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Cytidine-50-diphosphate choline (CDP-choline), as an important intermediate for major membrane phospholipids, may exert

neuroprotective effects in various neurodegenerative disorders. This longitudinal proton magnetic resonance spectroscopy (1H-MRS)

study aimed to examine whether a 4-week CDP-choline treatment could alter neurometabolite levels in patients with

methamphetamine (MA) dependence and to investigate whether changes in neurometabolite levels would be associated with MA

use. We hypothesized that the prefrontal levels of N-acetyl-aspartate (NAA), a neuronal marker, and choline-containing compound

(Cho), which are related to membrane turnover, would increase with CDP-choline treatment in MA-dependent patients. We further

hypothesized that this increase would correlate with the total number of negative urine results. Thirty-one treatment seekers with MA

dependence were randomly assigned to receive CDP-choline (n¼ 16) or placebo (n¼ 15) for 4 weeks. Prefrontal NAA and Cho levels

were examined using 1H-MRS before medication, and at 2 and 4 weeks after treatment. Generalized estimating equation regression

analyses showed that the rate of change in prefrontal NAA (p¼ 0.005) and Cho (p¼ 0.03) levels were greater with CDP-choline

treatment than with placebo. In the CDP-choline-treated patients, changes in prefrontal NAA levels were positively associated with the

total number of negative urine results (p¼ 0.03). Changes in the prefrontal Cho levels, however, were not associated with the total

number of negative urine results. These preliminary findings suggest that CDP-choline treatment may exert potential neuroprotective

effects directly or indirectly because of reductions in drug use by the MA-dependent patients. Further studies with a larger sample size of

MA-dependent patients are warranted to confirm a long-term efficacy of CDP-choline in neuroprotection and abstinence.
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INTRODUCTION

Methamphetamine (MA) is a highly addictive drug and its
dependence has become a critical public health problem
(Meredith et al, 2005). Although its usage is not as prevalent
as that of cocaine, MA is the fastest growing street drug in
the United States (Drug Enforcement Administration, 2008).
It has been estimated that 10.4 million or 4.3% of the US
population have used MA at some time in their lives
(National Survey on Drug Use and Health, 2005).

Psychosocial and behavioral approaches have been shown
to provide therapeutic and beneficial effects and are
currently considered as primary treatment modalities in
patients with MA dependence (Lee and Rawson, 2008;
Meredith et al, 2005; Shearer, 2007). Despite efforts to
develop or discover medications for psychostimulant
dependence, there have not been any Food and Drug
Administration-approved pharmacotherapies (Meredith
et al, 2005; Rawson et al, 2000; Vocci and Appel, 2007).
MA has neurotoxic effects and can cause cognitive
impairment (Davidson et al, 2001; Scott et al, 2007). This,
in turn, may act as a potential barrier for MA-dependent
subjects receiving the benefits from cognitive behavioral
therapy (CBT) (Grohman et al, 2006; Meredith et al, 2005).
Development of an effective pharmacotherapy that de-
creases MA use and potentially improves cognitive function
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would, therefore, be an important strategy in treating MA
dependence (Meredith et al, 2005; Vocci and Appel, 2007).

Cytidine-50-diphosphate choline (CDP-choline) is an
essential intermediate in the biosynthesis pathway of
structural phospholipids of cell membranes (Kennedy and
Weiss, 1956; Secades and Lorenzo, 2006). The formation of
CDP-choline from phosphocholine (PC) has been consid-
ered to regulate, as a rate-limiting step, the synthesis of
phosphatidylcholine, a major constituent of cell membranes
(Araki and Wurtman, 1998; Clement and Kent, 1999). When
CDP-choline is administered orally or intravenously, it
activates the biosynthesis of structural phospholipids in
neuronal membranes (Adibhatla and Hatcher, 2005; Secades
and Lorenzo, 2006). CDP-choline has been shown to
increase cerebral energy metabolism by restoring the
activity of mitochondrial ATPase and membrane NA + /K +
ATPase (Secades and Lorenzo, 2006).

Psychostimulant abuse, including cocaine and MA, causes
acute and chronic complications related to cerebrovascular
spasm or ischemic brain damage (Wang et al, 1990). There
has been a substantial amount of in vitro evidence that
CDP-choline has neuroprotective effects against hypoxic or
ischemic brain damage by restoring neuronal activity and
re-stabilizing dopamine and norepinephrine levels (re-
viewed in Secades and Lorenzo, 2006). In addition, it has
been suggested that the neuroprotective effects of CDP-
choline may be related to a direct anti-apoptotic mechanism
(Barrachina et al, 2002).

In addition to the actions of psychostimulants on
mesolimbic and mesocortical dopamine circuitry (Berman
et al, 2008), recent preclinical and clinical studies suggest
that these drugs may cause alterations in phospholipid
metabolism (Reid et al, 1996; Ross et al, 1996, 2002; Ross
and Turenne, 2002). Dopaminergic receptor-mediated
phospholipase A2 activation and increased phospholipid
hydrolysis has also been suggested by in vitro studies
(Hussain and Lokhandwala, 1997; McAllister et al, 1993;
Vial and Piomelli, 1995). Phosphorous magnetic resonance
spectroscopy (MRS) studies have reported that cocaine-
dependent polysubstance abusers have lower cerebral levels
of phosphomonoester and phosphodiester. This is likely to
reflect altered membrane phospholipid turnover (Christen-
sen et al, 1996; MacKay et al, 1993).

Proton MRS studies have consistently reported lower
cerebral N-acetyl-aspartate (NAA) levels, a marker of
neuronal integrity and density, in MA-dependent subjects
(Chang et al, 2005; Ernst et al, 2000; Nordahl et al, 2002,
2005; Salo et al, 2007; Smith et al, 2001; Sung et al, 2007).
Altered cerebral levels of a choline-containing compound
(Cho), consisting of PC and glycerophosphocholine (GPC)
(Bluml et al, 1999), have also been observed in most MA-
dependent patients (Chang et al, 2005; Ernst et al, 2000;
Nordahl et al, 2002, 2005; Salo et al, 2007). Considering that
PC and GPC are products of synthesis and breakdown,
respectively, of cerebral membranes (Babb et al, 2002;
Silveri et al, 2008), lower NAA levels along with altered Cho
signals in MA-dependent patients suggest that chronic MA
exposure causes neuronal loss with accelerated membrane
turnover (Deicken et al, 1998; Winsberg et al, 2000).

Oral CDP-choline administration has the ability to
increase the membrane production of neurons and has
been proposed as a potential treatment option for

psychostimulant dependence (Brown et al, 2007; Lukas
et al, 2001; Renshaw et al, 1999). CDP-choline has been
shown to be effective in attenuating craving and improving
cognitive function in cocaine-dependent patients (Brown
et al, 2007; Lukas et al, 2001; Renshaw et al, 1999). To the
best of our knowledge, there has not been any study
examining the neurochemical and clinical effects of CDP-
choline in treating MA-dependent patients.

This longitudinal proton MRS (1H-MRS) study aimed to
assess whether oral CDP-choline administration is asso-
ciated with changes in prefrontal NAA and Cho levels and
whether these changes are related to clinical improvement.

MATERIALS AND METHODS

Subjects

All study participants, aged 20–59 years, met the DSM-IV
criteria for MA dependence and were seeking treatment for
their MA dependence. All subjects were native Koreans.
They reported that they had been using MA for at least 1
month before enrollment. Mean durations of illness of all
subjects were 13.8 years. MA may be taken orally,
intranasally, by smoking or intravenous (IV) injection. In
South Korea, most MA abusers prefer IV injections. All
participants in the study reported that IV injection was the
primary route of administration. The comorbid substance
dependence or abuse histories of participants are presented
in Table 1.

We excluded individuals with DSM-IV diagnosed abuse
or dependence on any psychoactive substances other than
MA, nicotine, alcohol, or marijuana. Those with current
major medical disorders, neurological disorders, or comor-
bid Axis I or II psychiatric disorders were also excluded.
Having a past or current history of taking concomitant
psychoactive medication was another exclusion criteria.
Pregnant women were excluded and women with child
bearing potential were required to use effective contra-
ception methods. Contraindications to magnetic resonance
imaging (MRI) and a history of seropositive testing for
human immunodeficiency virus were also the exclusion
criteria.

Before participating in the study, and after being
thoroughly instructed of its description, each subject
submitted a written informed consent. Both the study
protocol and consent form received ethics approval from
the Institutional Review Board at St Paul’s Hospital,
Catholic University of Korea School of Medicine.

Study Design and Treatment Schedule

This study was a 4-week, double-blind, placebo-controlled
study examining the neurochemical effects and the efficacy
of CDP-choline in MA-dependent subjects. Each partici-
pant’s drug-use history was obtained at a screening period
using the semi-structured interview. This format has been
used in our prior imaging studies on MA dependence (Bae
et al, 2006; Chung et al, 2007; Hwang et al, 2006; Kim et al,
2005, 2006; Sung et al, 2007). Psychiatric diagnosis was
determined using the Structured Clinical Interview for
DSM-IV (First et al, 2002). Physical health was assessed by
way of a physical examination and laboratory studies.
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Among the initially enrolled 32 treatment-seeking sub-
jects with MA dependence, one male patient retracted his
consent before randomization. A total of 31 patients with
MA dependence were randomly assigned to receive 2 g/day
of CDP-choline (n¼ 16) or placebo (n¼ 15), respectively
(see Table 1).

All randomized subjects provided three urine samples
during a 1-week baseline period. The 17-item Hamilton
Depression Rating Scale (HDRS, Hamilton, 1960) was
also used to assess the current depressive symptoms at
baseline.

After a 1-week baseline period, patients received a 4-week
double-blind treatment of either CDP-choline or placebo.
CDP-choline and identical placebo capsules were manufac-
tured and provided by the Grupo-Ferre. (Barcelona, Spain).
Each capsule contained 500 mg of CDP-choline. Patients
took two capsules twice daily (total 2 g/day). This particular
dose has been used safely in treating other neurological
disorders (Clark et al, 2001; Secades and Lorenzo, 2006).
The regimen for the first week was 500 mg CDP-choline
twice daily followed by 1 g CDP-choline twice daily for the
remaining treatment period. The placebo was formulated as
an inert fructose pill.

All participants attended the outpatient clinic thrice
weekly. On each visit during the 4-week treatment period,
the subjects participated in a supervised urine sample
process. The urine samples were screened for MA and its

metabolites on each of these occasions. Missing samples
were considered as positive results. The negative results
were counted to examine their relationship with prefrontal
neurometabolite level changes. HDRS scores and side effects
were assessed weekly.

Usual outpatient-based supportive care, including indi-
vidual and family counseling, was given to all participants
on a weekly basis. The counseling was not specific for drug
dependence.

Measurements of neurometabolites using 1H-MRS were
conducted at baseline and 2 and 4 weeks after treatment.

MRI/MRS Acquisition and Processing

MRI was performed using a 3.0 Tesla General Electric whole
body imaging system (GE VH/i). Sagittal T-1-weighted
images (echo time (TE)¼ 14 ms, repetition time
(TR)¼ 5.7 ms, 256� 256 matrix, field of view
(FOV)¼ 22 cm, flip angle¼ 201, number of excitation
(NEX)¼ 1, and slice thickness/skip¼ 0.7/0 mm) were ob-
tained using a three-dimensional spoiled gradient echo
pulse sequence. Axial T-2-weighted images (TE¼ 118 ms,
TR¼ 3500 ms, 256� 192 matrix, FOV¼ 22 cm, flip an-
gle¼ 901, NEX¼ 3, and slice thickness/skip¼ 5/1.5 mm)
and fluid attenuated inversion recovery axial images
(TE¼ 145 ms, TR¼ 9900 ms, 256� 192 matrix, FOV¼
22 cm, flip angle¼ 901, NEX¼ 1, and slice thickness/
skip¼ 5/1.5 mm) were obtained to screen for brain struc-
tural abnormalities.

Spectral data were obtained by using a water-suppressed,
localized point resolved spectroscopy (PRESS) pulse se-
quence with a quadrature head coil. The parameters were as
follows: TR/TE¼ 2000/35 ms, phase cycling¼ 8, voxel of
interest (VOI)¼ 15� 15� 15 mm3, acquisition time-
128� 2 s, and bandwidth¼ 2500 Hz.

The midfrontal VOI was positioned by using a priori
rules, as in earlier publications (Ham et al, 2007; Sung et al,
2007; Yoon et al, 2009) (Figure 1). Throughout the entire
study period, the same examiner positioned study subjects
in the basis set and reported as mmol/l (Provencher, 2001;
Barker et al, 1993). An unsuppressed water signal was used
as an internal concentration reference. The macromolecule
and lipid basis spectra were also included in the LCModel
fitting (Provencher, 2008).

Signal-to-noise ratio (SNR) and a full width at half
maximum (FWHM) of each spectra were checked for
quality control. Spectra quality was adequate for reliable
peak fitting for metabolites, with mean SNR (SD) of 7.09
(1.25) and mean FWHM of 0.065 (0.013) ppm across every
time point. We also considered metabolite concentrations
from spectra with a Cramer-Rao Lower Bound value 420%
as unreliable (Provencher, 2001) and excluded them from
the final analyses. Estimates of the variances associated with
the metabolites were all in the acceptable range (within
20%), except for myo-inositol resonances from one ‘2-week’
follow-up scan (26%) and one ‘4-week’ follow-up scan
(29%). These myo-inositol estimations were excluded
because of their poor reliability of determination.

Cerebrospinal fluid (CSF)-corrected metabolite concen-
trations were used in the analyses based on the assumption
of metabolite concentration of zero in CSF (Bustillo et al,
2008; McLean et al, 2001).

Table 1 Demographic and Clinical Characteristics of 31 Patients
with Methamphetamine-Dependence Treated with CDP-choline
or Placebo

CDP-choline
group

(n¼16)

Placebo
group

(n¼15)

p-value

Age (years), mean±SD 38.6±3.9 38.3±3.5 0.79

Male, n (%) 12 (75.0) 11 (73.3) 0.62

Right handedness, n (%) 14 (87.5) 13 (86.7) 0.68

Education (years), mean±SD 10.9±1.6 10.7±1.6 0.81

Age at onset of MA use (years),
mean±SD

24.8±6.2 24.5±5.7 0.87

Duration of MA use (months),
mean±SD

13.8±6.5 13.8±6.7 0.99

Route of MA administration

Intravenous injection, n (%) 16 (100) 15 (100) F

Average daily dose (g), mean±SD 0.58±0.42 0.44±0.33 0.32

Alcohol use, n (%)

Current alcohol abuse 2 (12.5) 3 (20.0) F

Past history of alcohol dependence 1 (6.3) 2 (13.3)

Marihuana use, n (%)

Current marihuana abuse or
dependence

5 (31.2) 5 (33.3) F

Smoking (pack year), mean±SD 13.7±6.8 12.4±8.9 0.67

Baseline HDRS scores, mean±SD 12.3±7.5 13.6±5.3 0.57

Abbreviations: CDP-choline, cytidine-50-diphosphate choline; MA,
methamphetamine; HDRS, Hamilton Depression Rating Scale.
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Statistical Analysis

Baseline clinical characteristics and drug-use patterns
involving continuous and categorical variables were ana-
lyzed using independent t-tests and w2 tests, respectively.
Fisher’s exact test was used when the cell in the contingency
table of categorical variables was sparse.

Generalized estimating equations (GEE) regression ana-
lysis models for continuous-dependent variables were
adopted to analyze changes in prefrontal NAA and Cho
levels and HDRS scores using all available data at each time
point (Zeger and Liang, 1986). Age, sex, depression severity,
and neurometabolite levels at baseline were covaried when
necessary.

The total number of negative urine results was compared
between the CDP-choline and placebo groups using
independent t-tests. Spearman’s correlation analyses were
conducted to assess the relationship between changes in
prefrontal NAA or Cho levels and the number of negative
urine results.

Statistical significance was defined at an a level of o0.05
and two-tailed test. Stata 5.0 for Windows was used for all
computations.

RESULTS

Characteristics of Study Subjects

There were no significant differences in demographic and
clinical characteristics between the CDP-choline and
placebo-treated MA-dependent subjects (Table 1).

Among the 31 patients who enrolled, 12 subjects (75.0%)
of the CDP-choline group and 9 subjects (60.0%) of the
placebo group completed the 4-week treatment study. Two
subjects dropped out of the study at week 1, two at week 2,
five at week 3, and one at week 4. Subjects were requested to
submit urine sample three times per week for the 4-week
period (total possible screens¼ 12). All subjects successfully

submitted the urine samples each time they visited the
outpatient clinic. Among all intent-to-treat subjects (n¼ 31)
including 10 drop-outers, the mean number of urine
samples submitted was 9.3 (SD, 3.3) and 7.9 (SD, 3.3) in
the CDP-choline and placebo-treated groups, respectively.
For 21 study completers who were retained in the study
throughout the 4-week period, they were 10.9 (SD, 1.0) and
10.2 (SD, 1.3) in the CDP-choline and placebo-treated
groups, respectively. There was no group difference in the
number of submitted urine samples (for all subjects,
t¼ 1.17, p¼ 0.25; for study completers, t¼ 1.39, p¼ 0.18).
The treatment completion rate did not differ between the
CDP-choline and placebo groups (p¼ 0.31). GEE model for
weekly HDRS score changes did not show any significant
group effect (z¼�0.53, p¼ 0.60) or interaction effect
(z¼ 0.09, p¼ 0.93).

Neurometabolite Measures

There were no differences in gray matter, white matter, and
CSF proportions of the VOI at each time point, between the
CDP-choline and placebo groups.

There was a significant interaction effect of ‘treatment
group’ and ‘time’ on changes in prefrontal NAA levels
(z¼ 2.79, p¼ 0.005). Prefrontal NAA levels increased
steadily in the CDP-choline group (mean percentage change
during the study period, 6.05%), whereas those in the
placebo group did not change over the same period (mean
percentage change during the study period, �1.16%)
(Figure 2). Changes in prefrontal Cho levels showed a
similar pattern. The CDP-choline group (mean percent
change during the study period, 3.05%) had a greater
increase in prefrontal Cho levels during the 4-week
treatment period than the placebo group (mean percent
change during the study period, �0.61%) (z¼ 2.13, p¼ 0.03;
Figure 2).

The results remained unchanged when alcohol or
marijuana abuse status was included as an additional

Chemical Shift (ppm)

4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.4 1.2 1.0 0.80 0.60 0.40 0.201.61.8

NAA

Cr
Cho

mI

Figure 1 Voxel placement (a) and representative spectra of a methamphetamine-dependent patient (b). (a) Typical location of voxel (white box) located
on the midfrontal gray matter shown in axial T2-weighted magnetic resonance image. (b) Representative proton magnetic resonance spectra of one
methamphetamine-dependent patients. LCModel estimated baselines are in smooth gray line. LCModel fit to metabolite signals are in red heavy line. The
raw data is in thin gray trace. At the top of each plot, the residual signal after fitting is displayed. NAA, N-acetyl-aspartate/N-acetyl-aspartyl glutamate; Cr,
creatine/phosphocreatine; Cho, phosphocholine/glycerophosphocholine; mI, myo-inositol.
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covariate (NAA levels, z¼ 2.60, p¼ 0.009; Cho levels,
z¼ 2.03, p¼ 0.04). There were no significant interaction
effects of ‘treatment groups’ and ‘time’ on changes in other
prefrontal metabolite levels including creatine or myo-
inositol (Supplementary Table 1).

Relationship Between Magnitude of Change in NAA
Levels and Clinical Outcome

In an effort to examine whether prefrontal NAA and Cho
changes were associated with clinical outcome, the relation-
ship between prefrontal NAA or Cho level changes over the
4-week period and the total number of negative urine
results was assessed. In the CDP-choline-treated group,
percentage changes in prefrontal NAA levels from baseline
to 4-week end point were positively correlated with the total
number of negative urine results (r¼ 0.62, p¼ 0.032)
(Figure 3). However, the placebo-treated group did not
show a significant relationship between percentage changes
in prefrontal NAA levels and the number of total negative
urine results (r¼�0.50, p¼ 0.17). There was no significant
association between percentage changes in prefrontal Cho
levels and the total number of the negative urine results
both in the CDP-choline (r¼ 0.28, p¼ 0.37) and the
placebo-treated (r¼�0.03, p¼ 0.95) groups.

Adverse Events

CDP-choline was relatively well tolerated in MA-dependent
subjects. In the CDP-choline group, cumulative adverse
events included gastrointestinal discomfort (25.0%), head-
ache (25.0%), insomnia (18.8%), myalgia (18.8%), rest-
lessness (6.3%), fatigue (6.3%), and tremor (6.3%). Adverse
events of subjects assigned to the placebo group included
gastrointestinal discomfort (20.0%), headache (26.7%),
insomnia (20.0%), myalgia (20.0%), restlessness (13.3%),
and dizziness (6.7%). No serious adverse events were noted
in either of the treatment groups. The profiles and
frequency of the adverse events did not differ between the
two groups.

DISCUSSION

Our most notable finding is that CDP-choline treatment
increases prefrontal NAA and Cho levels in MA-dependent

patients and that prefrontal NAA levels were associated with
a higher number of negative urine results.

CDP-choline has been reported to be effective in several
neurological disorders including cerebral vascular disease,
hypoxia, traumatic brain injury, and Parkinson disease
(reviewed in Adibhatla and Hatcher, 2005). Preclinical
studies have also suggested the neuroprotective effects of
CDP-choline on improving learning and memory in the
aging model (reviewed in Secades and Lorenzo, 2006). The
recovery of cerebral cellular membrane structures and
normalization of phospholipid metabolisms have been
hypothesized to be mechanisms of neuroprotective action
for CDP-choline (Adibhatla and Hatcher, 2005; Secades and
Lorenzo, 2006).

Repair of membranes may directly impact the synaptic
transmissions and neurotransmitter levels, including dopa-
mine or serotonin (Agut et al, 1984; Martinet et al, 1978,
1979; Saligaut et al, 1985). Along with these mechanisms,
CDP-choline has been reported to protect dopaminergic
neurons (Barrachina et al, 2003; Radad et al, 2007). This
activity of CDP-choline on the dopamine system may also
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be associated with its beneficial effects for psychostimulant
dependence (Renshaw et al, 1999).

Earlier MRS studies have reported lower cerebral levels of
NAA, a putative marker of neuroplasticity, in MA-
dependent patients (Chang et al, 2005; Ernst et al, 2000;
Nordahl et al, 2002, 2005; Salo et al, 2007; Smith et al, 2001;
Sung et al, 2007) and a potential reversal of reduced NAA
levels with long-term abstinence (Sung et al, 2007).
Normalization of low cerebral NAA levels with treatment
or symptom improvement has been reported in several
neurological disorders including multiple sclerosis, trau-
matic brain injury, Parkinson’s disease, and HIV-related
encephalopathy (Davie et al, 1994; De Stefano et al, 1995;
Ellis et al, 1997; Holshouser et al, 1995; Mathew et al, 2008;
Vion-Dury et al, 1995). Reduced NAA levels have also been
shown to be normalized in response to at least 4 weeks of
treatment with psychotropic medications such as lithium
and olanzapine in bipolar disorder and schizophrenia,
respectively, all of which have been considered to have
neurotrophic effects (Bertolino et al, 2001; Moore et al,
2000). Taken together, robust increases in prefrontal NAA
levels after CDP-choline treatment suggest that CDP-choline
may restore neuronal viability.

Increased NAA levels with CDP-choline treatment may
also be explained by restoration of mitochondrial damage in
subjects with MA dependence. Mitochondrial dysfunction
has been proposed as one of the important mechanisms for
MA neurotoxicity (Davidson et al, 2001; Tian et al, 2009;
Quinton and Yamamoto, 2006; Brown and Yamamoto,
2003). Given that NAA is mainly synthesized in mitochon-
dria (Patel and Clark, 1979; Truckenmiller et al, 1985)
and that synthesis of NAA requires an energy-dependent
step (Patel and Clark, 1979), lower NAA levels have been,
in part, considered as a putative marker for mitochondrial
dysfunction (Clark, 1998). CDP-choline may boost
mitochondrial energy production by diminishing the
disruption of cerebral mitochondrial lipid metabolism seen
in pathological conditions such as hypoxia (Alberghina
et al, 1981).

It is potentially noteworthy that increases in prefrontal
NAA levels were associated with clinical improvement of
less MA use only in the CDP-choline-treated group.
However, the fact that there was no significant difference
in clinical outcome between the CDP-choline and placebo
groups in this study limits further interpretation of this
relationship.

We also found that prefrontal Cho levels also increased
with CDP-choline treatment. Considering that exogenously
administered CDP-choline is metabolized into cytidine and
choline and absorbed into the brain (Weiss, 1995; Wurtman
et al, 2000), this was not unexpected.

Chos detected by proton MRS are mainly composed of PC
and GPC (Bluml et al, 1999), whereas free choline and
acetylcholine contribute to o5% of cerebral Cho resonance
(Boulanger et al, 2000). Consequently, increased Cho signal
in our CDP-choline-treated patients are likely to represent
increases in cerebral PC and GPC levels. This potentially
reflects increased phospholipid membrane turnover. This
finding is in accord with earlier proton and phosphorous
MRS studies, which examined the effects of oral CDP-
choline administration on brain Cho levels (Babb et al,
2002; Silveri et al, 2008).

In this study, a daily intake of 2000 mg of CDP-choline
seems to be safe and well tolerated in MA-dependent
subjects. The most common side effects of CDP-choline
were transient gastrointestinal discomforts (25%). These
included nausea, indigestion, abdominal pain, and
diarrhea. Some subjects experienced a light headache
(25%) as a side effect. The frequency of these side effects,
however, did not differ from that of the placebo group.
There were no serious adverse events or related drop-outs
in CDP-choline-treated patients. This safety profile is
comparable with that found in earlier clinical studies
of healthy volunteers or patients with various neurological
disorders who have taken 500–2000 mg dosage of
CDP-choline (Clark et al, 2001; Secades and Lorenzo,
2006).

In this study, there was no difference in the total number
of negative urine results between groups. The absence of
CDP-choline’s efficacy in this study may stem from a
number of factors including a relatively small sample size, a
short trial period, and high attrition rates.

Although smoking is the major route of MA administra-
tion in the United States (Drug Enforcement Administra-
tion, 2007), all of our subjects were IV MA abusers. The fact
that abuse potential of MA is higher in IV administration
than in other routes (Murray, 1998) may have contributed
to a smaller effect size of treatment efficacy than expected.
This would be another potential cause for CDP-choline’s
lack of clinical efficacy.

The primary limitation of this study may be its short
treatment duration. We could not confirm whether the clear
effects of CDP-choline on NAA levels would be confined to
an earlier treatment period or maintained for a longer
period of time. Considering that efficient pharmacological
treatments for MA dependence have not been available to
date (Meredith et al, 2005; Rawson et al, 2000; Vocci and
Appel, 2007), studies with a larger sample size and a longer
treatment period on examining CDP-choline’s efficacy in
MA dependence are warranted.

Although individual and family counseling was given to
all subjects, psychosocial approaches specific to MA
dependence, such as the matrix model or cognitive
behavioral therapy (CBT), were not included as a treatment
protocol. Given that interplay and potential synergic effects
between certain types of psychosocial approaches and
pharmacotherapy have been reported in patients with
cocaine dependence (Poling et al, 2006) and alcohol
dependence (O’Malley et al, 1992), treatment protocol
without specific psychosocial approaches would be another
limitation of this study.

The results from the correlation analyses between NAA
levels and the number of negative urine results in CDP-
choline-treated subjects may be dependent on the results
from a highly abstinent subgroup. Although a nonpara-
metric statistical analysis method was used in assessing this
relationship, when interpreting the results, it should be
considered that the study sample was small in size and,
therefore, slightly skewed.

In conclusion, this study suggests that oral CDP-choline
administration is associated with increases in prefrontal
NAA levels and has a potential clinical efficacy in
treating MA dependence through its neuroprotective
effects.
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