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Abstract

Based on animal studies and some indirect clinical evidence, dopamine has been suggested to have anti-nociceptive
effects. Here, we investigated directly the effects of increased and decreased availability of extracellular dopamine on
pain perception in healthy volunteers. In Study 1, participants ingested, in separate sessions, a placebo and a low
dose of the centrally acting D2-receptor antagonist sulpiride, intended to increase synaptic dopamine via
predominant pre-synaptic blockade. No effects were seen on thermal pain thresholds, tolerance, or temporal
summation. Study 2 used the acute phenylalanine and tyrosine depletion (APTD) method to transiently decrease
dopamine availability. In one session participants ingested a mixture that depletes the dopamine amino acid
precursors, phenylalanine and tyrosine. In the other session they ingested a nutritionally balanced control mixture.
APTD led to a small mood-lowering response following aversive thermal stimulation, but had no effects on the
perception of cold, warm, or pain stimuli. In both studies the experimental manipulation of dopaminergic
neurotransmission was successful as indicated by manipulation checks. The results contradict proposals that
dopamine has direct anti-nociceptive effects in acute experimental pain. Based on dopamine’s well-known role in
reward processing, we hypothesize that also in the context of pain, dopamine acts on stimulus salience and might
play a role in the initiation of avoidance behavior rather than having direct antinociceptive effects in acute
experimental pain.
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Introduction

Dopamine has well described and oft-cited roles in
motivational states, reward processing, and motor functions
(see 1,2 for review). But dopamine also plays a role in the
processing of nociceptive stimuli. Specifically, it has been
hypothesized that dopamine has direct anti-nociceptive effects
[3-7]. This hypothesis is based on three main lines of evidence:
rodent studies, clinical data, and genetic associations. Rodent
studies, typically using interventions such as intrathecal or
intracerebral microinjections of receptor a- and antagonists,

indicate that effects of dopamine on nociceptive processing are
mainly mediated by striatal dopaminergic D2-receptors (e.g.
[8-10]). In contrast, activation or inhibition of striatal D1-
receptors by microinjections of receptor agonists or antagonists
has no effects on nociceptive processing [8-10]. Anti-
nociceptive effects of D2-receptor activation and pro-
nociceptive effects of D2-receptor inhibition have been shown
in tonic pain models such as the writhing and formalin tests, in
deafferentation and neuropathic pain models (e.g. [11-14]), and
in phasic pain models using thermal and mechanical stimuli,
including the tail flick, hot plate or paw pressure test (e.g.
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[9,14,15]). Further, it has been reported that D2-receptor
activation is important for endogenous pain inhibition through
descending pathways [16,17]. In line with these results, D2-
receptor activation has been shown to inhibit spinal wind-up
induced by electrical stimulation [17] and anti-nociceptive
actions on spinal cord neurons in superficial laminae through
descending dopaminergic pathways have been shown in in
vivo patch-clamp studies [18].

Clinically, it has been observed that dopamine agonists can
alleviate pain [19,20] and striatal dopaminergic
neurotransmission has been found to be altered in chronic pain
syndromes such as fibromyalgia, burning mouth, and atypical
facial pain [21-23]. In addition, patients with Parkinson’s
disease, which involves massive loss of dopaminergic neurons
in the substantia nigra, can present with augmented pain
perception (e.g. [24,25]). Further, genetic associations have
been reported between experimental and clinical pain and
dopamine-related genes [26,27], for example relationships
between cold pain tolerance and dopamine transporter (DAT-1)
as well as monoamine oxidase-A (MAO-A) polymorphisms [26].

Despite the wealth of data, in particular from animal studies,
suggesting an effect of dopamine on pain processing, this has
only rarely been directly tested in humans in either
experimental or clinical pain. In the available studies [28,29],
the dopamine receptor agonist apomorphine has been reported
to affect cold pain tolerance and conditioned pain modulation
but not cold and thermal pain thresholds or the perception of
suprathreshold heat pain stimuli in healthy volunteers [28,29].
The latter results are in contrast to the animal literature, which
suggests antinociceptive effects of dopamine also on phasic
stimuli and thresholds. We submit therefore that more studies
are needed to clarify dopamine’s role in the processing of
nociceptive stimuli.

The aim of our two studies was to investigate whether
dopamine directly affects pain perception in healthy volunteers.
In the first study we used a low dose of the D2-receptor
antagonist sulpiride because low doses of sulpiride lead to
increased dopamine release through predominant pre-synaptic
effects (e.g. [30-33]; see 34 for review). We tested whether
increased availability of dopamine has hypoalgesic effects,
assessed with thermal pain thresholds, pain tolerance,
temporal summation, and perceived unpleasantness of thermal
stimuli close the pain threshold. Because ceiling effects could
possibly mask effects of increased dopamine on pain
perception, we tested in a second study using the acute
phenylalanine and tyrosine depletion method whether
decreased cerebral availability of dopamine increases the
perceived intensity and unpleasantness of heat pain stimuli.

Methods: General

The studies were approved by the McGill University
Institutional Review Board and written informed consent was
obtained from all participants according to the revised
Declaration of Helsinki. Exclusion criteria were any reported
present or past pain conditions, psychiatric disorders,
excessive gambling, substance abuse behaviors, alcohol
consumption of more than 100 ml alcohol per week, habitual

consumption of recreational drugs, tobacco use, regular or
frequent night shifts or sleep disorders.

Methods Study 1: Central Pre-Synaptic D2-
Receptor Blockade

Participants
Twenty-four healthy volunteers (11 female, 13 male; age

M=23.1 yrs, SD=5.6 yrs) participated in Study 1. A priori
sample size calculation revealed a necessary sample size of
24 usable datasets for detecting a medium effect for the pre-
synaptic D2-receptor blockade with a 5% probability of
committing a Type 1 error (alpha=0.95), and a 20% probability
of committing a Type 2 error (β=0.80).

General design
Study 1 consisted of two sessions per participant, at least

three days apart (M = 7.9 days, SD = 4.64 days), given in a
double-blind, counter-balanced design. In both sessions, pre-
drug testing was performed, then participants ingested the drug
(sulpiride or placebo) and 3.5 hours after drug intake, post-drug
testing was performed to investigate the effect of sulpiride on
pain sensitivity. See Figure 1 for an overview of the
experimental design of Study 1.

Before starting the experiments, participants were
familiarized with the thermal stimuli and the testing procedures,
and were trained to use the rating scales appropriately.

Thermal stimulation
Heat stimuli were applied using a 27 mm diameter contact

thermode (Contact Heat Evoked Potentials, CHEPS;
PATHWAY Pain & Sensory Evaluation System, Medoc Ltd.
Advanced Medical System, Israel). Baseline temperature was
32°C. For safety reasons, temperatures above 50°C were not
allowed. Thermal stimuli were applied to the thenar eminence
of participants’ non-dominant hand. Thenar stimulation was
achieved by participants placing their palm on the thermode
that was embedded in a hemisphere made of Styrofoam®.

Rating scales
To assess temporal summation, participants rated perceived

intensity of the thermal stimuli on a horizontally orientated
Visual Analogue Scale (VAS). The intensity VAS ranged from 0
“no sensation” to 200 “most intense pain tolerable” with 100
being the pain threshold. The pleasantness/unpleasantness
VAS ranged from -100 “extremely unpleasant” to +100
“extremely pleasant” with the midpoint “neutral” [35,36].

Assessment of pain sensitivity
Pain thresholds and tolerance were assessed with the

methods of limits, with three stimuli increasing in temperature
at a rate of 1.5°C/s until the participant felt the slightest pain
sensation (pain threshold) or could not tolerate the stimulus
anymore (pain tolerance). The participant indicated that the
threshold/tolerance level was reached by pressing a mouse
button after which the temperature of the thermode returned
immediately to the baseline temperature. Temporal summation
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was assessed by the application of ten one-second long stimuli
of 49°C at a frequency of 0.3 Hz [37] after a single presentation
of an identical stimulus. Temporal summation was measured
as the difference between the maximum intensity rating for the
ten stimuli and the single stimulus [38].

For the assessment of perceived unpleasantness of thermal
stimuli close to the pain threshold, participants first received an
ascending series of thermal stimuli (starting at 41°C,
increments of 1°C), which they rated on the intensity and
unpleasantness VASs. This series was stopped when
participants rated the stimulus as painful (100 or above on the
intensity rating scale). Implementing a staircase method,
participants received thermal stimuli until their intensity ratings
were stable, i.e. when the same applied temperature was at
least twice rated as the pain threshold (±5 points on the
intensity scale).

D2-receptor blockade
Participants ingested a low dose of the D2-receptor

antagonist sulpiride (600mg, p.o., [39]) in one testing session
and a placebo (microcrystalline cellulose) in the other. Low
doses of sulpiride act predominately at pre-synaptic sites,
blocking D2-autoreceptors, suppressing negative feedback,
and as a result, potentiating release of phasic dopamine in
response to environmental stimuli [40]. The predominate pre-
synaptic action of sulpiride (see 34 for review) has been
demonstrated by animal studies showing that sulpiride
antagonizes pre-synaptic effects of low dose apomorphine
such as inhibition of amphetamine-hyperactivity as well as
decrease of dopamine turnover [30,31,41]. Further, in vivo
microdialysis studies demonstrate increased dopamine release
induced by sulpiride in the striatum and medial prefrontal cortex
[32,42]. In humans, the notion of predominant pre-synaptic
effects of sulpiride is supported by antidepressive effects at low
doses of sulpiride [33,43].

The effectiveness of a single dose of 600 mg sulpiride was
investigated in a pilot study with ten healthy volunteers (5
female, 5 male; age M = 24.70 yrs, SD = 3.40 yrs; testing at
four time points: before ingestion, 2h, 4h, and 5h after
ingestion), testing for deteriorating effects on spatial working

memory that have been reported before with single doses of
400 mg sulpiride [44,45].

After drug intake, participants waited for 3.5 hours during
which they studied, read, or watched movies. We ensured that
the emotional content of the media participants were exposed
to during the waiting period was low to avoid effects on pain
ratings in the post-drug testing. During the waiting period
participants were asked every 30 minutes to rate potential side
effects (from 0 ‘not at all’ to 5 ‘severe’) from a provided list that
included possible side effects of sulpiride as well as changes in
subjective well-being. Blood pressure was measured at the
same time points. The 3.5 hours waiting time was chosen
based on peak plasma concentrations of sulpiride reported to
be 3.5 to 4.5 hours after ingestion [46] and the occurrence of
central effects [47]. At the end of each testing session,
participants as well as the experimenter indicated whether they
thought the participant received the placebo or the drug (exit
interview, response alternatives: ‘placebo’, ‘drug’, or ‘don’t
know’) to test for potential unblinding.

Statistical analysis
To test the effects of the D2-receptor blockade, pain

thresholds, pain tolerance, temporal summation, and
unpleasantness ratings of stimuli close to the pain threshold
implemented in the staircase method were analyzed, after
confirming normality (Shapiro-Wilk test), with a repeated
measurement ANOVA design using mixed model procedures
with the factors ‘drug’ (with the levels sulpiride and placebo)
and ‘testing’ (with the levels pre- and post-drug).

The effects of sulpiride on spatial working memory (pilot
study), blood pressure, side effects, and answers in the exit
interview were analyzed. Spatial errors in the spatial working
memory were analyzed with an ANOVA design by mixed model
procedures, with the two within-subjects factors ‘drug’ (with the
levels sulpiride and placebo) and ‘time’ (with the measurement
times points before ingestion, 2h, 4h, and 5h after ingestion).
Blood pressure data were analyzed with an ANOVA design by
mixed model procedures, with the two within-subjects factors
‘drug’ (with the levels sulpiride and placebo) and ‘time’ (with the
measurement times points 30, 60, 90, 120, 150, 180, 210 min

Figure 1.  Overview of the time course of an experimental session of Study 1.  All participants performed two sessions: in one
session they ingested 600 mg sulpiride, in the other one a placebo. In each session, participants performed pre- and post-drug
testing, separated by a 3.5h waiting period.
doi: 10.1371/journal.pone.0080766.g001
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after drug intake and at the end of testing). Side effects ratings
between placebo and sulpiride sessions were compared using
Wilcoxon Sign Rank tests. Answers in the exit interview were
compared to the actual order of sulpiride and placebo intake
with χ2 tests.

ANOVA analyses were followed by post-hoc pairwise
comparisons, calculation of generalized omega squared (ω2)
statistics as an unbiased measure of effect sizes in ANOVA
designs [48], and statistical power (1-β) [49], when appropriate.
Negative values for ω2 squared are treated as 0 because
negative variance estimates have no meaning [50]; a value of
0.04 is the recommended minimum effect size for ω2, 0.25
represents moderate effects and 0.64 strong effects

[51]. The significance level was set to 5%. All statistical
analyses were performed using PASW Statistics 17 (SPSS Inc.
Chicago, USA).

Results Study 1: Central Pre-Synaptic D2-
Receptor Blockade

Manipulation check and side effects of sulpiride
A single dose of 600 mg p.o. sulpiride increased spatial

errors in a spatial working memory task compared to placebo
(main effect ‘drug’ F9=48.67, p<0.01, ω2=0.64, 1-β=0.99) four
hours after drug intake (p=0.04; before, 2h and 5h after
ingestion: all p’s>0.10) in the pilot study, similar to previous
publications [44,45].

In line with earlier findings [52-54], sulpiride lowered blood
pressure compared to placebo (diastolic blood pressure, main
effect ‘drug’ F344=57.73, p=0.01, ω2=0.16, 1-β=0.78) 60 min
after drug intake with effects persisting until the end of the post-
drug testing (post-hoc comparisons, 60 min: p=0.04; 120 min:
p=0.05; 90, 150, 180, 210 min, after post-drug testing: p<0.01).

Participants reported only few mild side effects that did not
differ under sulpiride compared to placebo (χ2 tests for all side
effects: p’s>0.10). Participants and experimenter remained
blinded as indicated by the results of the exit interview (χ2 tests:
participants and experimenter, Day 1 & 2 all p’s>0.10).

Sulpiride had no effect on pain sensitivity
For thermal pain threshold, tolerance, and temporal

summation the interaction between ‘drug’ and ‘testing’ was not
significant (pain threshold F69=0.41, p=0.84, ω2=0, 1-β=0.06;
pain tolerance F69=0.10, p=0.75, ω2=0, 1-β=0.07; temporal
summation F68=1.61, p=0.21, ω2=0, 1-β=0.40), indicating that
sulpiride had no effect on pain sensitivity. Similarly, neither
unpleasantness ratings of stimuli near the pain threshold nor
the corresponding temperatures were different between
sulpiride and placebo (interaction ‘drug’ x ‘testing’
unpleasantness: F23=0.02, p=0.89, ω2=0, 1-β=0.05;
temperatures: F23=0.16, p=0.69, ω2=0, 1-β=0.07).

Methods Study 2: Acute Phenylalanine and
Tyrosine Depletion

Participants
Twenty-eight healthy male volunteers (age M=21.8 yrs,

SD=2.0 yrs) participated in Study 2, following the same sample
size calculation as in Study 1.

General design
Participants underwent three sessions. The first session was

a familiarization session, which served to explain the
experiment and the APTD procedure, familiarize participants
with the thermal stimuli and testing procedures, and to train
them to use the ratings scales appropriately. The subsequent
two experimental sessions, performed one week apart, double-
blind and counterbalanced, were identical except for the amino
acid mixture given (see below). On the day before each
experimental session, participants followed a low-protein diet
and fasted from midnight onwards. Participants’ pain and
thermal sensitivity was assessed before and five hours after
ingestion of the amino acid mixtures (depleted vs. balanced).
See Figure 2 for an overview of the experimental design of
Study 2.

Figure 2.  Overview of the time course of an experimental session of Study 2.  All participants performed two sessions. In both
sessions, participants ingested encapsulated amino acids and an amino acid mixture; in one session this mixture did not contain
phenylalanine and tyrosine (depleted) while in the other session it contained these amino acids (balanced) as a control condition. In
each session, participants performed pre- and post-ingestion testing, separated by a 5h waiting period.
doi: 10.1371/journal.pone.0080766.g002
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Thermal stimuli
Participants’ sensitivity to non-painful cool and warm as well

as painful heat stimuli was assessed before and 5 hours after
the APTD procedure. The cool and warm stimuli were included
as control stimuli to test for unspecific effects of dopamine
depletion. Thermal stimuli were applied using a 9 cm2 contact
thermode (TSA II Neuroanalyzer, Medoc Ltd. Advanced
Medical System, Israel). Baseline temperature was 32°C and
stimuli either increased or decreased from this baseline at a
rate of 10 °C/s. Stimuli were applied to three different sites on
participants’ volar forearm. The experimenter applied the
stimuli manually, moving from proximal to distal to avoid
repeating stimulation of the same site in consecutive trials. For
safety reasons, temperatures above 50°C were not allowed. At
each testing time point (before and after the APTD procedure),
participants received three cool, three warm, and three pain
stimuli in pseudo-random order that was the same for every
testing time point and every participant. Each stimulus had a
plateau of 5 seconds. The temperatures for cool stimuli were
26 °C and 30 °C, 34°C and 36 °C for warm stimuli and either
46 °C or 47.5 °C for pain stimuli. Participants who rated 46 °C
between 150 and 170 on the intensity rating scale (see below)
during the familiarization session were tested with this
temperature, those rating it below 150 but above 100 were
tested with 47.5 °C. Participants gave ratings on all four rating
scales (see below) immediately after each thermal stimulus.

Rating scales
Following each thermal stimulus, participants rated perceived

intensity and unpleasantness/pleasantness of the thermal
stimulus as well as their mood and anxiety/calmness on
horizontally orientated VASs. The intensity VAS ranged from 0
“no sensation” to 200 “most intense pain tolerable” with 100
being the pain threshold. The pleasantness/unpleasantness,
mood, and anxiety/calmness VASs ranged from -100
“extremely unpleasant/bad/anxious” to +100 “extremely
pleasant/good/clam” with the midpoint “neutral” [35,36].

Acute phenylalanine and tyrosine depletion
An established dietary acute phenylalanine and tyrosine

depletion (APTD) procedure was used to decrease brain
dopamine levels [35]. The synthesis of dopamine depends
upon the availability of the amino acid precursors
phenylalanine and tyrosine. By administering an amino acid
mixture deficient in the precursors, brain dopamine levels can
be lowered. The identical APTD procedure has been
successfully used before in e.g. studies of emotion-based
decision-making and perceptual timing [55,56].

At the two testing days, participants ingested encapsulated
amino acids and one of two amino acid mixtures dissolved in
chocolate milk or orange juice. One of the mixtures did not
contain phenylalanine and tyrosine (depleted) while the other
contained these amino acids (balanced) as a control condition.
Composition, preparation and administration of the mixtures
was based on established procedures [57,58]. Microdialysis
[59], neuroendocrine [60], and PET [11C]raclopride [61,62]
studies all suggest that APTD affects dopamine release, with
clear effects in humans 5 hours after ingestion [61,62].

Therefore, a waiting time of 5 hours prior to testing was used
during which participants studied, read, or watched movies. We
ensured that the emotional content of the media participants
were exposed to during the waiting period was low to avoid
effects on pain ratings in the post-drug testing. At the end of
each session, participants were provided with a high-protein
snack and remained under supervision for a period of 10 min.

Plasma prolactin and amino acid levels
On the testing days, blood samples were drawn before

administration of the amino acids and after the 5 hours waiting
time to assess amino acid and prolactin levels. Prolactin is a
hormone released by the pituitary gland with its secretion
predominately regulated by dopamine (see 63 for review).
Venous blood samples were collected in Vacutainer tubes
coated with anticoagulant additives. Samples were centrifuged
for 10 min and stored at -80 °C until assay. Plasma levels of
prolactin, phenylalanine, tyrosine and other Long Neutral
Amino Acids (LNAA) were determined and the ratios of
phenylalanine and tyrosine to LNAA were calculated as an
indirect measure of central dopamine precursor availability [57].

Questionnaires
In addition to the VAS ratings after each stimulus, mood was

assessed three times in each session using the Profiles of
Mood States (POMS) rating scale, assessing the dimensions
composed-anxious, agreeable-hostile, elated-depressed,
confident-unsure, energetic-tired, and clearheaded-confused
[64]. Time points of assessment were before participants’ pre-
ingestion assessment of thermal sensitivity, and before and
after assessment of participants’ post-ingestion thermal
sensitivity.

Statistical analysis
Two subjects were excluded from the statistical analysis

because they showed inconsistent pre-ingestion ratings
between the two testing days (more than 2 SD above the mean
of the group).

After confirming normality (Shapiro-Wilk test), VAS ratings of
perceived intensity and pleasantness/unpleasantness were
analyzed with a repeated measurement ANOVA design using
mixed model procedures with the factors ‘APTD’ (with the
levels depleted and balanced) and ‘testing’ (with the levels pre-
and post-ingestion) to test the effects of the APTD on thermal
sensitivity. The same analysis was used for anxiety/calmness
and mood VAS ratings. For analysis of effects on mood
assessed with the POMS, raw scores were normalized to t-
scores [64], and changes from morning baseline were
calculated. Difference scores were entered into a 2x2 repeated
measures ANOVA design using mixed model procedures with
the factors ‘APTD’ (with the levels depleted and balanced) and
‘testing’ (with the levels pre- and post-pain sensitivity testing).
The effects of the APTD on plasma prolactin and amino acid
levels were analyzed with an ANOVA design using mixed
model procedures, with the two within-subjects factors ‘APTD’
(with the levels depleted and balanced) and ‘testing’ (with the
levels pre- and post-ingestion). ANOVA analyses were followed
by post-hoc pairwise comparisons, calculation of generalized
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omega squared (ω2) statistics as an unbiased measure of
effect sizes in ANOVA designs [48], and statistical power (1-β )
[49], when appropriate. Negative values for ω2 squared are
treated as 0 because negative variance estimates have no
meaning [50]; a value of 0.04 is the recommended minimum
effect size for ω2, 0.25 represents moderate effects and 0.64
strong effects

[51]. Associations between plasma levels and pain sensitivity
were tested by Pearson correlations of changes in perceived
intensity and pleasantness/unpleasantness of the thermal
stimuli from pre- to post-ingestion with changes in plasma
levels of prolactin, phenylalanine, tyrosine, or the ratios of
phenylalanine and tyrosine to LNAA. The significance level was
set to 5%. All statistical analyses were performed using PASW
Statistics 17 (SPSS Inc. Chicago, USA).

Results Study 2: Acute Phenylalanine and
Tyrosine Depletion

Manipulation check acute phenylalanine and tyrosine
depletion

Replicating earlier results, the APTD procedure resulted in a
reduction of plasma phenylalanine and tyrosine levels,
indicated by an interaction of ‘APTD’ and ‘testing’
(phenylalanine F24=111.40, p<0.01, ω2=0.58, 1-β=1; tyrosine
F24=274.77, p<0.01, ω2=0.76, 1-β=1). While the APTD mixture
resulted in a decrease of phenylalanine (-88.77%) and tyrosine
(-85.47%) post ingestion, the balanced mixture resulted in an
increase (phenylalanine: 81.51%; tyrosine: 74.10%) of the two
amino acids as expected. The ratios of phenylalanine and
tyrosine to LNAA were significantly more decreased following
the depleted amino acid mixture (phenylalanine: -90.72%;
tyrosine: -89.04%) compared to the balanced amino acid
mixture (phenylalanine: -41.67%; tyrosine: -39.10%; interaction
‘APTD’ and ‘testing’ phenylalanine F24=98.46, p<0.01, ω2=0.43,
1-β=1; tyrosine F24=102.44, p<0.01, ω2=0.89, 1-β=1).

Plasma prolactin levels were assessed in a subsample of
eleven participants. A trend for the interaction of the within-
subject factors ‘APTD’ and ‘testing’ was found (F10=4.73,
p=0.06, ω2=0.08, 1-β=0.50). Post-hoc comparisons showed
that plasma prolactin levels were increased after amino acid
ingestion in the depleted compared to the balanced condition
(post-ingestion: p=0.02; depleted M=10.34, SD=4.33; balanced
M=6.73, SD=2.54), indicating decreased central dopamine
levels.

APTD effects on mood or anxiety
Mood and anxiety/calmness VAS ratings after each thermal

stimulus were not affected by APTD within any stimulation
intensity as indicated by non-significant interactions between
the within-subject factors ‘APTD’ and ‘testing’ (Mood: Heat
pain: F23=0.03, p=0.86, ω2=0, 1-β=0.05; Cold: F23=2.98,
p=0.10, ω2=0.01, 1-β=0.38; Warm: F23=0.12, p=0.73, ω2=0, 1-
β=0.06; Anxiety/Calmness: Heat pain: F23=0.14, p=0.71, ω2=0,
1-β=0.07; Cold: F23=1.86, p=0.19, ω2=0, 1-β=0.26; Warm:
F23=0.33, p=0.57, ω2=0, 1-β=0.09).

The POMS mood subscale agreeable-hostile was affected
by the APTD (interaction ‘APTD’ x ‘testing’ F23=7.26, p=0.01,

ω2=0.04, 1-β=0.65). While there was no change in
agreeableness in the balanced condition from pre- to post-
thermal sensitivity testing (p=0.71), participants felt less
agreeable after the sensitivity testing compared to before in the
depleted condition (p=0.05). Other subscales of the POMS
were not affected by APTD.

APTD had no effect on perception of non-painful cool
and warm stimuli

The APTD procedure did not affect perceived intensity or
pleasantness/unpleasantness of the non-painful cool and warm
stimuli (Interaction APTD x testing; Cool: VAS Intensity
F24=0.07, p=0.94, ω2=0, 1-β=0.05, VAS Unpleasantness
F24=0.63 p=0.43, ω2=0, 1-β=0.12; Warm: VAS Intensity
F24=0.64, p=0.43, ω2=0, 1-β=0.12, VAS Unpleasantness
F24=0.30 p=0.59, ω2=0, 1-β=0.08).

APTD had no effect on pain sensitivity
Perceived intensity as well as pleasantness/unpleasantness

of the thermal stimulation was not affected by the APTD
procedure as indicated by non-significant interactions between
the within-subject factors ‘APTD’ and ‘testing’ (VAS Intensity
F24=0.88, p=0.36, ω2=0, 1-β=0.15; VAS Unpleasantness
F24=0.23 p=0.64, ω2=0, 1-β=0.08).

No associations between plasma levels and pain
sensitivity

Changes in perceived intensity and pleasantness/
unpleasantness of the thermal stimuli from pre- to post-
ingestion were not correlated with changes in plasma levels of
prolactin, phenylalanine, tyrosine, or the ratios of phenylalanine
and tyrosine to LNAA neither in the depleted nor in the
balanced condition (all p’s > 0.10).

Discussion

In the present study, neither the applied APTD nor a low
dose of sulpiride had any effect on pain perception in young
healthy volunteers. The results, therefore, do not support the
hypothesis that dopamine has direct anti-nociceptive effects in
acute experimental pain (e.g. [3-5]).

Pain perception was assessed with different methods,
including short painful heat stimuli, heat pain thresholds and
tolerance, as well as temporal summation. In both studies,
manipulation checks indicated that dopaminergic
neurotransmission was successfully modulated but no impact
on pain sensitivity was observed. Further, no associations
between plasma prolactin, phenylalanine, or tyrosine levels and
pain sensitivity were found in Study 2. To our knowledge, two
other studies have thus far investigated the effects of dopamine
agonism on human perception of experimental pain [28,29].
Treister and colleagues [28,29] tested the effect of acute
administration of apomorphine on cold water immersion
tolerance times, thermal and cold pain thresholds, heat pain
stimuli, and conditioned pain modulation, i.e. pain inhibition of
brief test stimuli induced by a simultaneously applied tonic pain
stimulus. Cold water immersion tolerance times as well as
conditioned pain modulation were increased by apomorphine.
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Interestingly, no effects of apomorphine on pain thresholds or
suprathreshold pain stimuli were found [28,29], which is
corroborated by the results reported here.

The current study adds to the literature in several ways: first,
sulpiride is more selective for dopamine receptors than
apomorphine; the latter having also relatively high affinity for
adrenergic and serotoninergic receptors [65]. Second, we show
that temporal summation, at least partly reflecting the spinal
cord mechanism of wind-up [66], is neither affected by
increased synaptic levels of dopamine. Third, we show that
lowering cerebral levels of dopamine, rather than augmenting
them, also does not affect pain sensitivity in healthy volunteers,
speaking against the possibility that the failure of dopamine
augmentation to influence pain perception is a result of ceiling
effects. Apart from the present study and the studies by
Treister et al. [28,29], the role of dopamine in human pain
perception has not been studied directly and the suggestion of
direct anti-nociceptive effects is based on animal studies and
indirect or inconsistent evidence. For example, every patient
with Parkinson’s disease has impaired dopaminergic
neurotransmission but not all patients demonstrate altered pain
sensitivity and report clinical pain [24,67,68]. Furthermore, L-
Dopa or apomorphine treatment have inconsistent effects on
pain sensitivity in these patients: while some react with
decreased pain sensitivity [25,69], others show no effects
[70,71]. Other indirect evidence comes from studies in chronic
pain patients. We and others have previously observed
impaired dopaminergic neurotransmission in patients with
fibromyalgia and have suggested that this contributes to their
increased pain sensitivity [21,72,73]. Although dopaminergic
mechanisms might differ in acute and chronic pain, treatment
of fibromyalgia patients with dopamine receptor agonists have
shown mixed results [74-77] (see 78 for review), and in a
recent systematic review and meta-analysis, dopamine
agonists received a strong negative recommendation for the
treatment of fibromyalgia [79].

It could be argued that animal studies provide more direct
evidence for anti-nociceptive effects of dopamine. Indeed,
manipulations of dopaminergic functioning in rodents, usually
achieved by the destruction of dopamine-rich structures such
as the ventral tegmental area or intrastriatal injections of
dopamine antagonists, have been shown to lead to increased,
or in the case of dopamine agonists, decreased pain behaviors
in response to nociceptive stimulation. However, it is interesting
to note that increased pain behaviors are more consistently
observed with tonic pain tests such as the formalin or writhing
test compared to phasic stimuli, even if central dopaminergic
neurotransmission is virtually abolished e.g. by lesioning
dopamine-rich structures [11]. Stronger effects on tonic stimuli
are compatible with a hypothesis of an alternative role of
dopamine in pain processing we want to propose: dopamine
predominantly mediates the salience of motivationally relevant
stimuli, fostering coping responses instead of having direct
anti-nociceptive effects. Although dopamine has been primarily
implicated in the processing of appetitive stimuli, the
mesolimbic dopamine system also responds to aversive and
loss-related stimuli [80], potentially facilitating coping behaviors
(see 81 for review). In reward processing, dopamine is crucial

for incentive salience and thereby the motivation to obtain
reward [82,83] (see 84 for review). In contrast, dopamine has
no effect on the hedonic experience of reward [82,83].

Existing animal studies on dopamine and pain used
behavioral outcomes such as tail flick or paw withdrawal
latencies that are motivated behaviors in response to
nociceptive stimulation. In contrast, pain perception in humans
is usually assessed subjectively with verbal pain reports,
describing the sensation rather than assessing motivated
escape behaviors. Thus, animal and human studies assess
different aspects of pain and nociceptive processing, possibly
resulting in diverging findings when testing dopamine’s role in
pain or nociception. The findings of the present studies as well
as the results reported by Treister and colleagues (2013) that
pain thresholds and pain ratings of suprathreshold stimuli as
measures of pain sensitivity were not affected by dopaminergic
manipulation support the idea that dopamine does not have
direct anti-nociceptive effects in acute experimental pain.
Interestingly, Treister and colleagues found that tolerance
times in the cold water immersion task were influenced by
apomorphine as would be expected if dopamine’s role in pain
processing was indeed to mediate motivated behavior because
pain tolerance and motivation are closely linked [85]. The
observation by us and Treister and colleagues that pain
‘tolerance’ as assessed by increasing the temperature of a
thermode until the highest tolerable temperature is reached
was not influenced by dopaminergic manipulation does not
contradict this conclusion. Increasing temperatures from a non-
painful baseline are arguably more linked to sensory-
discriminative aspects of pain perception and less to
motivational aspects than enduring immersion of one’s hand in
ice-cold water, which is more aversive and intense from the
beginning.

Other findings reported in the literature are not fully
compatible with direct antinociceptive effects of dopamine,
such as a positive linear relationship between the amount of
pain experienced by healthy volunteers in experimental
paradigms and striatal dopamine release [21,86]. If dopamine
was anti-nociceptive, the reverse relationship would be
expected. In contrast, higher dopamine release is compatible
with higher stimulus salience and higher motivational drive
associated with more painful stimuli. Further, microdialysis
studies show that dopamine release peaks approximately 20
min after termination of a nociceptive stimulus [87,88]. This
finding is not in line with direct pain inhibition but might fit better
with the hypothesized role of dopamine in mediating the
motivational value of a pain stimulus. Lastly, we have recent
data that cannot be explained by pain inhibition through
dopamine but by motivational effects of dopamine: in this study
[89], pain-inhibiting effects of monetary wins as well as pain-
enhancing effects of monetary losses were augmented by low
dose sulpiride, contradicting anti-nociceptive effects of
dopamine. These results suggest that dopamine biases an
organism towards pain endurance or avoidance dependent on
the relative importance of a pain stimulus compared to other
salient stimuli. Taken together, we think that these findings
support a role of dopamine in modulating the salience of a pain
stimulus rather than providing evidence for direct
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antinociceptive effects. It should, however, be noted that we did
not directly test the effects of dopaminergic manipulation on
stimulus salience in the studies presented here, which should
be done in future experiments.

Limitations
It is possible that we did not find any effects on pain

sensitivity because the modulation of dopaminergic
neurotransmission by standard APTD as well as 600 mg
sulpiride was not strong enough and that more extreme
interventions would produce altered pain sensitivity. Indeed,
animal studies have typically employed non-physiological
interventions such as intracerebral pharmacological
manipulation or ablation of dopaminergic pathways. Further the
balanced control amino acid mixtures also decreased the
tyrosine to LNAA ratio. However, similar decreases with the
control mixtures have been observed previously [57,62] and
are not expected to yield appreciable changes in dopamine
synthesis due to near saturation of the rate-limiting enzyme in
dopamine synthesis, tyrosine hydroxylase [61,90-92]. Following
the larger decreases produced after APTD, in comparison,
dopamine synthesis and availability for release plummets
[59,61,62]. Most importantly, multiple manipulation checks
confirmed that dopaminergic neurotransmission was affected in
both studies. Finally, we included calculations of unbiased
effect sizes [48] as well as power calculations to ensure that
effects were not missed because they were too small to reach
significance. Both the extremely low effect sizes and the very
low statistical power for the effects of the dopaminergic
modulations on pain sensitivity support our conclusion that
dopamine does not affect pain perception directly.

There is one result in the literature that we cannot reconcile
with the proposition that dopamine mediates the salience of
pain stimuli: in the recently published study by Treister and
colleagues conditioned pain modulation was increased by
apomorphine; i.e. volunteers rated nociceptive stimuli as less
painful during a second painful stimulus under apomorphine
compared to placebo [29]. However, as discussed above,
apomorphine has effects on noradrenergic and serotoninergic
systems [65]. Since duloxetine, a mixed serotonin and
noradrenaline reuptake inhibitor, also affects conditioned pain
modulation [93], the effect of apomorphine might not
necessarily be mediated by the dopaminergic system.

In summary, our results show that alterations of dopamine
levels in a physiological range do not have measurable effects
on pain perception in humans, suggesting that dopamine has
no direct anti-nociceptive effects. Instead, we propose that
dopamine’s role in the processing of nociceptive stimuli is
through influences on stimulus salience and coping responses.
This proposition adds to recent evidence that the dopamine
system carries subjective value also of aversive stimuli.
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