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Abstract
The mechanistic properties of two dietary antioxidants that are required by humans, vitamins C
and E, are discussed relative to their biological effects. Vitamin C (ascorbic acid) is an essential
cofactor for α-ketoglutarate-dependent dioxygenases. Examples are prolyl hydroxylases, which
play a role in the biosynthesis of collagen and in down-regulation of hypoxia-inducible factor
(HIF)-1, a transcription factor that regulates many genes responsible for tumor growth, energy
metabolism, and neutrophil function and apoptosis. Vitamin C-dependent inhibition of the HIF
pathway may provide alternative or additional approaches for controlling tumor progression,
infections and inflammation. Vitamin E (α-tocopherol) functions as an essential lipid soluble
antioxidant, scavenging hydroperoxyl radicals in lipid milieu. Human symptoms of vitamin E
deficiency suggest that its antioxidant properties play a major role in protecting erythrocyte
membranes and nervous tissues. As an antioxidant, vitamin C provides protection against
oxidative stress-induced cellular damage by scavenging of reactive oxygen species, vitamin E-
dependent neutralization of lipid hydroperoxyl radicals, and by protecting proteins from alkylation
by electrophilic lipid peroxidation products. These bioactivities bear relevance to inflammatory
disorders. Vitamin C plays also a role in the function of endothelial nitric oxide synthase (eNOS)
by recycling the eNOS cofactor, tetrahydrobiopterin, which is relevant to arterial elasticity and
blood pressure regulation. Evidence from plants supports a role for vitamin C in the formation of
covalent adducts with electrophilic secondary metabolites. Mechanism-based effects of vitamin C
and E supplementation on biomarkers and on clinical outcomes from randomized, placebo-
controlled trials are emphasized in this review.
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Introduction
The purpose of this review is to discuss two antioxidant nutrients, vitamins C and E, as well
as to describe the mechanisms that make them necessary for humans to acquire in their diets.
Further, we discuss the evidence for their potential benefits when consumed in amounts
greater than required, for example as dietary supplements.

Vitamin C
Vitamin C (ascorbic acid) is a required nutrient for a variety of biological functions. Humans
and other primates have lost the ability to synthesize ascorbic acid due to a defect in L-
gulono-1,4-lactone oxidase, an enzyme that catalyzes the conversion of L-gulonolactone
into ascorbic acid. Humans, primates and a few other animals (e.g., guinea pigs) depend on
the diet as a source of vitamin C to prevent the vitamin C deficiency disease, scurvy, and to
maintain general health. The health-promoting effects of vitamin C can be attributed to its
biological functions as a co-factor for a number of enzymes, most notably hydroxylases
involved in collagen synthesis, and as a water-soluble antioxidant. Vitamin C can also
function as a source of the signaling molecule, hydrogen peroxide, and as a Michael donor
to form covalent adducts with endogenous electrophiles in plants. These functions and the
underlying mechanisms will be illustrated here with examples from the recent literature.
This review focuses on chronic diseases and is not intended to provide an exhaustive
account of the biological and clinical effects. Other authors have recently discussed the
effects of vitamin C on cancer chemoprevention [1, 2] and in the treatment of cancer [3],
sepsis [4], and neurodegenerative diseases [5, 6].

Vitamin C as a cofactor for α-ketoglutarate-dependent dioxygenases
Vitamin C is required for collagen synthesis by acting as a cofactor for α-ketoglutarate-
dependent nonheme iron dioxygenases such as prolyl 4-hydroxylase. Investigations into the
mechanism of ascorbate-dependent dioxygenases have shown that ascorbate is not
consumed in the catalytic cycle in which the co-substrate, α-ketoglutarate, undergoes
oxidative decarboxylation to form succinate and a highly reactive iron oxo (FeIV= O)
species. The formation of this FeIV= O species is coupled with homolytic cleavage of a C–H
bond in the substrate molecule, e.g., proline (Figure 1). The reaction cycle reaches
completion when the substrate is oxidized and the oxidation state of the enzyme-bound iron
changes from +4 to +2 (Fig. 1). In the absence of a substrate molecule, the enzyme becomes
uncoupled and then ascorbate reduces oxo-iron back to FeII, restoring the enzyme's activity.
From competition studies with various inhibitors of prolyl 4-hydroxylase and ascorbate
derivatives with modifications in the side chain and in the lactone ring, Majamaa et al. [7]
concluded that ascorbate interacts directly with the enzyme-bound iron and acts as ‘an inner-
sphere reductant in uncoupled reaction cycles’. These authors also concluded that the
consumption of ascorbate in a Fenton-like reaction is precluded by the enzyme [7]. The
direct interaction between ascorbate and the enzyme-bound iron is similar to Siegel's
proposed mechanism of prolyl hydroxylase in which ascorbate coordinates with iron [8, 9].
Structural investigations have established that the iron in human prolyl 4-hydroxylase
coordinates with His412, Asp414, and His483 in the catalytic site of the enzyme [10],
leaving two coordination sites for binding of the co-substrate, α-ketoglutaric acid, and the
last for binding to dioxygen. The cis-oriented oxygen atoms of ascorbate may bind to the
enzyme-bound iron similar to α-ketoglutarate [10]. Coordination of ascorbate with enzyme-
bound iron would provide the necessary electrons in uncoupled reaction cycles to reactivate
the enzyme (Figure 1), consistent with the observation that ascorbate is consumed
stoichiometrically in uncoupled reaction cycles [11]. Thus, the role of ascorbate is to keep
the nonheme iron in the catalytically active, reduced state.
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Role of vitamin C in prolyl hydroxylation under pathological conditions—
Scurvy is the prototypical deficiency disease that links insufficient intake of vitamin C to
impaired collagen synthesis [12]. Collagen synthesis is required for maintaining normal
vascular function but also for tumor angiogenesis. Tumor growth relies on angiogenesis to
provide the cancerous tissue with metabolic substrates, growth factors, and oxygen. Low
vitamin C levels would therefore be expected to limit tumor growth by compromising
collagen synthesis. Telang et al. [13] tested this hypothesis in mice incapable of ascorbic
acid synthesis (Gulo−/− mice with a deletion of the L-gulono-γ-lactone oxidase gene) by
measuring the effect of vitamin C supplementation on growth of implanted Lewis lung
carcinoma cells. They found that Gulo−/− mice with low plasma vitamin C levels (< 5 μM)
developed smaller tumors when the animals consumed a vitamin C-depleted diet compared
to partially or fully vitamin C-supplemented animals. The tumors from the scorbutic animals
showed multiple areas of hemorrhage, poorly formed blood vessels, and decreased collagen
synthesis [13]. The authors suggest that patients with existing cancer may not benefit from
vitamin C supplementation; however, vitamin C deficiency is not likely to be beneficial for
human cancer patients.

Arterial Tortuosity Syndrome (ATS) is associated with abnormal collagen and elastin
synthesis. Twisting and lengthening of major arteries, as well as hypermobility of the joints
and laxity for the skin, are characteristics of this rare and heritable disease, which is caused
by defects in the gene SLCA10 that codes for GLUT-10 [14]. Since GLUT-10 is localized in
the rough endoplasmic reticulum (ER) [15] where proline and lysine hydroxylation take
place and where collagen is prepared for secretion by the Golgi apparatus, Segade [15]
hypothesized that the defective GLUT-10 in ATS leads to a decrease in uptake of
dehydroascorbic acid by the ER, inadequate availability of ascorbic acid for prolyl and lysyl
hydroxylases inside the ER, and to synthesis and extracellular deposition of abnormal
collagen and elastin. Segade [15] further hypothesized that a major source of ascorbic acid
in the ER is dehydroascorbic acid that is taken up by GLUT-10 in the ER membrane and
reduced by protein disulfide isomerase in the lumen of the ER [16]. The dependence of
ascorbate availability in the ER on GLUT-10 activity and its relevance to ATS remains to be
demonstrated.

It is estimated that a third of preterm births are due to premature rupture of the fetal
membranes [17]. Mercer et al. [18] tested the hypothesis that fetal membrane strength can be
improved by vitamin C and E supplementation to increase collagen synthesis and to inhibit
ROS-induced fetal membrane weakening. In a placebo-controlled study, 13 women with a
singleton pregnancy received a combination of vitamin C (1000 mg/day) and vitamin E (400
IU/day) from the second trimester until delivery. Vitamin supplementation had no effect on
rupture strength, did not affect the normal fetal membrane remodeling process that leads to
weakening and rupture at term, and did not alter protein levels or activity of matrix
metalloproteinase-9 (MMP-9), a marker of fetal membrane remodeling [19]. Collagen
content of the fetal membranes was not measured in this study. Thus, supplementation did
not have any obvious benefits.

Vitamin C as a regulator of hypoxia-inducible factor (HIF)-1—Vitamin C-
dependent proline hydroxylation also plays a role in gene transcription mediated by
hypoxia-inducible factor (HIF)-1 [20, 21]. Direct transcriptional targets of HIF-1 include
genes that regulate growth and apoptosis, cell migration, energy metabolism, angiogenesis,
vasomotor regulation, matrix and barrier functions, and transport of metal ions and glucose
[21]. Binding of HIF-1 to DNA requires dimerization of α and β subunits. Under normoxic
conditions, the HIF-1α subunit is targeted for degradation by HIF-specific prolyl
hydroxylases that hydroxylate HIF-1α at proline residues 402 and 564 [22]. Prolyl
hydroxylase domain (PHD)2 is the predominant form that regulates HIF activity in vivo
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[23]. Proline hydroxylation promotes HIF-1α binding to the von Hippel-Lindau tumor
suppressor and its ubiquitin-dependent degradation [22], thereby repressing transcription of
target genes. Under hypoxic conditions, such as exist in fast growing tumors, HIF-1α
hydroxylation is repressed with the result that HIF-dependent gene transcription increases,
thus promoting angiogenesis and tumor growth. Because HIF-1α prolyl hydroxylase is
stimulated by ascorbic acid [24], low vitamin C levels would reduce HIF-1α hydroxylation
and thus stabilize HIF-1α, thereby promoting HIF-dependent gene transcription and tumor
growth. Kuiper et al. [25] investigated the impact of ascorbate levels in endometrial tumors,
obtained from women undergoing hysterectomy, on HIF-1 activity and tumor pathology.
They found lower ascorbate and increased HIF-1α protein levels in more aggressive tumor
tissue (endometrioid adenocarcinoma) compared to less aggressive tumor tissue and normal
tissue. A significant inverse correlation was observed between ascorbate levels in tumor
tissue and markers of HIF-1 pathway activation such as VEGF, which, for the first time,
supports the notion that adequate vitamin C levels inhibit tumor progression in humans
through inhibition of the HIF-1 pathway [25].

Under normoxic conditions, HIF-1 can be induced by transition metal ions such as CoII, NiII
and CrVI [26, 27]. The mechanism by with CoII and NiII activate the HIF-1 pathway is due
to cellular depletion of ascorbate by metal-ion catalyzed air oxidation. It has also been
suggested that NiII can inactivate prolyl hydroxylase by substitution of enzyme-bound FeII.
CrVI showed a transient effect on HIF-1α stability and HIF-1 activity in cultured lung
epithelial (1HAEo and A549) cells, which Kaczmarek et al. [27] attributed to ascorbate-
mediated conversion of CrVI into inactive CrIII, allowing recovery of cellular ascorbate and
restoration of HIF prolyl hydroxylase activity. These authors emphasized the importance of
ascorbate levels in the lung to protect against toxicity of metal ions through activation of the
HIF pathway.

A potent inducer of HIF-1 activity in vascular smooth muscle cells is angiotensin II, which
was shown by Pagé et al. [28] to inhibit hydroxylation of proline 402 in HIF-1α. The
mechanism was determined to be angiotensin II-mediated generation of hydrogen peroxide
(H2O2) and depletion of cellular ascorbate. Alternatively or additionally, H2O2 and other
ROS may also interfere with HIF prolyl hydroxylase by decreasing FeII in the catalytic site
[29].

Ascorbic acid has long been recognized as a key player in the ability of neutrophils to kill
bacteria. In the presence of bacteria, ascorbate levels in neutrophils increase by up to 30-fold
due to uptake of dehydroascorbic acid [30]. The accumulation of ascorbate in neutrophils is
thought to protect these cells against damage by ROS that they produce [30]. As NADPH
oxidase is the predominant source of ROS in neutrophils, it is conceivable that the protective
effect of ascorbate is in part due to prevention of protein damage from reaction with ROS/
lipid-derived 2-alkenals [31, 32]. In addition, ascorbate augments NO-mediated generation
of ROS in polymorphonuclear leukocytes [33] and prolongs neutrophil NOS expression,
NOS catalysis, and oxidative burst [34]. A moderate increase in NO itself leads to a decrease
in HIF-1α accumulation [35, 36]. Neutrophil apoptosis and clearance, a normal
physiological process in the resolution of inflammation, appears to be regulated by ascorbate
through suppression of the HIF pathway [37]. The positive effects of vitamin C on
neutrophil function and clearance could provide a rationale for vitamin C supplementation in
individuals with low vitamin C status, e.g. in hospitalized, elderly patients who are at
enhanced risk for being infected with bacteria.

Vitamin C and pre-eclampsia—Pre-eclampsia is a complication that develops in about
5% of pregnant women during the second half of gestation. The syndrome is characterized
by hypertension and proteinuria. Reduced placental perfusion has been identified as a causal
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factor and has been associated with endothelial activation [38]. Several authors have
hypothesized that oxidative stress and lipid peroxidation (LPO) play an important role in the
development of pre-eclampsia [39, 40]. A recent systematic review and meta-analysis
conducted by Gupta et al. [41] revealed increased levels of serum malondialdehyde,
increased total serum thiobarbituric acid-reactive substances (TBARS), marginally
decreased erythrocyte superoxide dismutase (SOD), and decreased serum vitamin C and E
levels in pre-eclampsia cases compared to controls. The authors concluded that pre-
eclampsia is associated with increased oxidative stress and decreased antioxidant vitamin
levels [41]. Such findings have provided the rationale for a number of antioxidant trials
aimed at reducing the rate and severity of pre-eclampsia. Supplementation with vitamin C
and E proved a beneficial effect on the rate of pre-eclampsia in a randomized, placebo
controlled trial with 283 women at risk [42]. Subsequent larger trials showed no beneficial
effects of vitamin C and E supplementation on the rate of pre-eclampsia [43-49].

McCance et al. [50] studied the effect of vitamin C (1000 mg/day) and E (400 IU/day)
supplementation in 379 pregnant women with type 1 diabetes, who were at higher risk for
developing pre-eclampsia, presumably due to increased oxidative stress (DAPIT trial).
These authors found no effect of vitamins C and E on the primary endpoint, pre-eclampsia,
compared to 382 placebo-treated women (p = 0.20). However, the supplemented women had
fewer preterm births (< 37 weeks, p = 0.046). In subgroup analysis, vitamin supplementation
showed an effect on pre-eclampsia in two of 11 women with low antioxidant status at
baseline. The authors concluded that vitamin supplementation may be beneficial in pregnant
women with low antioxidant status. According to the authors, negative outcomes in previous
vitamins C and E supplementation trials may be attributed to adequate vitamin C and E
status of the women at baseline [50]. As pointed out by Talaulikar [51], the DAPIT
supplementation study did not include measures of oxidative stress in order to determine
whether the administered vitamin doses were effective in reducing oxidative stress.

A multi-center, randomized, double-masked, placebo-controlled vitamin C (1000 mg) and
vitamin E (400 IU) supplementation trial conducted in the U.S. with 9,968 low-risk
nulliparous women showed no effect in the prevention of spontaneous preterm birth at less
than 37 and 35 weeks of gestation [52]. Preterm births due to premature rupture of
membranes were less frequent before 32 weeks of gestation (0.3% vs. 0.6% adjusted OR
0.3-0.9) [52]. A Canadian study of the effects of vitamin C (1000 mg) plus E
supplementation study (400 IU) with 2,363 women failed to reduce the rate of pre-eclampsia
or gestational hypertension, but did increase the risk of fetal loss or perinatal death and
premature rupture of membranes (INTAPP trial, [49]). A similar study conducted by Villar
et al. [44] showed no effect of vitamin C (1000 mg/day) and E (400 IU/day)
supplementation on pre-eclampsia, eclampsia, low birthweight, and perinatal death in at-risk
pregnant women with low nutritional status from India, Peru, South Africa, and Vietnam
(WHO trial). In this latter study, any effect of vitamin supplementation in women with low
vitamin status may have remained undetected due to lack of measurements of vitamin levels
and poor compliance [44]. Another study conducted in India with 140 normotensive
pregnant women, however, revealed that preterm births were associated with oxidative
stress, measured as malondialdehyde in maternal and in cord blood (p < 0.05), and with
elevated vitamin C concentrations (p < 0.05) compared to at-term births [53].

Taken together, the majority of studies has failed to support the earlier stated hypothesis that
pre-eclampsia and preterm births can be prevented by vitamin C or by combined vitamin C
and E supplementation, despite the well-documented relationship between pre-eclampsia /
preterm birth and oxidative stress. A mechanistic study into the effects of vitamins C and E
on trophoblast apoptosis and authophagy, a common feature in placentas from pregnancies
complicated by pre-eclampsia that results in impaired circulation, was conducted by Hung et
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al. [54] to shed light on the clinical findings. Using cultured trophoblasts and villous
explants obtained from human term placentas, the authors observed reduced apoptosis and
autophagy in trophoblasts exposed to 50 μM vitamin C and 50 μM vitamin E under
normoxic conditions for 48 h. By contrast, they observed enhanced apoptosis and autophagy
when the vitamin-supplemented cells were subjected to two cycles of hypoxia (8 h) and
reoxygenation (16 h). The authors concluded that concomitant administration of vitamins C
and E has differential effects on apoptosis and autophagy in placental cells under normoxia
compared to hypoxia-reoxygenation, which may explain the adverse effects of vitamin C
supplementation on placental function found in some of the clinical studies. Another
explanation for the results from inconclusive supplementation trials was provided by
Talaulikar and Manyonda [55] who argued in a reaction to the INTAPP publication (ref.
[49]) that oxidative stress is unlikely to be the cause of defective trophoblast invasion which
plays a key role in the pathophysiology of pre-eclampsia.

Scurvy in the elderly and in hospitalized patients—Scurvy is rare in the general
population but is still prevalent today in populations at risk. In addition to poor diet,
alcoholism [56], elderly age, socioeconomic deprivation [57], mental illness [58],
malabsorption disorders, kidney failure, hemodialysis [59], and peritoneal dialysis [60] have
been identified as risk factors for low vitamin C status and developing clinical symptoms of
scurvy [61-63]. In a geriatric hospital in Paris, France, 18 elderly patients (12%), who
showed clinical symptoms of scurvy, had low serum levels of ascorbic acid compared to
control patients (6.2 ± 6.0 μM versus 28 ± 24 μM, p < 0.001) [64]. These data suggest that
vitamin C status should be checked routinely in elderly patients admitted to geriatric
institutions.

Plasma vitamin C levels can decrease rapidly as a result of acute inflammation produced by
sepsis [4], myocardial infarction, cancer, medication, surgery [65] or use of a
cardiopulmonary bypass machine [66]. Alexandrescu et al. [67] described a case of a 50
year old man who was treated for metastatic renal-cell carcinoma with high-dose
interleukin-2 (IL-2), an inflammatory cytokine, and consequently developed acute
symptoms of scurvy: petechiae and perifollicular hemorrhage on the arms and legs, and
gingival bleeding. The patient's serum vitamin C decreased from 17 μM to 6 μM following
treatment with IL-2, demonstrating that ‘symptoms of scurvy occur acutely whenever a state
of chronic depletion of vitamin C reaches a critical threshold [67]’. The patient recovered
from the clinical symptoms of acute scurvy after seven days of discontinuation of IL-2
treatment. The effect of IL-2 treatment on vitamin C status was earlier described by Marcus
et al. [68, 69].

Vitamin C as an anti-oxidant
Role of vitamin C in lipid peroxidation—Lipid peroxidation (LPO) can be considered
as an example of a radical chain reaction (Figure 2). Reactive oxygen species (ROS)
produced by a variety of sources, such as the electron transport chain, xanthine oxidase,
myeloperoxidase and NADPH oxidase, initiate the radical reaction through abstraction of
hydrogen atoms from bisallylic C–H bonds thereby forming lipid radicals [12]. Lipids are
often prime targets of oxygen radicals because many of the enzymes producing ROS are
embedded in lipid bilayers and because the bisallylic C–H bond in polyunsaturated fatty
acids (PUFAs) is relatively weak compared to other C–H bonds. Carbon-centered lipid
radicals react with molecular oxygen to form peroxyl radicals that, if not neutralized by α-
tocopherol in membranes, may participate in the radical propagation reaction. Lipid
hydroperoxides are chemically unstable and, when not reduced by glutathione-dependent
reductases to hydroxy-fatty acids, constitute a source of a variety of LPO products, including
2-alkenals, epoxides, and malondialdehyde. Vitamin C has the ability to protect against LPO
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by acting as a scavenger of ROS and by one-electron reduction of lipid hydroperoxyl
radicals via the vitamin E redox cycle [12]. Furthermore, findings from our laboratory
support a role for vitamin C in protection against cellular damage from LPO-derived 2-
alkenals. Vitamin C-adequate cultured human THP-1 cells exposed to the LPO product, 4-
hydroxy-2(E)-nonenal (HNE) showed a significant reduction in protein carbonylation
compared to THP-1 cells that were not pre-incubated with vitamin C [31, 32]. The
protective effects of ascorbate were associated with an increase in the formation of GSH-
HNE conjugate and its phase I metabolites, measured by LC-MS/MS, and with increased
transport of GSH conjugates from the cells into the medium [31].

Some authors have reported that vitamin C promotes the formation of LPO products from
lipid hydroperoxides in vitro, even in the absence of catalytic iron [70]. The in vivo
implications of a vitamin C-dependent conversion of lipid hydroperoxides into reactive 2-
alkenals have been disputed by others who have argued that redox-active Fe2+ ions,
considered necessary for homolytic cleavage of hydroperoxides via Fenton chemistry, are
not freely available under physiological conditions [71]. We are not aware of any
convincing evidence supporting the notion that vitamin C promotes formation of toxic 2-
alkenals in vivo.

LPO contributes to the development and progression of chronic diseases with an
inflammatory component. Biomarkers of oxidative stress that are derived from LPO, such as
F2-isoprostanes, HNE, and malondialdehyde, are often elevated in plasma, urine, or tissues
obtained from patients diagnosed with cardiovascular diseases [72], neurodegenerative
disease [72, 73], and diabetes [74]. These observations raise the question whether there is a
causal relationship between oxidative stress and disease. If so, antioxidant therapy should
prove beneficial in chronic inflammatory disease. Indeed, many clinical studies have been
conducted using vitamins C to improve biomarker levels and clinical outcomes (reviewed in
[75]). Disappointing results of antioxidant therapy in a variety of trials (see [76-78]) led
some critics to hypothesize that antioxidant therapy may not be effective to provide
secondary prevention in advanced stages of cardiovascular disease [79]. In a 2002 review of
prospective studies on vitamin C status and cardiovascular disease, Loria [80] noted that
outcomes were more likely to be positive when serum vitamin C concentrations were used
to assess vitamin C status as opposed to vitamin C intake and when a wider definition of
cardiovascular disease was used with inclusion of endpoints related and unrelated to
oxidative stress. Others have argued that ‘overdosing’ with antioxidants proves ineffective
in reducing oxidative stress due to suppression of normal physiological response systems
following an oxidative stress insult, for example, physical exercise [81]. Our research group
has investigated the effect of vitamin C supplementation (500 mg twice daily for 17 days) on
urinary levels of metabolites of 4-hydroperoxy-2(E)-nonenal, as an indicator of oxidative
stress [82, 83], in a double-blind, placebo-controlled, randomized crossover study in 22
young adults. Vitamin C supplementation was found to decrease the urinary concentrations
of these LPO product metabolites by 20-30% [84], in support of the notion that vitamin C
supplementation exerts antioxidant effects and reduces oxidative stress in vivo.

Harrison and May [85] have recently reviewed the cellular uptake, recycling, and
neuroprotective functions of vitamin C in the brain. Tveden-Nyborg and Lykkesfeldt [86]
suggested that the neonatal brain is particularly susceptible to low vitamin C concentrations
and that vitamin C deficiency may adversely affect early brain development. A similar
conclusion was reached by Harrison et al. [87] who studied the relationship between vitamin
C deficiency and oxidative stress during development in Gulo–/– mice. The authors found
that Gulo–/– mice pups had low ascorbic acid levels with accompanying elevations in liver
malondialdehyde and brain F2-isoprostanes, both biomarkers of oxidative stress. The authors
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emphasized the critical role of ascorbic acid in preventing oxidative stress in the developing
brain in animals that, like humans, cannot synthesize their own ascorbic acid.

Vitamin C, endothelial dysfunction and cardiovascular disease—Elevated levels
of circulating low-density lipoprotein (LDL) constitute a risk factor for the development of
cardiovascular disease. Uptake of LDL in peripheral tissues is restricted by LDL receptors
but not when LDL is oxidatively modified by LPO-derived reactive aldehydes. Oxidized
LDL can be taken up by macrophages residing in the vascular wall through scavenger
receptors in an uncontrolled manner, leading to accumulation of oxidized LDL and
cholesterol in these vascular macrophages and to their transformation into foam cells. Thus,
oxidized LDL is more atherogenic than undamaged LDL. Furthermore, oxidized LDL
induces cytokine production in monocytes, facilitating their transformation into
macrophages, and induces expression of cell adhesion molecules in vascular endothelial
cells, leading to recruitment of monocyte-macrophages to the vascular wall. Taken together,
LPO and LDL oxidation play key roles in the early stages of vascular dysfunction and
atherosclerosis which has become known as the ‘oxidative modification hypothesis of
atherosclerosis [88-91].’ This hypothesis provides a rationale for antioxidant therapy to
reduce LDL oxidation and oxidative stress-induced vascular dysfunction. Although several
antioxidant trials have demonstrated beneficial effects on cardiovascular disease, the
majority of the trials failed to show beneficial effects on clinical outcomes or manifested
adverse effects [77, 92-96].

In a randomized, placebo-controlled study of 70 patients with cardiovascular risk factors,
Shargorodsky et al. [97] demonstrated beneficial effects of combined antioxidant
supplementation for 6 months with vitamin C (1000 mg/d), vitamin E (400 IU/d), coenzyme
Q10 (120 mg/d) and selenium (200 μg/d) on glucose and lipid metabolism, blood pressure,
and arterial elasticity. The authors observed significant effects of antioxidant treatment on
systolic blood pressure (p = 0.001), diastolic blood pressure (p = 0.034), large and small
arterial elasticity (p = 0.006 and 0.0001), HbA1C (p = 0.022), and HDL (p = 0.022). The
improvement of cardiovascular function could not be attributed to changes in blood pressure
modulators, because the treatment and placebo groups did not differ with respect to plasma
renin, aldosterone, and urinary catecholamines. The authors stated that they have no
mechanistic explanations for the observed effects [97]. The study did not include markers of
acute or chronic oxidative stress nor did it include measurements of plasma levels of the
antioxidants, which makes it difficult to assess the efficacy of the treatment in reducing
oxidative stress and LPO.

Vitamin C and nitric oxide bioactivity—Another mediator of vascular function to
consider is nitric oxide (NO). Its bioactivity as a vasodilating factor depends on its eNOS-
mediated production from arginine and its deactivation by superoxide. The activity of
NADPH oxidase, a major source of superoxide in vascular smooth muscle cells and cardiac
myocytes [98], therefore inversely affects NO bioactivity. Consumption of low-salt diets
indirectly affects NO bioactivity because low-salt levels activate the renin-angiotensin-
aldosterone system and the resultant increase in angiotensin II activates NADPH oxidase
through agonism of the angiotensin II type 1 (AT1) receptor [98]. Suematsu et al. [99]
studied the effects of low-salt diet on NO bioactivity, cardiac function, and mortality in adult
male mongrel dogs. They observed that NO-mediated coronary vasodilation (induced by
bolus injection of 5 μg/kg veratrine) was inhibited by 44% (p < 0.05) in dogs on a low-salt
diet, which was attributed to increased NADPH oxidase activity and superoxide production.
This inhibitory effect was completely reversed by intravenous infusion of vitamin C (2000
mg bolus, followed by constant infusion at 25 mg/min for 120 min), or by apocynin (10 mg/
kg for 120 min), an inhibitor of NADPH oxidase [100].
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NO bioactivity is also impaired in hypertensive patients with a nondipper circadian pattern
(i.e., blood pressure remains high at nighttime), which presents a risk factor for
cerebrovascular and cardiovascular events. Maio et al. [101] studied the effect of intra-
arterial infusion of vitamin C on forearm blood flow response to acetylcholine, an NO-
dependent vasodilator. They found that forearm blood flow following acetylcholine
administration improved to a greater extent in nondipper patients that were co-treated with
vitamin C, supporting the hypothesis that vitamin C improves endothelial function in
hypertensive patients with impaired NO physiology [101].

There are several possible mechanistic explanations for the observed beneficial effects of
systemically administered vitamin C on endothelial function [77, 102, 103]. As stated above,
one explanation is that vitamin C eliminates superoxide intracellularly [12, 103, 104] that
would otherwise deactivate NO by forming peroxynitrite [105]. NADPH oxidase is a
prominent source of superoxide in vascular cells, but eNOS itself can produce superoxide by
the oxygenase component of the enzyme when eNOS becomes uncoupled in the absence of
the substrates, arginine and N-hydroxyarginine, and its redox cofactor tetrahydrobiopterin
(BH4) [106-108]. In coupled reaction cycles, BH4 donates an electron to the heme-bound
FeIII-oxo complex thereby forming protonated BH3

• (BH4
•+) in the pathway to the formation

of the reactive heme-FeIV-oxo species. BH4
•+ may recycle back to BH4 during the

conversion of the intermediate reaction product, N-hydroxyarginine, into citrulline and NO
[109, 110] (Figure 3). In solution, BH4 is unstable and readily auto-oxidizes to form
quinonoid dihydrobiopterin (qBH2) and ROS [111]. Stoll et al. [112] demonstrated that NOS
stabilizes the protonated BH4

•+ radical (to prevent it from autoxidation) and maintains
proper one-electron redox cycling of BH4 in coupled NOS-mediated reaction cycles. In
uncoupled reactions, NOS generates superoxide and other ROS that decrease NOS activity
[113].

The effect of vitamin C on NO bioavailability has been attributed to its ability to prevent
eNOS-related superoxide production [103, 114]. The mechanism of the interaction of
vitamin C with the enzyme complex or co-factors is not entirely known and perhaps there
are multiple mechanisms. Vitamin C may prevent BH4 from being oxidized by ROS (or
even molecular oxygen [111]) by acting as a scavenger of ROS in cells, or vitamin C may
directly reduce oxidized intermediates such as BH3

• [104, 115]. Unlike thiols such as
glutathione, vitamin C is unable to reduce qBH2 to BH4 but it can convert BH3

• radical into
BH4 with formation of ascorbyl radical [104, 115, 116]. It is also conceivable that ascorbate
re-activates uncoupled NOS by reduction of heme iron-oxo species to the resting heme-FeII

state, similar to the function of ascorbate in uncoupled prolyl hydroxylase (Figure 1).

BH4 and also vitamin C have been shown by Garry et al. [117] to enhance acetylcholine-
induced relaxation of rabbit artery rings, in a way that is endothelium-dependent but NO-
independent. Furthermore, the effect disappeared in the presence of catalase and could be
mimicked by exogenous H2O2, from which the investigators concluded that the effect was
due to the formation of H2O2 produced from molecular oxygen and BH4 and vitamin C,
perhaps in the presence of catalytic metal ions [118]. It had previously been shown that
H2O2 potentiates (rather than inhibits as expected for an NO-dependent mechanism)
vascular relaxation induced by acetylcholine through enhanced Ca2+ mobilization and
opening of hyperpolarizing endothelial KCa channels, a phenomenon known as the
‘endothelium-derived hyperpolarizing factor (EDHF)-type’ relaxation [119, 120].
Concentrations of H2O2 following systemic administration of vitamin C or BH4 may reach
pharmacologically relevant levels in the interstitial fluid where H2O2 is not degraded by
glutathione peroxidase and catalase. Garry et al. [117] hypothesized that H2O2-induced
relaxation of the EDHF type may represent a compensatory mechanism to compensate for
reduced NO bioavailability.
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Vitamin C participates in addition reactions
The ascorbate anion form of vitamin C is an enolate capable of forming Michael adducts in
aqueous solutions at physiological pH [121]. There are many examples of covalent adducts
of vitamin C, including Michael adducts, with natural products in the plant kingdom, of
which ascorbigen is most well known [122]. The reaction of ascorbate with acrolein (2-
propenal), a ubiquitous electrophile originating from LPO and combustion of organic matter
[123], and with other α,β-unsaturated aldehydes/ketones has been reported in the organic
chemistry literature [121, 124]. The participation of ascorbate in 2-electron reactions in vitro
and in plants raises the question whether vitamin C plays a role in the detoxification of 2-
alkenals in the animal kingdom. Our laboratory has studied the covalent interaction between
acrolein and ascorbic acid in cultured human THP-1 monocytes [125]. We found that
intracellularly ascorbate forms a Michael adduct with acrolein, which is rapidly metabolized
via hydrolysis of the ascorbyl lactone and decarboxylation (Figure 4). This metabolic
degradation pathway is similar to degradation of ascorbigen at pH > 7 [126]. We further
found that paraoxonases 1 and 2, which are known to possess lactonase activity [127, 128],
catalyze hydrolysis of the ascorbyl lactone moiety of the ascorbate–acrolein adduct [125].
The extent and biological relevance of 2-electron reactions involving ascorbate remains to
be demonstrated.

Is there a health benefit associated with vitamin C supplements?
Many authors, including the discoverer of vitamin C, Albert Szent-Györgyi (see [129, 130]),
and Linus Pauling [131], have pointed out that there is a large difference between vitamin C
status causing scurvy symptoms and vitamin C status required for maintaining optimum
health. The large body of research on vitamin C suggests that vitamin C supplementation
may provide health benefits beyond prevention of scurvy [75, 130]. The current
recommended dietary allowance (RDA) for vitamin C for adult men and women, set at 75
mg/day for women and 90 mg/day for men [132], is sufficient to prevent scurvy and was
based on the amount needed to protect leukocytes from oxidative burst. Carr and Frei [75]
proposed in 1999 that the RDA be adjusted to 120 mg/day to reduce the risk of
cardiovascular disease and cancer. They based their conclusions on data from four dozen
prospective cohort studies, case-control studies or cross-sectional studies on the relationship
between vitamin C intake, plasma concentrations of vitamin C and clinical endpoints related
to cardiovascular disease and cancer. Higher doses of vitamin C (500 mg/day) may be
required to achieve vasodilation and decrease of blood pressure [79, 133]. Kris-Etherton et
al. [92] stated their opinion that the evidence from human studies is not sufficiently
compelling to advise individuals, healthy or at risk (e.g., dialysis patients), to take
antioxidant supplements to reduce the risk of cardiovascular disease.

Vitamin E
α-Tocopherol is a required nutrient for humans because it is necessary for the prevention of
vitamin E deficiency symptoms, including peripheral neuropathy and hemolytic anemia.
Vitamin E is a potent lipid-soluble, chain breaking antioxidant.

Vitamin E form and function
The naturally occurring form of α-tocopherol is RRR-α-tocopherol [132] (Figure 5). This
nomenclature means that the chiral carbons are in the R-configuration at positions 2, 4′ and
8′. The 2 position of α-tocopherol determines α-tocopherol biologic activity. Only 2R-α-
tocopherol forms meet human vitamin E requirements [132]. Synthetic α–tocopherol is
called all-rac-α-tocopherol (all racemic, or dl) and contains an equal mixture of eight
different stereoisomers (RRR, RSR, RRS, RSS, SRR, SSR, SRS, SSS), which differ in the
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configuration of the side chain. All of the stereoisomers have equal antioxidant activities,
but only those in the 2R-configuration have high biologic activity.

Vitamin E, a potent peroxyl radical scavenger, is a chain-breaking antioxidant that prevents
the propagation of free radicals in membranes and in plasma lipoproteins [134]. When
peroxyl radicals (ROO•) are formed, these react 1000-times faster with vitamin E (Vit E-
OH) than with polyunsaturated fatty acids (PUFA) [135]. The hydroxyl group of tocopherol
reacts with the peroxyl radical to form the corresponding lipid hydroperoxide and the
tocopheryl radical (Vit E-O•). The tocopheryl radical (Vit E-O•) reacts with vitamin C (or
other hydrogen donors, AH), thereby oxidizing the latter and returning vitamin E to its
reduced state (Figs. 2 and 5) [136]. The function of tocopherol and other tocochromanols, as
potent antioxidants in Arabidopsis seedlings, was recently demonstrated by Mène-Saffrané
et al. [137], who found that Arabidopsis mutants incapable of biosynthesizing
tocochromanols exhibited a severe seedling developmental phenotype associated with
massive LPO.

The interaction of vitamins E and C has led to the idea of “vitamin E recycling”, where the
antioxidant function of oxidized vitamin E is continuously restored by other antioxidants.
This “antioxidant network” depends upon the supply of aqueous antioxidants and the
metabolic activity of cells. It should be noted that free metals, such as iron or copper, can re-
initiate LPO by reaction with ROOH to form an alkoxy radical. Additionally, if other
antioxidants are not present Vit E-O• can re-initiate LPO [138].

Since the tocopheroxyl radical can be reduced back to tocopherol by ascorbate or other
reducing agents, oxidized tocopherols are usually not found in vivo. Biologically relevant
oxidation products formed from α–tocopherol include 4a,5-epoxy- and 7,8-
epoxy-8a(hydroperoxy)tocopherones and their respective hydrolysis products, 2,3-epoxy-
tocopherol quinone and 5,6-epoxy-α–tocopherol quinone [139]. These products have been
demonstrated during in vitro oxidation; their importance in vivo is unknown [140].

Vitamin E Deficiency Symptoms
Symptoms of vitamin E deficiency suggest that its antioxidant properties play a major role
in protecting membranes and nervous tissues from oxidative stress. Clinical deficiency of
vitamin E in humans causes varying degrees of hemolysis depending on the subject's age
and status of other antioxidants, oxidative stress and PUFAs. For example, pediatric patients
with cystic fibrosis and vitamin E deficiency caused by fat malabsorption also develop
hemolytic anemia [141, 142].

The primary, and most serious, clinical manifestation of human vitamin E deficiency is a
peripheral neuropathy with degeneration of large-caliber axons in sensory neurons
[143-146]. The development of a progressive ataxia appears more rapidly in infants and
young children with malabsorption from birth than in adults, suggesting that the developing
nervous system is dependent on adequate vitamin E for normal development [147].

Vitamin E also appears to be essential in preserving immunologic function in elderly
individuals [148], especially concerning the immune synapse among CD4+ T-lymphocytes
that is important for T-cell signaling and immune function [149]. Both animal [150, 151]
and human studies [148] suggest that relative vitamin E deficiency enhances and vitamin E
supplementation prevents aging associated reductions in immune function. However, some
studies suggest that vitamin E supplementation in the elderly may not be as protective
against lower respiratory tract infectious illness as previously postulated [152].

Traber and Stevens Page 11

Free Radic Biol Med. Author manuscript; available in PMC 2012 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Vitamin E Antioxidant Effects in Humans
The evidence in humans that α-tocopherol functions as a fat-soluble antioxidant in response
to oxidative stress is limited. Oxidative stress caused by ultramarathon running has been
shown to increase rates of plasma vitamin E disappearance in humans [153]. Moreover,
prior vitamin C and E supplementation decreased markers of LPO in runners [154]. Because
cigarette smoking generates free radicals [155], α-tocopherol kinetics in smokers was
compared with non-smokers. Cigarette smokers had greater LPO (F2-isoprostane
concentrations) and plasma α-tocopherol disappearance rates [156]. Importantly, the rates
were inversely correlated with vitamin C status; vitamin E disappearance was faster in
smokers with low plasma ascorbic acid concentrations [156]. When smokers were
supplemented with vitamin C (500 mg twice daily) for two weeks, α-tocopherol
disappearance rates were normalized to rates observed in non-smokers (with or without
vitamin C supplements) [157]. Thus, in smokers with greater oxidative stress, additional
vitamin C is needed to restore the α-tocopheroxyl radical to its reduced form and thus
protect vitamin E concentrations. Importantly, there were no significant effects of vitamin C
supplementation on F2-isoprostane concentrations [157, 158]. Thus, vitamin E does not
prevent radical formation, or the initial oxidation of fatty acids, but vitamin E stops the LPO
chain reaction. The studies in smokers suggest that vitamin E requirements are dependent
upon both oxidative stress status and vitamin C status. It is unclear whether the oxidative
stress caused by cigarette smoking is equivalent to other forms of oxidative stress.

Obesity is an inflammatory disease associated with increased F2-isoprostanes [159]. Obese
children also have been reported to have increased circulating F2-isoprostanes [160]. Obese
subjects with diabetes have an even greater degree of oxidative stress, since type II diabetics
have higher levels of circulating F2-isoprostanes than do normal subjects [161] and these
LPO biomarkers further increase in during bouts of hyperglycemia [162]. Consistent with
observations in smokers [157, 158], vitamin C supplementation (1.5 g daily) in Type II
diabetics for 3 weeks did not improve LPO biomarkers [163]. Thus, vitamin E is needed to
prevent LPO, while one of the roles of vitamin C is to regenerate vitamin E.

α-Tocopherol Pharmacokinetics and Bioavailability
Vitamin E is fat soluble, transported by lipoproteins, and is dependent upon lipid and
lipoprotein metabolism for tissue vitamin E delivery [164]. Its tissue depletion takes decades
rather than weeks [164]. Importantly, no tissue serves as a vitamin E store, releasing α-
tocopherol on demand. However, plasma α-tocopherol concentrations are regulated by the
liver, specifically by the α-tocopherol transfer protein (α-TTP), as well as by metabolism
and excretion [164].

Some information is known about vitamin E pharmacokinetics using orally administered
deuterium-labeled vitamin E(s) [153, 165-184]. Labeled vitamin E absorption and
disposition has been characterized in short-term studies (from 3 to 72 h) and in longer
protocols to assess delivery to peripheral tissues by administering large oral doses (e.g. 400
IU) [171]. Various tocopherols are absorbed, transported in chylomicrons but only α–
tocopherol is maintained in plasma and tissues [166, 185]. The plasma half-life of RRR-α-
tocopherol is 48 to 60 h [183, 186], while that of SRR-α-tocopherol (synthetic form) is 15 h
[186]. α-Tocopherol recirculation from the liver to the plasma is critical for this long half-
life [186], and is dependent upon hepatic α-TTP [167, 187]. The rapid recirculation between
the liver and plasma results in the daily replacement of nearly the entire circulating α-
tocopherol pool [186].

There are no definitive studies quantitating α-tocopherol absorption in humans. Studies from
1960-70 using radioactive α-tocopherol in humans reported fractional vitamin E absorption
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in normal subjects ranging from 55 to 79% [188, 189]. These were balance studies and
depended upon the complete collection of fecal material; any losses of labeled material
result in increased apparent absorption. In contrast, more recent studies using deuterium
labeled α-tocopherol, but based on observed plasma labeled α-tocopherol concentrations,
absorption in humans was only 33% [184]. These data emphasize our lack of knowledge
concerning vitamin E absorption. This measure is important in that the amount of vitamin E
that must be consumed will vary depending on absorption efficiency.

Is There A Health Benefit Associated With Optimal α-Tocopherol Intakes?
The 2000 recommended dietary allowance (RDA) for vitamin E (15 mg (22 IU RRR-) α-
tocopherol) was defined in the Dietary Reference Intakes (DRIs) by the Food and Nutrition
Board, Institute of Medicine [132]. However, 96% of American women and 93% of men do
not meet the current vitamin E recommendations [190]; mean dietary intakes in the US are
only ∼6 mg α-tocopherol [191]. Are recommendations too high or is dietary vitamin E
consumption by most people too low? In general, to set an estimated dietary requirement
(EAR), the amount of a nutrient needed to fulfill a specific biochemical function is
estimated. Then, the amount needed from the diet is estimated based on the fractional
absorption. Given that the biochemical function of vitamin E is its antioxidant activity, and
the fractional absorption is not known, the 2000 vitamin E RDAs had to be set by correlation
of antioxidant activity with dietary intakes. The only data available were studies conducted
more than 50 years ago [132]. The RDA was based on these measures because these were
the only available data despite the general agreement that the hemolysis assay is highly
dependent on assay conditions, and that no LPO measures have been described that are
specific solely for vitamin E [132].

The Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) study tested in Finnish
smokers whether supplementation for 5 y with vitamin E (50 IU dl-α-tocopheryl acetate)
and β-carotene (20 mg) would decrease cancer incidence [192]. Although supplementation
had no effect on mortality, a follow-up report [193] described baseline vitamin E status of
the 29,092 Finnish men that were followed for 19 y during which time 13,380 deaths
ensued. The men at baseline in the highest compared with the lowest quintiles of serum α-
tocopherol had significantly lower incidences of total mortality {relative risk (RR)= 0.82
(95% CI: 0.78, 0.86)} and cause-specific mortality {cancer RR= 0.79 (0.72, 0.86),
cardiovascular disease RR=0.81 (0.75, 0.88), and other causes RR=0.70 (0.63, 0.79); P for
trend for each <0.0001}. A reduction in mortality occurred at serum α-tocopherol
concentrations (30 μmol/L) associated with dietary intakes of about13 mg α-tocopherol
[193], consistent with the vitamin E RDA in the 2000 DRIs [132]. Thus, a generous dietary
intake of vitamin E over a lifetime apparently can decrease chronic disease incidence.

Is There A Health Benefit Associated With Vitamin E Supplements?
Studies of vitamin E effects on heart attack risk have resulted in conflicting outcomes:
beneficial effects [194-196], limited effects [197], no benefit [198], and possible harm
[199-201]. Meta-analysis of antioxidant-intervention trials in humans suggests that the doses
of vitamin E supplements (400 or 800 IU) given in many clinical trials are not associated
with adverse effects [202, 203] or are associated with increased risk of death [204, 205].
However, there have been no studies documenting the mechanism for adverse effects of
vitamin E, other than its tendency to increase bleeding.

The Women's Health Study [206] tested the efficacy of vitamin E supplements to prevent
heart disease or cancer in normal healthy women. They evaluated 600 IU vitamin E or
placebo taken every other day for ten years by 40,000 healthy women aged 45 years and
older. Overall, vitamin E supplements had no effect on the incidence of cancer,
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cardiovascular events or on total mortality. However, deaths from cardiovascular disease
were reduced 24% {RR=0.76; 95% CI, 0.59-0.98; P=0.03}. “In subgroup analyses, women
aged at least 65 years comprised 10% of study participants but contributed 31% of end
points. A significant 26% reduction in major cardiovascular events was observed among
women aged at least 65 years assigned to vitamin E {RR=0.74; 95%CI, 0.59-0.93; P=0.009}
and 49% reduction in cardiovascular death {RR=0.51; 95% CI, 0.33-0.77; P<0.001} rates.”
The decrease in cardiovascular death was attributed to a decrease in sudden death [206].
Given that the incidence of cardiovascular disease is quite low in women until they are over
65 y and that women lag behind men by 20 years with respect to sudden death
(http://www.americanheart.org), these findings suggest that vitamin E supplements are
effective in decreasing death from cardiovascular disease. It is not clear if supplements just
insure that women consume “optimal amounts” of vitamin E (15 mg, as discussed above) or
if other mechanisms are involved.

In contrast, studies in healthy physicians have shown no benefit of vitamin E supplements
with regard to heart disease [77] or cancer, specifically prostate cancer [2, 207]. Apparently,
α-tocopherol supplements are beneficial only if chronic diseases result, at least in part, from
suboptimal protection by antioxidants. Importantly, the amounts of vitamin E that exerted
beneficial effects in intervention studies are not achievable by dietary means, but it should
be noted that dietary levels of vitamin E did have benefit in this regard when they were
followed for a lifetime [193]. These latter findings also suggest that subjects in the placebo
group who routinely consume dietary levels of 15 mg α-tocopherol are not likely to benefit
from supplements and that the “healthy volunteer effect” [208] likely precludes finding a
benefit for vitamin E in chronic disease prevention if the subjects are already well nourished
with respect to α- tocopherol.

Boaz et al. [195] suggested that in the clinical trials where vitamin E has had benefit, the
subjects consuming the placebo had higher incidences of cardiovascular disease and perhaps
greater oxidative stress; examples include end-stage renal disease and heart transplant
patients. Although the HOPE trial was the first of many randomized controlled intervention
studies to show that vitamin E supplements given to high-risk patients did not decrease heart
disease incidence [198], it is also the first example of vitamin E supplements having benefit
in subjects with increased oxidative stress. Specifically, vitamin E supplementation
decreased heart attack risk in subjects with demonstrable inadequate antioxidant protection
due to impaired haptoglobin function. Sub-group analysis of diabetic patients in the HOPE
trial who have the haptoglobin 2-2 (Hp 2-2) genotype had a “statistically significant
reduction in the risk of CV death (0.45 [0.23–0.90]) and nonfatal myocardial infarction (0.57
[0.33–0.97])”, when they were given vitamin E supplements [209]. Importantly, Milman et
al. [210], in a separate placebo-controlled study carried out only in Hp 2-2 diabetics, found
that daily vitamin E supplementation (400 IU) reduced cardiovascular events.

It may be that the benefit arising from vitamin E supplementation in heart disease is not its
antioxidant function, but as a result of the ability of vitamin E to interfere with clot
formation by interfering with vitamin K status. This is an important function in the
prevention of thrombosis, which can lead to heart attacks or stroke. Findings from the
Women's Health Study showed that vitamin E supplementation significantly decreased
venous thromboembolism by 21% [211]. This beneficial vitamin E effect may be due to
interactions between vitamin E and vitamin K. Plant-derived, dietary vitamin K is
phylloquinone (vitamin K1), which has a 20 carbon phytyl side chain, while menaquinones
(MK), have multiple prenyl units, as indicated by their suffix number (i.e., MK-n) [212].
The liver is thought to convert phylloquinone to menadione, which is then used by extra-
hepatic tissues for MK-4 synthesis [213]. Importantly, it appears that vitamin E interferes
with this process because extrahepatic tissue vitamin K concentrations were lower in rats fed
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a high vitamin E diet [214]. Additionally, high-dose vitamin E supplementation (1000 IU) in
humans decreased the degree of γ-carboxylation of prothrombin (proteins induced by
vitamin K absence-factor II, PIVKA-II) [215]. Potentially, high dose vitamin E supplements
increase liver α-tocopherol concentrations to the point that α-tocopherol competes with
phylloquinone preventing the latter's hepatic transformation to menadione, and thus limiting
MK-4 synthesis. Although vitamin E may limit the active form of vitamin K, this vitamin E
action may be beneficial. Indeed, Glynn et al. [211] proposed that vitamin E supplements
would be a safer alternative to warfarin in humans with increased risk of thrombosis.
However, this vitamin E effect also brings up the potential risks. Supplemental α-tocopherol
may increase bleeding tendencies. Additionally, vitamin E may potentiate the effects of
aspirin with respect to blood clotting [216]. Certainly, the upper level set by the FNB of
1000 mg α-tocopherol (1100 IU dl- or 1500 IU d-α-tocopherol) should not be exceeded by
supplement users [132].

Conclusions
Vitamin C exerts its biological effects primarily by acting as an enzyme cofactor and as an
antioxidant. Other functions of vitamin C are under active investigation such as its role in
brain development and cell signaling through production of hydrogen peroxide, and its
participation in Michael addition reactions to form conjugates of electrophilic intermediates.
As an essential nutrient, vitamin E functions as an anti-oxidant by scavenging lipid
hydroperoxyl radicals. At high levels, vitamin E may compromise blood coagulation by
interfering with vitamin K synthesis and/or redox cycling, which can be beneficial in some
individuals but pose a health risk in others. Many vitamin C and E supplementation trials,
conducted with the aim to reduce oxidative stress and LPO, have failed to show beneficial
effects on clinical endpoints in medical disorders associated with increased levels of
oxidative stress. Explanations for the apparent lack of effect include 1) no data on vitamin
levels at baseline, 2) no data on biomarkers of oxidative stress and LPO, and 3) suboptimal
doses and route of administration. Alternatively, the subjects may have consumed sufficient
dietary antioxidants to counteract any potential benefits of supplements, or are relatively
healthy with low levels of oxidative stress.

If disease progression proceeds faster at low vitamin status, then little effect is expected in
patients with adequate vitamin levels at baseline. Measurement of vitamin levels would be
most important in patients with lower baseline vitamin levels, notably elderly and
hospitalized patients. Another important factor determining the success of a clinical trial is
the choice of endpoints, especially those that are related to the targets of vitamin
supplementation. Many of the larger antioxidant trials we reviewed did not include
measurements of vitamin levels or measurements of biomarkers of oxidative stress. Such
measurements would provide information on dose-effect relationships and prediction of
effective dose regimens for definitive efficacy trials using biomarker and clinical endpoints.
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Fig. 1.
Vitamin C acts as a cofactor for prolyl 4-hydroxylase. The starting point for the catalytic
cycle is where the co-substrate, α-ketoglutaric acid, coordinates with the enzyme-bound FeII

(step 1). Activation of molecular oxygen (2) and subsequent decarboxylation of α-
ketoglutaric acid (3) leads to the formation of the highly energetic FeIV=O reagent that
hydroxylates proline residues in procollagen (steps 4 and 5, inner catalytic cycle) [217-219].
If decarboxylation of α-ketoglutaric acid and subsequent formation of the FeIV=O species
takes place in the absence of a substrate molecule (proline residue), the FeIV=O species will
oxidize a molecule of ascorbic acid in order to regain activity (steps 6 and 7, outer cycle).
Thus, ascorbic acid is consumed stoichiometrically in the uncoupled reaction but is not
consumed when substrate is available for oxidation. The iron is bound to prolyl 4-
hydroxylase through interactions with amino acid residues, His 412, Asp414, and His 483
[10]. The co-substrate, α-ketoglutaric acid, binds to the enzyme-bound iron through two
coordination sites as shown. These coordination sites can be occupied by ascorbate upon
departure of succinate from the FeIV=O species in the uncoupled reaction (outer cycle).
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Fig. 2.
Antioxidant effects of vitamins C and E on lipid peroxidation (LPO). The LPO chain
reaction can be initiated by many radical species (indicated by R•) and converts LH into
LOO•, which attacks another LH generating L• (paths 1 and 2, dotted oval). Ascorbic acid
may scavenge the initiating radical species R• and reduce the tocopheroxyl radical,
generating the ascorbyl radical, which can be reduced by glutathione dependent enzymes.
Key to reaction steps: 1, initiating event; 2, radical propagation reaction; 3, termination of
the radical reaction by tocopherol (TocH); 4, dismutation of ascorbyl radicals (Asc•–); 5,
reduction of dehydroascorbate (DHAsc) by GSH-dependent dehydroascorbate reductase; 6,
GSH peroxidase (GPx); 7, further oxygenation and non-enzymatic cleavage of carbon-
carbon bonds yields 4-hydroperoxy-2(E)-nonenal (HPNE); 8, reduction yields 4-
hydroxy-2(E)-nonenal (HNE).
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Fig. 3.
Proposed mechanism of NO biosynthesis by NOS, a heme-containing flavo-enzyme
(adapted from [109]). In the first reaction, arginine is hydroxylated to form Nω-
hydroxyarginine, which is oxidatively converted in the second reaction into NO and
citrulline. The oxygen in both reactions originates from a heme FeIV=O species, which is
formed by oxygenation of heme-FeII, acceptance of an electron from tetrahydrobiopterin
(BH4), protonation and loss of a water molecule (steps 1-4; in step 5, the FeIV-oxo complex
arises from the FeV-oxo complex by electron transfer from a ligand nitrogen atom to iron.
NO is released in the second reaction via an intermediate FeIII-NO complex. The resulting
heme-FeIII species is reduced back to heme-FeII by the flavoprotein domain (step 6). In
endothelial NOS, the heme-iron is bound to Cys184 of the enzyme [220].
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Fig. 4.
Michael adduction of acrolein with ascorbate and subsequent metabolism of the acrolein–
ascorbate adduct in cultured human THP-1 monocytes.
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Fig. 5.
Antioxidant effect of vitamin E. α-Tocopherol reacts with a lipid hydroperoxyl (LOO•)
radical. The resultant tocopheryl radical is resonance stabilized, does not react with oxygen
(unlike L• radicals) and it can be converted back to α-tocopherol by ascorbate.

Traber and Stevens Page 32

Free Radic Biol Med. Author manuscript; available in PMC 2012 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


