna K Clark**
 King's College London
 34 publications 1,864 citations
 [SEE PROFILE]

- **John Grist**
 King's College London
 51 publications 2,153 citations
 [SEE PROFILE]

- **Fabien Marchand**
 French Institute of Health and Medical Research (INSERM)
 42 publications 2,721 citations
 [SEE PROFILE]
Gabapentin reverses microglial activation in the spinal cord of streptozotocin-induced diabetic rats

Rachel Wodarski, Anna K Clark, John Grist, Fabien Marchand, Marzia Malcangio*

Neurorestoration Group, Wolfson Centre for Age Related Diseases, King's College London, Hodgkin Building, London SE1 1UL, UK

A R T I C L E I N F O

Article history:
Received 24 June 2008
Received in revised form 11 August 2008
Accepted 18 September 2008
Available online 31 October 2008

Keywords:
Allodynia
Neuropathic pain
Microglia
Astrocytes

A B S T R A C T

Diabetes mellitus is the leading cause of peripheral neuropathy worldwide. Despite this high level of incidence, underlying mechanisms of the development and maintenance of neuropathic pain are still poorly understood. Evidence supports a prominent role of glial cells in neuropathic pain states. Gabapentin is used clinically and shows some efficacy in the treatment of neuropathic pain. Here we investigate the distribution and activation of spinal microglia and astrocytes in streptozotocin (STZ)-diabetic rats and the effect of the gold standard analgesic, Gabapentin, on these cells. Mechanical allodynia was observed in four-week-diabetic rats. Oral administration of Gabapentin significantly attenuated mechanical allodynia. Quantification of cell markers Iba-1 for microglia and GFAP for astrocytes revealed extensive activation of microglia in the dorsal horn of diabetic rats, whereas a reduction in the number of astrocytes could be observed. In addition, an attenuation of microglial activation correlated with reduced allodynia following Gabapentin treatment, while Gabapentin had no effect on the number of astrocytes. Here we show a role of microglia in STZ-induced mechanical allodynia and furthermore, that the anti-allodynic effect of Gabapentin may be linked to a reduction of spinal microglial activation. Astrocytic activation in this model appears to be limited and is unaffected by Gabapentin treatment. Consequently, spinal microglial activation is a key mechanism underlying diabetic neuropathy. Furthermore, we suggest that Gabapentin may exert its anti-allodynic actions partially through alterations of microglial cell function.

© 2008 European Federation of Chapters of the International Association for the Study of Pain. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Diabetes mellitus is the most common cause of peripheral neuropathy worldwide, with many patients experiencing chronic pain. The mechanisms that underlie the development and/or maintenance of diabetic neuropathy are not well understood and consequently the treatment of associated pain is inadequate. However, the antiepileptic drug Gabapentin has shown some efficacy in the treatment of diabetic neuropathy in multiple clinical trials (Vinik, 2005). In pre-clinical studies, the streptozotocin (STZ) model of diabetes in rats has been shown to be associated with sensory changes including allodynia and hyperalgesia which develop two weeks following STZ administration and continue over at least six weeks (Malcangio and Tomlinson, 1998; Calcutt and Chaplan, 1997). Similarly to the clinical scenario, Gabapentin is able to attenuate pain behaviours in STZ-induced diabetic neuropathy suggesting a good predictability of the animal model for the human disease (Luo et al., 2002).

Although the mechanisms of action of Gabapentin have yet to be ascertained, evidence implies that Gabapentin may act at the \(\alpha_{2,3} \) subunit of voltage-gated calcium channels, which is up-regulated in dorsal root ganglia and spinal cord in STZ-induced diabetic neuropathy (Luo et al., 2002; Yusaf et al., 2001). Gabapentin is thought to decrease neuronal activity through binding to \(\alpha_{2,3} \) and inhibition of calcium currents thereby preventing extracellular calcium entry essential for subsequent vesicular exocytosis (Stefani et al., 1998). However, recent evidence show that Gabapentin is an inhibitor of voltage-dependent calcium channels (VDCCs) trafficking via the inhibition of intracellular \(\alpha_{2,3} \) subunits (Hendrich et al., 2008). Central sensitization is thought to involve excessive calcium influx through VDCCs, resulting in elevated intracellular Ca\(^{2+} \) levels (Coderre et al., 1993), and consequently increases in neurotransmitter release. This is consistent with the efficacy of many specific VDCC blockers in neuropathic animals (Calcutt and Chaplan, 1997; Chaplan et al., 1994).

During the last decade growing evidence supports the prominent role of glial cells in the development and maintenance of neuropathic pain. Microglia and astrocyte activation in the spinal cord is observed following PNS or CNS injury (Scholz and Woolf, 2007; Watkins and Maier, 2003). Glial activation is also shown in inflammatory models (Qin et al., 2006; Raghavendra et al., 2004; Sweitzer et al., 1999) as well as in demyelinating disorders such as experimental autoimmune neuritis (EAN) (Beiter et al., 2005; Luongo et al., 2008).
2. Materials and methods

2.1. Animals

All experiments were carried out using male Wistar rats (Harlan, Bicester, Oxon, UK), weighing 200–250 g, in accordance with United Kingdom Home Office regulations. Experimental study groups were randomised and behavioural studies were performed by an experimenter who was unaware of treatment groups.

2.2. Induction of diabetes

Diabetes was induced with an intraperitoneal (i.p.) injection of 55 mg/kg STZ (Sigma, UK) as described previously (Malcangio and Tomlinson, 1998). The tail vein blood glucose levels were measured one week after STZ injection to confirm diabetes. Animals with less than 14 mM blood glucose were excluded from the study.

2.3. Behavioural testing

2.3.1. Mechanical sensitivity

Mechanical withdrawal thresholds were tested using a Dynamic Plantar Aesthesiometer (Ugo-Basile, Milan). In brief, animals were placed in clear acrylic boxes (22 × 16.5 × 14 cm) with a metal grid floor in a temperature controlled room (±22 °C) and acclimatised for 15 min before testing. The stimulus was applied via a motorised plantar stimulator (546, Molecular Probes, Oregon, USA), set to the lateral, central and medial dorsal horn (laminae 1–3). These measurement protocols were carried out on three L5 spinal sections from each animal. Furthermore, microglia activation was assessed using a previously described qualitative scale: + baseline staining, + mild response, ++ moderate response, +++ severe response. For this, two sections per animal were examined. Two-way repeated measurement ANOVA followed by Tukey’s test was used for behaviour analysis. One-way ANOVA followed by Tukey’s test was used for immunohistochemistry.

3. Results

STZ-induced allodynia can be reversed by the gold standard analgesic Gabapentin (Luo et al., 2002). Accordingly, in this study we first show that in four week diabetic rats the hind paw thresholds to mechanical stimulation were significantly reduced as compared to thresholds measured before the injection of STZ (from 37.5 ± 1.9 to 23.8 ± 1.2 g) (allodynia) (Fig. 1). Then we confirm that single oral administration of Gabapentin significantly reversed diabetic-induced allodynia as compared to saline administration (33.5 ± 2.5 and 24.8 ± 2.2 g, respectively) (Fig. 1). The anti-allodynic effect of Gabapentin remained significant for up to five days of daily treatment (Fig. 1).

In order to evaluate whether diabetes-induced allodynia and Gabapentin anti-allodynic effect altered the state of glial cell activation in the spinal cord, we performed immunohistochemical studies. Microglial cells were identified by immunoreactivity for Iba-1 and quantified throughout the lumbar spinal cord of naïve rats (Fig. 2A, D). In diabetic rats the number of microglial cells significantly increased in the dorsal horns (from 3.1 ± 0.5 to 5.4 ± 0.6 cells per 10² μm²) (Fig. 2B, D). Furthermore, a change in morphology, as described in other studies (Tsuda et al., 2005, 2008), from “quiescent” to “activated” was observed. Microglial cells in naive spinal cords showed a small soma with very thin and long processes whereas in diabetic spinal cords treated with Gabapentin/saline the size of the soma is increased and processes are thick and short. Importantly, in Gabapentin-treated diabetic rats the number of microglial cells in the dorsal horn returned to control values (3.2 ± 0.5 cells per 10² μm²) (Fig. 2C, D). In addition, a
Gabapentin treatment had no effect on p38 phosphorylation (5.4 ± 1.4) (Fig. 2D).

In contrast, a decrease in GFAP positive astrocyte cell numbers was observed in diabetic animals compared to naïve animals (from 11 ± 0.8 to 6 ± 0.4 cell per 10⁴ μm²) (Fig. 3A, B, D). Furthermore, Gabapentin did not affect the number of astrocytes in diabetic animals (6 ± 0.4 cells per 10⁴ μm²) compared to saline treatment (6.7 ± 0.7 cells per 10⁴ μm²) (Fig. 3B–D).

4. Discussion

The present study demonstrates that in STZ-induced diabetic neuropathy mechanical allodynia was associated with increased spinal microglial activation. Gabapentin treatment attenuated established mechanical allodynia and this reversal of mechanical hypersensitivity was associated with reduced spinal microglial cell numbers in the dorsal horn of the spinal cord of diabetic rats.

Firstly, we observed that STZ-induced mechanical allodynia was effectively reversed following treatment with Gabapentin. These data support previous work demonstrating that following Gabapentin treatment, established mechanical allodynia in diabetic animals was reversed, and suggest that the STZ model offers good predictability for the disease in humans (Luo et al., 2002).

Activation of spinal microglia has been observed in a number of neuropathic pain models following peripheral nerve injury (Scholz and Woolf, 2007; Watkins and Maier, 2003). Here we show that diabetic rats exhibit enhanced microglial cell numbers in the dorsal horn of the spinal cord. We also observed morphological changes of Iba-1 positive microglia, suggesting a more active cell phenotype. Indeed, our results support recent work demonstrating spinal microglial activation, as observed by upregulation of Iba-1 and OX42, as well as morphological changes, in four week STZ-induced diabetic rats (Tsuda et al., 2008). In addition, increased phosphorylation of the MAPKs ERK and c-Jun N-terminal kinase (JNK) is observed in spinal microglia following induction of diabetes (Daulhac et al., 2006). However, the role of p38 MAPK in diabetic neuropathy remains unclear. In this study we observed no change in the levels of p38 MAPK phosphorylation in the spinal cords of diabetic animals compared to naïve animals. These data are supported
by Tsuda and colleagues, who recently reported increases in ERK phosphorylation four weeks following STZ administration, but no change in the level of p38 MAPK phosphorylation (Tsuda et al., 2008). In contrast, a second study reported enhanced levels of p38 phosphorylation three weeks following STZ administration (Daulhac et al., 2006). This discrepancy may be explained by the early time point (three weeks) at which Daulhac et al. conducted their investigations. P38 phosphorylation is a rapid marker of microglial activation which declines over time, and consequently at three weeks following STZ, in the relatively early stages of the model significant p38 phosphorylation is present (Daulhac et al., 2006). However, with progression of the disease enhanced p38 phosphorylation may be lost and therefore be absent by 4–5 weeks post-STZ as observed here as well as by others (Tsuda et al., 2008).

Daulhac et al. also observed anti-hyperalgesic effects following p38 inhibition in the STZ model of diabetes (Daulhac et al., 2006), however treatment was administered beginning on day 14 following STZ during the very early stages of the disease. A second study utilised a selective inhibitor of the p38α isoform. In four week diabetic rats systemic administration of a p38α inhibitor attenuated mechanical and thermal pain behaviours (Sweitzer et al., 2004), however this treatment also significantly reduced blood glucose levels in diabetic animals suggesting that the analgesic effects of inhibition of p38α may be partially due to modification of the disease. In the spinal cord p38α is expressed by neurons, whereas the microglial expression is exclusively of the p38β isoform (Svensson et al., 2005), such that p38α inhibition alone will likely be ineffective against any enhanced phosphorylation of microglial p38β.

Interestingly, we observed a decrease in the numbers of GFAP-positive astrocytes in diabetic animals compared to naïve controls. The extent of this decrease was similar in both Gabapentin and saline treated groups, suggesting that Gabapentin treatment has little effect, if any, on spinal astrocytes. Similarly, a decrease in GFAP staining has been previously reported in the hypothalamus of rats four and eight weeks after STZ-injection (Lechuga-Sancho et al., 2006; Coleman et al., 2004). Coleman et al. suggest that this may be due to a direct effect of insulin on the morphology of astrocytes, as has been observed in vitro (Aizenman and de, 1987). However, a recent study has shown no difference in the cell number of GFAP-positive cells in the lumbar dorsal horn of the spinal cord between STZ-diabetic and control rats four weeks after STZ-injection (Tsuda et al., 2008).

Astrocytes have been shown to become activated after microglia following peripheral nerve injury and are thought to contribute to the maintenance of chronic pain (Scholz and Woolf, 2007; Watkins and Maier, 2003; Kawasaki et al., 2008). It may be that astrocyte activation can be observed in STZ rat spinal cord at a different time interval than the one we have examined.

Interestingly, we have observed a reduction in the numbers of Iba-1 positive microglia in the dorsal horn of diabetic rats treated with Gabapentin, compared to saline. The reduction of spinal microglia cell marker by Gabapentin may be due to a direct action on microglia, or an indirect effect following neuronal inhibition. Recent evidence indicates that Gabapentin might act on the α2δ1 calcium channel subunit expressed by neurons (Maneuf et al., 2006). Importantly, expression of α2δ1 by microglial cells has yet to be demonstrated. Up-regulation of α2δ1 in DRGs and/or spinal cord has been reported in traumatic models of neuropathic pain (spinal nerve ligation, spinal nerve transection and chronic constriction injury) as well as in diabetes (Luo et al., 2002). This up-regulation correlates with both the development...
and maintenance of mechanical allodynia. In addition, the behavioural hypersensitivity that occurs in all of these models is sensitive to Gabapentin with a clear reduction of allodynia following treatment (Luo et al., 2002). However, in another clinically relevant model of neuropathy, resulting from administration of the chemotherapeutic agent vincristine, no up-regulation of the α2δ1 subunit in DRGs and spinal cord dorsal horns could be observed and Gabapentin attenuated pain behaviour only after repeated treatment (Xiao et al., 2007). It has been suggested that the anti-allodynic effect of Gabapentin in models displaying variations in α2δ1 regulation may be due to additional mechanism(s) of action. It is possible that a combination of factors, both dependent and independent of α2δ1, may result in reduced microglial activation following Gabapentin.

In summary, these data show microglial activation in the dorsal horn of the spinal cord following STZ-induced diabetic neuropathy. A role for microglia in STZ-induced mechanical allodynia is suggested by the novel observation that the anti-allodynic effect of Gabapentin is associated with a reduction of spinal microglial activation. In contrast, the importance of astrocyte activation in this model appears to be limited. Consequently, microglia are an important player in spinal neuropathic pain mechanisms during diabetic neuropathy.

Acknowledgements

This work is funded by a King's College London studentship (RW), the Wellcome Trust (AKC) and ISRT (FM).

References

Raghavendra V, Tanga FY, DeLeo JA. Complete Freund’s adjuvant-induced peripheral inflammation evokes glial activation and prion immunoreactive cytoxin expression in the CNS. Eur J Neurosci 2004;20:467–73.