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Abstract

Diabetic neuropathy is the most common complication of diabetes, affecting 50% of diabetic 

patients. Currently, the only treatment for diabetic neuropathy is glucose control and careful foot 

care. In this review, we discuss the idea that excess glucose overloads the electron transport chain, 

leading to the production of superoxides and subsequent mitochondrial and cytosolic oxidative 

stress. Defects in metabolic and vascular pathways intersect with oxidative stress to produce the 

onset and progression of nerve injury present in diabetic neuropathy. These pathways include the 

production of advanced glycation end products, alterations in the sorbitol, hexosamine and protein 

kinase C pathways and activation of Poly-ADP ribose polymerase. New bioinformatics 

approaches can augment current research and lead to new discoveries to understand the 

pathogenesis of diabetic neuropathy and to identify more effective molecular therapeutic targets.
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1. Introduction

Diabetic neuropathy is the most common complication of diabetes. While estimates vary, 

depending on the methods used to diagnose diabetic neuropathy, it is generally held that at 

least 50% of all diabetic patients will develop neuropathy in his or her lifetime [1–8]. This 

high prevalence of neuropathy is likely an underestimate as several recent studies report that 

patients with impaired fasting glucose and/or impaired glucose tolerance also exhibit 

neuropathy at the time of diagnosis. Diabetic neuropathy is the most common cause of foot 

ulcers and non-traumatic amputations in the Western world. Patients with diabetic 

neuropathy report a poor quality of life secondary to pain, disability and recurrent 

hospitalizations. It is estimated that in the United States the annual cost of diabetic 

neuropathy is nearly $11 billion dollars and increasing annually in parallel with the alarming 

increase in the incidence and prevalence of diabetes (www.diabetes.org).

There are no treatments for diabetic neuropathy other than glycemic control and diligent foot 

care [1, 3, 7, 9–11]. This is in spite of ongoing research addressing the pathogenesis of the 

disorder, with the goal to identify mechanism based treatments. In recent years, the idea has 
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emerged that multiple distinct metabolic pathways are impaired leading to a singular end 

result: enhanced cellular oxidative stress. This review will focus on the relationship between 

mitochondrial and cytosolic oxidative stress and the biochemical pathways that converge to 

enhance cellular oxidative stress and the onset and progression of diabetic neuropathy. The 

reader is referred to the following recent review articles for reviews of the symptoms, 

staging and treatment of diabetic neuropathy [1–8, 12, 13].

2. Oxidative Stress: Reactive Oxygen/Nitrogen Species (ROS/RNS) 

Formation in the Mitochondria

The “free radical theory” of aging was proposed by Harman in 1956. Based on his theory of 

aging, “the reaction of active free radicals, normally produced in organisms, with cellular 

constituents initiate the changes associated with aging.” Excess generation of free radicals 

results in upregulation of stress signaling, negatively affecting both life quality and life span. 

Reactive oxygen (ROS) and reactive nitrogen (RNS) species are linked to multiple disease 

states [14–18], including the microvascular complications of diabetes [19–23]. 

Mitochondrial metabolism and the cascade of oxidative phosphorylation are highlighted as 

key contributors of ROS generation in many diseases.

Mitochondrial oxidative phosphorylation is the major ATP synthetic pathway in eukaryotes. 

In this process, electrons from reducing substrates are transferred to molecular oxygen (O2) 

via respiratory chain complexes I–IV. These complexes establish a hydrogen gradient across 

the inner mitochondrial membrane, and the electrochemical energy of this gradient is then 

used to drive ATP synthesis by ATP synthase (complex V).

There are four protein complexes associated with the respiratory chain. NADH-ubiquinone 

oxidoreductase, or complex I, accepts electrons from NADH; these electrons are carried to 

succinate dehydrogenase, complex II, and used to oxidize succinate to fumarate. Electrons 

continue to travel down an electrochemical gradient to ubiquinol-cytochrome c 

oxidoreductase (complex III), and subsequently to cytochrome c oxidase (complex IV), 

which are finally used to reduce molecular oxygen to water. Even though the majority of 

molecular oxygen is reduced at complex IV to water via the respiratory chain, 1–4% of the 

oxygen is incompletely reduced to superoxide (O2
•−) [24]. O2

•− is the most common ROS 

and creates other ROS/RNS via various enzymatic or nonenzymatic reactions discussed later 

in this review.

O2
•− generation by mitochondrial electron transport chain is mainly at complexes I and III. 

It is suggested that O2
•− production in complex I is via reverse electron transfer, and is 

predominately released into the matrix [25]. Autoxidation of the ubisemiquinone radical 

intermediate (QH•) at complex III is the other source of O2
•− generation. Complex III has 

the capacity to release O2
•− to both sides of the mitochondrial inner membrane, however, the 

Q site closer to the intermembrane space (Qo), is known to be the major site of O2
•− 

production, and the matrix side (Qi) is less likely to form O2
•− [26, 27].

As stated above, O2
•− is the major ROS produced in the intermembrane space or matrix of 

mitochondria. As a charged reactive species, O2
•− does not readily diffuse across 
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mitochondrial membranes. However, the mitochondrial permeability transition pore might 

serve as a channel for intermembranous mitochondrial O2
•− to pass through the outer 

mitochondrial membrane and into the cytosol [28]. The conversion of O2
•− to hydrogen 

peroxide (H2O2) by superoxide dismutase (SOD) facilitates permeation through the 

generation of uncharged ROS, which easily diffuse across the membrane.

There are three isoforms of SOD, SOD 1 or copper zinc SOD (CuZn-SOD), SOD 2 or 

manganese SOD (Mn-SOD), and SOD 3 or extracellular CuZn-SOD (EC-SOD) [29]. CuZn-

SOD (SOD 1) is found in the cytosol, nucleus, and intermembrane space of mitochondria 

[30], Mn-SOD (SOD 2) is expressed only in the mitochondrial matrix, and SOD 3 is located 

in the extracellular space. Among all SOD isoforms, SOD 2 is physiologically more 

important and its genetic elimination, in contrast to other isoforms, is embryonically lethal 

[31, 32].

H2O2 is reduced enzymatically by catalase and glutathione peroxidase. In the mitochondrial 

matrix, glutathione peroxidase uses glutathione to convert H2O2 to water. Catalase has 

higher Km for H2O2 compared to glutathione peroxidase, and can protect against a higher 

concentration of H2O2 [33]. Other antioxidant enzymes such as gluthathione S-transferase 

and thioredoxin [34] also help in removal and inactivation of ROS formed in the 

mitochondria. In the presence of transition metals such as copper and iron, H2O2 generates 

hydroxyl radical ( OH) via the Fenton reaction or the Haber-Weiss reaction. Hydroxyl 

radicals are very highly reactive and contribute significantly to local organelle damage 

through DNA and protein modification.

3. Regulation of Mitochondrial ROS Production

In the process of oxidative phosphorylation, energy carried by electrons is used by 

complexes I, III, and IV to pump protons out of the matrix. The resulting electrochemical 

gradient across the mitochondrial inner membrane is used by ATP synthase to drive the 

synthesis of ATP from ADP. In mitochondria, increased ATP synthesis is regulated by 

uncoupling proteins. Upon activation of uncoupling proteins (UCP), protons leak across the 

inner membrane and “uncouple” oxidative metabolism from ATP synthase, resulting in loss 

of ATP production. Basal and hyperglycemia-induced ROS formation are decreased in 

dorsal root ganglia sensory neurons that over express UCP [35]. Mitochondrial membrane 

permeability is increased via activation of UCP by O2
•−, resulting in decreased 

electrochemical potential and further reduction of O2
•− generation. Mild mitochondrial 

depolarization that limits Ca2+ accumulation and reduces reactive species generation (e.g. by 

limiting nitric oxide synthase, NOS, activity) may explain the protective effect of UPC [36].

Mitochondrial ROS are also regulated by nitric oxide (NO), a diffusible gas produced by 

NOS. The presence of mitochondrial NOS (Mt NOS) and its activity were reported by 

Ghafouri and Richter in 1997 [37]. Mt NOS is associated with the matrix face of the 

mitochondrial inner membrane. The activity of Mt NOS is regulated by intramitochondrial 

Ca2+ concentration, [Ca2+]m [37]. Elevation of [Ca2+]m increases NO production and leads 

to reduction in Δψ, while a decrease in Δψ releases Ca2+ from the mitochondria and results 

in Mt NOS inactivation.
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Other ROS/RNS are generated in the mitochondria from interaction of O2
•− and other 

reactive species. Generation of O2
•− in the presence of NO results in peroxynitrite (ONOO-) 

formation. The rate of ONOO− formation is 9.5 × 10−8 M s−1, which exceeds the interaction 

of NO with cytochrome c oxidase (0.8 × 10−8 M s−1) [38, 39]. Ghafouri et al. (1999) 

reported that peroxynitrite-induced stress promotes cytochrome c release from the 

mitochondria and results in apoptosis [40]. Mt NOS is also involved in mitochondrial 

dysfunction. Nitration of the tyrosine residues [41–43] of proteins and S-nitrosation of 

protein thiols are very important reactions in the mitochondria [44].

4. ROS/RNS and Diabetic Neuropathy

As discussed above, under normal conditions, neurons have the capacity to neutralize both 

ROS and RNS [45–47]. Because O2
•− and H2O2 are normal products of the mitochondrial 

electron transport chain, SOD, catalase, and glutathione are normally sufficient to remove 

these metabolic byproducts (Figure 1) [48]. However, hyperglycemia increases 

mitochondrial activity and subsequent O2
•− production. A surplus production of this primary 

mitochondrial ROS leads to formation of RNS as outlined in the previous section. Thus, 

excess mitochondrial activity leads to an overwhelming production of ROS and RNS in a 

neuron that is already depleted of reducing equivalents and struggling with oxidative stress 

brought on by other metabolic and inflammatory insults (reviewed below). The buildup of 

ROS/RNS in the neuron coupled with the inability of the neuron to detoxify the excess ROS 

and RNS leads to progressive organelle, membrane and nuclear dysfunction.

Of note, mitochondria are both the source of ROS/RNS generation and also the first 

structures to be damaged, putting the neuron at even greater risk. Given the typical distal-

proximal length dependent progression of diabetic neuropathy, axons are particularly 

susceptible to the metabolic and vascular imbalances that lead to diabetic neuropathy [48]. 

Axons are susceptible to hyperglycemia not only because of their direct access to nerve 

blood supply, but also because of their large population of mitochondria. Mounting evidence 

suggest that axons are as, if not more, susceptible to ROS and RNS mediated damage, in 

part because of their dependence on local mitochondria for energy. As these mitochondria 

become progressively dysfunctional, axons undergo energy failure which in turn precipitates 

axonal degeneration [48–50].

Mitochondria are also critical regulators of cell survival signaling pathways, and not 

surprisingly, oxidative damage to mitochondrial DNA, proteins, and membranes initiates 

signaling pathways that subsequently lead to apoptosis. Prior to the onset of frank apoptosis, 

mitochondria damaged by oxidative stress are destroyed via a localized process called 

mitoptosis. Mitoptosis is regulated, in part, by shifting the balance in the normal 

mitochondrial fission/fusion equilibrium. The fission of mitochondria is initiated by 

dynamin related protein 1 (Drp1), which translocates from the cytosol to the mitochondria 

during times of stress [51]. Excess mitochondrial fission leads to mitoptosis, which then may 

progress to apoptosis. Drp1 is elevated in in vitro and in vivo models of diabetic neuropathy 

[48], further promoting mitochondrial dysfunction, energy failure and axonal degeneration.
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While numerous studies document the presence of axonal dystrophy and apoptosis in 

diabetic sensory neurons [52], some studies have failed to detect apoptosis in high glucose 

treated sensory neurons in culture [53, 54]. A hypothesis that accounts for this is that 

neurons, with support from trophic factors and antioxidants provided by surrounding glia, 

are initially able to undergo successful repair. Eventually, though, the cycle of glucose 

mediated ROS/RNS accumulation results in mitochondrial damage and the injury cascade 

outlined above: energy failure and axonal degeneration [55, 56].

5. The Intersection of ROS/RNS and Other Metabolic Pathways

Excess production of mitochondrial ROS/RNS is a pivotal step in hyperglycemia-induced 

nerve damage in diabetic neuropathy. Several other metabolic pathways become perturbed 

in the nervous system due to continued hyperglycemia. Each of these pathways contributes 

to the neuronal and axonal injury present in diabetic neuropathy, and also to enhanced levels 

of oxidative stress present in the diabetic nervous system. In the following sections, each of 

these pathways will be discussed, and the reader is provided with one or more references for 

thorough reviews on the individual pathways. Figure 2 is a schematic of the interaction of 

the pathways in the generation of diabetic neuropathy; the pathways are discussed in the 

order they are presented in Figure 2, from left to right.

As the reader reviews the other metabolic pathways believed to produce diabetic 

neuropathy, it is critical to remember that diabetic neuropathy results from both 

hyperglycemia-induced damage to nerve cells and axons per se and from neuronal ischemia 

caused by hyperglycemia-induced decreases in neurovascular flow. We have summarized 

recent animal models of experimental diabetes and neuropathy with evidence of peripheral 

nervous system oxidative stress in Table 1.

5.1. Advanced Glycation Endproducts (AGE) Pathway

Advanced glycation endproducts (AGEs) are non-enzymatically created adducts between 

reducing sugars or oxaldehydes and proteins, DNA, or lipids [75, 76]. AGEs are thus 

heterogenous, and are found both inside and outside the cell, where their formation 

interferes with multiple aspects of cell function. Reactive dicarbonyls are the precursor 

molecules to AGEs that spontaneously form covalent bonds with proteins or lipids, and are 

synthesized through three pathways: glucose oxidation, which forms glyoxal; degradation of 

fructose-lysine adducts (Amadori products); and formation of methylglyoxal through the 

abnormal metabolism of glycolytic intermediates. Methylglyoxal is highly reactive and 

causes vascular endothelial cells to become more sensitive to damage [77]. Extracellular 

formation of protein AGEs not only disrupt cellular adhesion (through interference with cell 

surface protein/extracellular matrix interactions), but also activate a specific cell-surface 

receptor for the AGEs, known as RAGE [78].

Activation of RAGE by extracellular AGEs leads to activation of the transcription factor 

nuclear factor kappa B (NF-κB), which regulates gene expression, apoptosis and 

inflammation (Figure 2). RAGE activation in diabetic animal models contributes to the onset 

and progression of diabetic neuropathy. When RAGE knockout mice are made diabetic with 

streptozotocin (STZ), there is a significant improvement in both electrophysiological and 
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anatomical markers of diabetic neuropathy, compared to the STZ control animals. The 

diabetic RAGE knockout mice also have decreased expression of NF-κB and protein kinase 

C in peripheral nerves, and particularly in Schwann cells [76]. RAGE activation in neurons 

also induces NADPH oxidase activity, which further promotes mitochondrial oxidative 

stress and dysfunction [79]. The confluence of data strongly suggest that RAGE is a 

therapeutic target for the treatment of diabetic neuropathy [76, 79–84]. For a detailed 

discussion on the role of AGE and RAGE in the pathogenesis of diabetic neuropathy and the 

potential therapeutic efficacy of blocking RAGE in the treatment of diabetic neuropathy, the 

reader is referred to an excellent 2008 review by Sugimoto and colleagues [85].

5.2. Polyol Pathway

The polyol pathway converts glucose to fructose through a two-step reduction/oxidation: 

First, aldose reductase reduces glucose to sorbitol, and then sorbitol dehydrogenase oxidizes 

sorbitol to fructose (Figure 2). Both aldose reductase and sorbitol dehydrogenase are 

prevalent in tissues prone to diabetic complications. The aldose reductase pathway is 

susceptible to over activation by a mass-action effect of hyperglycemia, which results in 

imbalances of two of the pathways metabolites, NADPH and sorbitol. Excess glucose flow 

through the pathway causes consumption of NADPH, which is required for regeneration of 

reduced glutathione [86, 87]. The depletion of glutathione secondary to excess aldose 

reductase activity thus renders the cell susceptible to oxidative stress, as discussed above. 

Increased production of sorbitol causes the intracellular environment to become hypertonic, 

and leads to compensatory efflux of other osmolytes such as myo-inositol (MI, important in 

signal transduction) and taurine (an antioxidant) [22, 88]. Intracellular reducing potential is 

further diminished by the second step in the polyol pathway, the production of fructose [89]. 

Hyperglycemia-driven production of excess fructose promotes glycation and further 

depletion of NADPH. Finally, activation of aldose reductase may also increase formation of 

diacylglycerol, which activates the deleterious protein kinase C pathway (discussed below) 

[90, 91]. Several studies of the human aldose reductase gene revealed polymorphisms 

associated with susceptibility to diabetic complications. Patients with a “high aldose 

reductase expression” genotype are commonly found to have early diabetic neuropathy 

while patients with a “low aldose reductase expression” genotype are less susceptible to 

neuropathy [92–94].

The polyol pathway has and continues to be a target of drug intervention in the treatment of 

diabetic neuropathy. Aldose reductase inhibitors block the formation of sorbitol preventing 

NADPH depletion. This leaves sufficient NADPH for glutathione production allowing 

neurons to mount a cellular defense against ROS/RNS mediated damage. It is now generally 

believed that it is this mechanism of action that underlies the salutary effects of aldose 

reductase inhibitors. Peter Oates recently published a thorough review of the polyol pathway 

and the past and current aldose reductase inhibitor trials in man [95]. As of yet, none of 

these compounds have shown efficacy in a Phase 3 trial of diabetic neuropathy.

5.3. Hexosamine Pathway

As with the polyol pathway, excess available glucose causes a mass action increase in flux 

through the hexosamine pathway. Under normal circumstances, a small amount of the 
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glycolytic intermediate fructose-6 phosphate is shunted from glycolysis to the hexosamine 

pathway. The hexosamine pathway converts fructose-6 phosphate to glucosamine-6 

phosphate by glutamine fructose-6 phosphate amidotransferase [96]. Glucosamine-6 

phosphate is then converted to uridine diphosphate-N-acetyl glucosamine (UDP-GlcNAc), 

which is the obligatory substrate for O-GlcNAc transferase, attaching O-GlcNAC to the 

serine and threonine residues of transcription factors and altering gene expression [19]. 

Thus, a hyperglycemia-driven increase in flux through this pathway results in abnormalities 

in gene expression [19, 97, 98]. An increased understanding of O-GlcNAC biology also 

suggests that O-GlcNACcylation regulates the nutrient sensing role of the hexosamine 

pathway and has a role in insulin resistance and macrovascular complications [99, 100].

Sp1 is one transcription factor implicated in diabetic complications that is subject to 

modification by UDP-GlcNAc. Sp1 regulates the expression of many glucose-induced 

“housekeeping” genes, including tissue type plasminogen activator inhibitor-1 (PAI-1) and 

transforming growth factor-β1 (TGF-β1) [19, 101]. Interest in plasminogen activator and 

PAI-1 is based on the premise that impaired fibrinolysis in small neural blood vessels 

promotes nerve ischemia, leading to oxidative stress and the signs and symptoms of diabetic 

neuropathy. Data to support this idea come primarily from studies in man. Plasminogen 

activator expression is lower by 4 to 6 fold in the epineurial and endoneurial microvessels in 

sural nerves from patients with diabetic neuropathy compared to control nerve biopsies. This 

lower expression would promote thrombosis and nerve ischemia [102]. This idea is further 

supported by data from men with type 1 diabetes in the Epidemiology of Diabetes 

Interventions and Complications Study (EDIC); patients with diabetes neuropathy had 

higher serum levels of plasminogen activator/PAI-I complexes than those men without 

neuropathy [103]. Type 2 patients who are obese have higher PAI-I levels which may 

contribute to the high incidence of diabetic neuropathy in this population [104, 105]. In 

experimental animals, PAI-I blocks nerve regeneration [106]. More work is needed on 

experimental models of diabetic neuropathy to fully understand the role of plasminogen 

activator/PAI-I complexes.

Over expression of TGF-β1 is associated with diabetic nephropathy and contributes to 

microvascular damage by stimulating collagen matrix production and suppressing 

mitogenesis of mesangial cells [107, 108]. A recent study by the Russell laboratory 

identifies a role for TGF-β and other TGF isoforms in experimental diabetic neuropathy. 

After twelve weeks of STZ diabetes, TGF-β isoforms are increased in the dorsal root ganglia 

and sciatic nerves of rodents with neuropathy. In parallel, TGF-β isoforms applied directly 

to dorsal root ganglia cultures in vitro block neurite outgrowth [109]. Collectively, these 

new findings suggest TGF-β may be a potential new target for diabetic neuropathy, similar 

to its role in diabetic nephropathy.

5.4. Protein Kinase C (PKC) Pathway

Hyperglycemia stimulates over-activation of the protein kinase C (PKC) pathway by 

increasing synthesis of diacylglycerol (DAG), which activates PKC. The PKC β-isoform in 

particular has been linked to the development of retinopathy, nephropathy, and 

cardiovascular disease [110–112]. Hyperstimulation of PKC causes the overexpression of 
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the angiogenic protein vascular endothelial growth factor (VEGF), PAI-1, NF-κB, and TGF-

β, supporting a role for PKC activation in the pathogenesis of diabetic neuropathy (Figure 

2). Studies in STZ diabetic rats report that inhibitors of PKC-β improve measures of diabetic 

neuropathy, including sciatic blood flow and nerve conduction velocity, [88, 113]. While the 

exact mechanisms by which PKC-β contributes to diabetic neuropathy require further study, 

PKC-induced vasoconstriction, altered capillary permeability, hypoxia, and nerve basement 

membrane thickening are all thought to be involved [110, 111]. Overexpression of PKC 

isoforms also directly induces insulin resistance which can further contribute to the onset of 

diabetic neuropathy [114, 115]. Treatment of patients with symptomatic diabetic neuropathy 

with a PKC inhibitor, ruboxistaurin, did not result in clinical improvement [116, 117], which 

could be due to the fact the drug can not penetrate the blood nerve barrier [111]. A recent 

review completely discusses the role of PKC and diabetic micro- and macrovascular 

complications and the therapeutic efficacy of PKC inhibitors [111].

5.5. Poly-ADP Ribose Polymerase (PARP) Pathway

PARP, a nuclear enzyme closely associated with oxidative-nitrosative stress, is expressed in 

sensory neurons, Schwann cells, and endothelial cells. While hyperglycemia, free radicals, 

and oxidants stimulate PARP activation, PARP also causes oxidative stress (Figure 2) [118]. 

PARP cleaves nicotinamide adenine dinucleotide (NAD+) to nicotinamide, and also removes 

ADP-ribose residues attached to nuclear proteins [119]. PARP’s catalytic activity causes a 

number of deleterious effects, including changes in gene expression, increases in free radical 

and oxidant concentration, NAD+ depletion, and shunting of glycolytic intermediates to 

other pathogenic pathways that can lead to PKC activation and AGE formation [67, 120–

122]. In experimental diabetes, these varied effects result in neurovascular abnormalities, 

neuropathy, decreased nerve conduction velocity thermal and mechanical hyperalgesia, and 

tactile allodynia [47, 62, 70, 123–125]. Several recent reviews outline the role of PARP 

activation in diabetic neuropathy and discuss emerging new PARP targeted therapies [126, 

127].

5.6. Inflammation

Elevated blood levels of inflammatory proteins, including C-reactive protein and TNF-α are 

associated with neuropathy [128, 129]. Hsp 27, part of the TNF-α signaling pathway that 

leads to release of the inflammatory mediators cyclooxygenase-2 (Cox-2), IL-6, and IL-8, 

was recently found by the Eurodiab study to be elevated in the blood of diabetic patients 

with neuropathy [130]. As discussed in the previous sections of this review, some 

inflammatory mediators like TNF-α and TGF-β are regulated by hyperglycemia-driven 

abnormalities in metabolism and signaling [20, 23]. Excess glucose-mediated activity in the 

hexokinase and PKC pathways results in activation of signaling intermediates and modified 

transcription factors, ultimately increasing TGF-β and NF-κB [19]. Similarly, formation of 

the AGE methylglyoxal results in covalently modifies transcription factors that can lead to 

aberrant expression of inflammatory proteins, particularly a repressor of angiotensin II 

called Sp3 [77]. The resulting increase in available angiotensin II activates vascular 

endothelial cells [77]. Activated endothelial cells in the endoneurium recruit inflammatory 

cells, leading to local cytokine production, reduced blood flow, and generation of reactive 

oxygen species [61].
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RAGE activation by extracellular AGEs also affect inflammation by causing the 

upregulation of NF-κB [76], which in turn upregulates Cox-2 [131]. Cox-2 activation results 

in a feed forward loop: Cox-2 stimulates production of prostaglandin E2 and reactive 

oxygen species, which go on to further activate NF-κB. NF-κ-B/Cox-2 upregulation is 

present in the vasculature and peripheral nerves of animal models of diabetes [132]. Either 

blocking Cox-2 upregulation with a drug or genetic knock-down prevents multiple aspects 

of diabetic neuropathy, including blood flow and nerve conduction deficits, glutathione 

depletion, and TNFα upregulation [68, 133].

NF-κB participates in a second vicious cycle of inflammation, in which it both induces and 

is induced by inducible nitric oxide synthase (iNOS) [134, 135]. NO produced by the excess 

of iNOS contributes to microvascular damage by diminishing the blood supply to nerves 

[136, 137]. Moreover, NO contributes to axon and myelin degeneration following injury, 

damages growth cones, and is involved in the development of neuropathic pain [136, 138].

NF-κB appears to be the keystone of the inflammatory pathways that participate in the 

development of diabetic neuropathy. Chronic NF-κB activation appears to render neurons 

and blood vessels more susceptible to ischemia-reperfusion injury [139]. The subsequent 

extensive infiltration of macrophages is further intensified by NF-κB-stimulated release of 

cytokines from endothelial cells, Schwann cells and neurons [140]. The activation of 

macrophages leads to further production of cytokines, as well as proteases and reactive 

oxygen species that lead to myelin breakdown, cellular oxidative damage, and impairment 

of nerve regeneration [141–143]. Cameron and Cotter (2008) have recently reviewed the 

role of NF-κB in diabetic neuropathy and the new therapies targeted at decreasing 

inflammation to halt progression of diabetic neuropathy.

6. The Search for Novel Therapeutic Targets

Glucose control remains the only disease-modifying therapy for diabetic neuropathy [7, 21, 

50]. We propose a bioinformatics approach as the next important paradigm in examining the 

causes and potential treatments of diabetic neuropathy. This novel paradigm will provide 

insight into disease pathogenesis and identify viable targets for disease-modifying 

treatments. Analysis of genomic and proteomic data from patients and animal models of 

diabetic neuropathy will not only validate or refute current hypotheses but will also lead to 

new ideas to further enhance our understanding of disease onset and progression.

To date, only two animal studies (and no human studies) have addressed alterations in gene 

expression within the peripheral nervous system under hyperglycemic stress and/or a 

common treatment for diabetes [57, 144]. Price et al. (2006) performed microarray analyses 

on Wistar rat dorsal root ganglion neurons, 1, 4, and 8 weeks post-STZ-induced diabetes. 

Diabetic neuropathy was confirmed by slowed nerve conduction velocities at weeks 4 and 8 

[144]. The induction of diabetes, prior to the onset of neuropathy correlated with the 

upregulation of genes involved in glucose metabolism [144]. By week 4, glutathione 

transferase was upregulated secondary to conditions of oxidative stress [144]. We recently 

reported (2008) that genes functionally relevant to metabolism, mitochondria, metal ion 

binding and general cellular regulation are significantly differentially expressed in the sciatic 
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nerves of type 1 diabetic and healthy mice [57]. The changes in mitochondrial gene 

expression were linked to the presence of both NF-κB and AP1 binding sites in the proximal 

promoter, a configuration that was 10-fold over-represented in the regulated mitochondrial 

genes compared to the overall distribution of transcription factor binding sites in mouse 

promoter regions. The diabetic mice were treated with Rosiglitazone, which reduced the 

development of neuropathy, and decreased oxidative stress in the nerve [57]. Genes that 

were significantly regulated by diabetes then returned to normal levels by Rosiglitazone 

treatment were analyzed for common transcription factor binding sites, and the results were 

cross checked in healthy mice treated with Rosiglitazone to determine the direction of 

causation. Two site combinations, SP1F and ZBPF, and a configuration of two EGRF sites 

were found to be significant by both approaches [57]. We and others are now making a 

comprehensive effort to establish the molecular signatures of neural tissues including 

peripheral nerve and sensory and sympathetic ganglia, from genome wide screening of RNA 

from human patients and animal models with and without diabetic neuropathy [55, 145]. 

Our approach for diabetic neuropathy is presented in Figure 3.

The feasibility, power, and utility of using a discovery/bioinformatics approach to uncover 

disease mechanisms is described for chronic kidney disease by Kretzler and colleagues 

[146–149]. Human renal biopsies examined by Affymetrix™ microarray analyses and real-

time RT-PCR revealed differentially expressed genes between healthy and diseased tissue. 

These genes were mapped onto known cellular pathways that predicted regulatory elements 

controlling the observed changes. The regulatory elements were then used to predict the 

downstream effects of gene expression, including the potential biomarkers of chronic renal 

disease. We propose a similar comprehensive approach to be applied to diabetic neuropathy 

to advance our understanding of disease pathogenesis and development of disease-

modifying therapies. Of special interest is how this approach, in parallel, leads to biomarker 

discovery. As outlined in Figure 4, the first step is to employ microarray analyses and 

confirmatory Q-PCR to analyze gene expression of relevant neuronal and Schwann cell 

markers followed by validation techniques to detect enriched pathways. These data provide 

the information needed to predict proteins and macromolecules influenced by gene 

expression. The use of clustering and classification analysis, while maintaining high 

standards of mathematical validation, is a valuable tool in discovering the most useful target 

genes, proteins and macromolecules.

7. Summary

Ongoing research suggests that multiple metabolic and vascular pathways intersect to 

produce systemic and neural oxidative stress that underlies the onset and progression of 

diabetic neuropathy. Therapies based on the mechanisms discussed in the current review 

have not yet been successful in ameliorating disease progression. We suggest that a new 

bioinformatics approach to diabetic neuropathy provides promise for the future 

identification of more promising molecular targets.
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Figure 1. Oxidative Stress and Mitochondrial Dysfunction [48]
Hyperglycemia increases production of reactive oxygen species (ROS) in mitochondria. 

NADH and FADH2 produced from the tricarboxylic acid cycle transfer to the mitochondria, 

where they serve as electron donors to the mitochondrial membrane-associated redox 

enzyme complexes. The electrons (e−) are shuttled through oxidoreductase complexes I, II, 

III and IV (cytochrome c), until they are donated to molecular oxygen, forming water. The 

electron transfer into complexes I, III and IV by NADH (and FADH2 via complex II to 

complex III) produces a proton gradient at the outer mitochondrial membrane, generating a 

potential between the inner mitochondrial membrane and outer mitochondrial membrane. 

This potential drives ATP synthesis, and is crucial for mitochondrial viability, function, and 

normal metabolism. As electrons are passed from complex II to complex III, however, ROS 

are produced as by-products. The levels of ROS produced during normal oxidative 

phosphorylation are minimal, and they are detoxified by cellular antioxidants such as 

glutathione, catalase and superoxide dismutase. The hyperglycemic cell, on the other hand, 

shuttles more glucose through the glycolytic and tricarboxylic acid cycles, providing the cell 

with an over-abundance of NADH and FADH2 electron donors. This produces a high proton 

gradient across the inner mitochondrial membrane, which increases the turnover of the 

initial complexes, and thereby produces increased levels of radicals. Accumulation of these 

radicals, or ROS, is severely detrimental to mitochondrial DNA, mitochondrial membranes 

and the whole cell. Abbreviations: Cyto-c, cytochrome c; CoQ10, coenzyme Q10; e−, 

electrons; GSH, glutathione; GSSG, oxidized glutathione; H2O2, hydrogen peroxide; O2•−, 

superoxide; Pi, phosphate; SOD, superoxide dismutase.

Figueroa-Romero et al. Page 20

Rev Endocr Metab Disord. Author manuscript; available in PMC 2014 November 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2. Schematic of Hyperglycemic Effects on Biochemical Pathways in Diabetic Neuropathy 
[49]
Excessive glucose metabolism generates excess NADH and leads to overload of the electron 

transport chain causing oxidative stress, damage to Mt, activation of PARP. PARP 

activation by ROS acts in conjunction with the hexosamine and PKC pathway to induce 

inflammation and neuronal dysfunction. A combination of oxidative stress and 

hyperglycemia activate the detrimental pathways of AGE, polyol, hexosamine and PKC 

pathways which lead to redox imbalance, gene expression disturbances, and further 

oxidative stress. These pathways also induce inflammation and neuronal dysfunction. 

Abbreviations: NF-κB, Nuclear factor kappa B; PARP, Poly(ADP-ribose) polymerase; 

PKC, Protein kinase C; AGE, Advanced glycation endproducts; RNS, Reactive nitrogen 

species; ROS, Reactive oxygen species, GSH, glutathione; GSSG, oxidized glutathione; 

UDPGlcNAc, UDP-N-Acetylglucosamine; VEGF, Vascular endothelial growth factor. 

(Reprinted from Pharmacol Ther. 2008 Jun 13. Diabetic neuropathy: Mechanisms to 

management, Edwards JL, Vincent AM, Cheng HL, Feldman EL Copy right 2008 with 

permission form Elsevier).
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Figure 3. Methodologies in Biomarker Research [49]
Activities in white are hypothesis driven and attempt to identify biomarkers based on the 

disequilibrium of identified targets in diabetic neuropathy, leading to an abnormal 

accumulation of products, such as modified proteins or small molecules. Activities in grey 

are discovery oriented and seek to identify features of the data set that are predictive of 

diabetic neuropathy without necessarily corresponding to a single target. (Reprinted from 

Pharmacol Ther. 2008 Jun 13. Diabetic neuropathy: Mechanisms to management, Edwards 

JL, Vincent AM, Cheng HL, Feldman EL Copy right 2008 with permission form Elsevier).
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Figure 4. Discovery Approach for Novel Targets in Diabetic Neuropathy (DN) [49]
Genome wide expression profiling of neural tissues from animal models with diabetic 

neuropathy (DN) will yield differentially regulated transcripts. Analyses of these data using 

Gene Ontology (GO) will provide the data needed to define categories of genes that are 

functionally related providing a molecular signature for diabetic neuropathy. Further 

analyses of these data can define relevant pathways related to functional gene categories and 

shared promoter modules among members of different gene categories, providing one or 

more specific targets for disease regulation. These targets can be verified at the mRNA 

level, confirming the identification of a novel disease target. (Reprinted from Pharmacol 

Ther. 2008 Jun 13. Diabetic neuropathy: Mechanisms to management, Edwards JL, Vincent 

AM, Cheng HL, Feldman EL Copy right 2008 with permission form Elsevier).
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Table 1

Rodent Models of Diabetic Neuropathy and Oxidative Stress.

Rodent Model of Diabetes Duration of Diabetes Neuropathy Assessment OX Stress Measurements Reference

STZ-induced

DBA/2J mice 24 wk NCV
Behavior

NT
HODEs

Wiggin 2008 (57)

Wistar rats 6 and 12 wk MNCV Hexokinase Gardiner 2007 (58)

Sprague–Dawley rats 8 wk
2 or 8 wk

endaravone

MNC
NBF

Behavior

LPO
SOD

Catalase

Saini 2007 (59)

Sprague–Dawley rats 6 wk untreated
2 wk reseratrol

MNCV
NBF

Behavior

MDA
Peroxynitrite

Catalase

Kumar 2007 (60)

Sprague–Dawley rats 4–12 wk untreated
12 wk enalapril/

L-158809

MNCV
NBF

O2
•− Coopey 2006 (61)

Male Wistar rats 2 wk untreated
2 wk ISO

Behavior NT
PAR
O2

•−

Ilnytska 2006 (62)

Sprague–Dawley rats 2 wk untreated
10 wk fidarestat

MNCV
NBF

GSH
8-OHdG
Sorbitol

Kuzumoto 2006 (63)

Sprague–Dawley rats 6 wk untreated
2 wk U83836E

MNCV
NBF

Behavior

SOD
Catalase

MDA

Sayyed 2006 (64)

Sprague–Dawley rats 6 wk untreated
2 wk troxol

MNCV
NBF

Behavior

SOD
Catalase

LPO
NOS

Sharma and Sayyed 
2006 (65)

Sprague–Dawley rats 4, 12, 52 wk MNCV
SNCV

8-OHdG Schmeichel 2003 (66)

C57BL6 mice 8 wk untreated
1 wk FP15

MNCV
SNCV

NT
PCr/Cr

Sorbitol, Glucose, Fructose

Obrosova 2005 (67)

COX-2 KO mice 24 wk MNCV
SNCV
INFD

MDA
O2

•−

GSH
PG

Kellogg 2007 (68)

AR KO mice 4, 8, 12 wk MNCV
SNCV

JNK activation
GSH
O2

•−

DNA damage
Sorbitol
8-OHdG

Ho 2006 (69)

Galactose-induced Wistar rats
PARP KO mice

4 wk untreated
2 wk 3-

aminobenzamide
13 wk

MNCV
SNCV
NBF

PAR
PCr/Cr

Nerve energy failure

Obrosova 2004 (70)

Spontaneous

ZDF rats 8–40 wk old MNCV
NBF

NT
O2

•−
Oltman 2005 (71)

BKS.Cg-m+/+Leprdb/J (BKS-db/db)
C57BL/6J STZ-induced

24 wk old MNCV
SNCV

Behavior
INFD

NT Sullivan 2007 (55)
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Rodent Model of Diabetes Duration of Diabetes Neuropathy Assessment OX Stress Measurements Reference

B6.V-Lepob/J 8 wk old untreated
3 wk FP15/FeTMPS

MNCV
SNCV

Behavior
INFD

NT
PAR

Vareniuk 2007 (72)

B6.V-Lepob/J 5 wk old untreated
6 wk fidarestat

MNCV
SNCV

Behavior
INFD

NT
PAR

Drel 2006 (73)

C57BL6/J High-fat diet 16 wk old High-fat 
diet

MNCV
SNCV

Behavior
INFD

NT
4-HNE
PAR

12/15-lipoxygenase
Sorbitol

Obrosova 2007 (74)

4-HNE, Aminoacid-(4)-hydrosynonenal adducts; 8-OHdG, 8-hydroxy-2′-deoxyguanosine; AR, Aldose reductase; FeTMPS, Fe(III) tetra-
mesitylpophyrin octasulfonate; FP15, Fe(III) tetrakis-2-(N-trethylene glycol monomethyl ether)-pyridyl porphyrin; ISO, 1,5-isoquinolinediol; LPO, 

lipid peroxidation; MDA, malondialdehyde; MNCN, Motor nerve conduction velocities; NBF, Nerve blood flow; NT, Nitrotyrosine; O2•−, 

Superoxide; PAR, poly(ADP)-ribose; PCr/Cr, phosphocreatinine/creatinine ratio; PG, Prostaglandin content; SNCV, Sensory nerve conduction 
velocities; SOD, Superoxide dismutase; STZ, Streptozotocin; ZDF, Zucker diabetic fatty.
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