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Abstract
Central sensitization represents an enhancement in the function of neurons and circuits in nociceptive
pathways caused by increases in membrane excitability and synaptic efficacy as well as to reduced
inhibition and is a manifestation of the remarkable plasticity of the somatosensory nervous system
in response to activity, inflammation, and neural injury. The net effect of central sensitization is to
recruit previously subthreshold synaptic inputs to nociceptive neurons, generating an increased or
augmented action potential output: a state of facilitation, potentiation, augmentation, or
amplification. Central sensitization is responsible for many of the temporal, spatial, and threshold
changes in pain sensibility in acute and chronic clinical pain settings and exemplifies the fundamental
contribution of the central nervous system to the generation of pain hypersensitivity. Because central
sensitization results from changes in the properties of neurons in the central nervous system, the pain
is no longer coupled, as acute nociceptive pain is, to the presence, intensity, or duration of noxious
peripheral stimuli. Instead, central sensitization produces pain hypersensitivity by changing the
sensory response elicited by normal inputs, including those that usually evoke innocuous sensations.

Perspective—In this article, we review the major triggers that initiate and maintain central
sensitization in healthy individuals in response to nociceptor input and in patients with inflammatory
and neuropathic pain, emphasizing the fundamental contribution and multiple mechanisms of
synaptic plasticity caused by changes in the density, nature, and properties of ionotropic and
metabotropic glutamate receptors.
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Acute nociceptive pain is that physiological sensation of hurt that results from the activation
of nociceptive pathways by peripheral stimuli of sufficient intensity to lead to or to threaten
tissue damage (noxious stimuli).374 Nociception, the detection of noxious stimuli,282 is a
protective process that helps prevent injury by generating both a reflex withdrawal from the
stimulus and as a sensation so unpleasant that it results in complex behavioral strategies to
avoid further contact with such stimuli. An additional important phenomenon that further
enhances this protective function is the sensitization of the nociceptive system that occurs after
repeated or particularly intense noxious stimuli, so that the threshold for its activation falls and
responses to subsequent inputs are amplified.132,376,380 In the absence of ongoing tissue injury,
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this state of heightened sensitivity returns over time to the normal baseline, where high-
intensity stimuli are again required to initiate nociceptive pain; the phenomenon is long lasting
but not permanent. The nociceptor-induced sensitization of the somatosensory system is
adaptive in that it makes the system hyperalert in conditions in which a risk of further damage
is high, for example, immediately after exposure to an intense or damaging stimulus. This
sensitization is the expression of use-dependent synaptic plasticity triggered in the central
nervous system (CNS) by the nociceptor input and was the first example of central sensitization,
discovered 26 years ago.369 Since then, we have learned that a number of different forms of
functional, chemical, and structural plasticity can sensitize the central nociceptive system to
produce pain hypersensitivity under both normal and pathological circumstances, some of
which are persistent.

In many clinical syndromes, pain is no longer protective. The pain in these situations arises
spontaneously, can be elicited by normally innocuous stimuli (allodynia), is exaggerated and
prolonged in response to noxious stimuli (hyperalgesia), and spreads beyond the site of injury
(secondary hyperalgesia). Central sensitization has provided a mechanistic explanation for
many of the temporal, spatial, and threshold changes in pain sensibility in acute and chronic
clinical pain settings and has highlighted the fundamental contribution of changes in the CNS
to the generation of abnormal pain sensitivity. Although phenomenologically central
sensitization may appear to be comparable to peripheral sensitization, it differs substantially,
both in terms of the molecular mechanisms responsible and its manifestation. Peripheral
sensitization represents a reduction in threshold and an amplification in the responsiveness of
nociceptors that occurs when the peripheral terminals of these high-threshold primary sensory
neurons are exposed to inflammatory mediators and damaged tissue46,105,124,242 and, in
consequence, is restricted to the site of tissue injury.124 Although peripheral sensitization
certainly contributes to the sensitization of the nociceptive system and thereby to inflammatory
pain hypersensitivity at inflamed sites (primary hyperalgesia), it nevertheless represents a form
of pain elicited by activation of nociceptors, albeit one with a lower threshold due to the
increased peripheral transduction sensitivity, and generally requires ongoing peripheral
pathology for its maintenance. Peripheral sensitization appears to play a major role in altered
heat but not mechanical sensitivity, which is a major feature of central sensitization.

Central sensitization, in contrast to peripheral sensitization, co-opts novel inputs to nociceptive
pathways including those that do not normally drive them, such as large low-threshold
mechanoreceptor myelinated fibers to produce Aβ fiber–mediated pain.376 It also produces
pain hypersensitivity in noninflamed tissue by changing the sensory response elicited by
normal inputs and increases pain sensitivity long after the initiating cause may have
disappeared and when no peripheral pathology may be present. Because central sensitization
results from changes in the properties of neurons in the CNS, the pain is no longer coupled, as
acute nociceptive pain is, to the presence, intensity, or duration of particular peripheral stimuli.
Instead, central sensitization represents an abnormal state of responsiveness or increased gain
of the nociceptive system. The pain is effectively generated as a consequence of changes within
the CNS that then alter how it responds to sensory inputs, rather than reflecting the presence
of peripheral noxious stimuli. In this respect, central sensitization represents a major functional
shift in the somatosensory system from high-threshold nociception to low-threshold pain
hypersensitivity. We all experience pain as arising from “out there,” and, in consequence,
imagine that it is actually triggered by noxious stimuli where we feel the pain. Central
sensitization reveals, however, that this in many cases is a sensory illusion; specific alterations
in the CNS can result in painful sensations occurring in the absence of either peripheral
pathology or noxious stimuli, and the target for treatment in these situations must be the CNS
not the periphery.
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Central sensitization corresponds to an enhancement in the functional status of neurons and
circuits in nociceptive pathways throughout the neuraxis caused by increases in membrane
excitability, synaptic efficacy, or a reduced inhibition. The net effect is that previously
subthreshold synaptic inputs are recruited to generate an increased or augmented action
potential output, a state of facilitation, potentiation, or amplification. The reason that these
cellular changes alter the system so profoundly is that normally only a small fraction of the
synaptic inputs to dorsal horn neurons contribute to their action potential output.373

Nociceptive-specific neurons, for example, although dominated by large monosynaptic and
polysynaptic synaptic potentials from nociceptors in their receptive field, typically also have
small-amplitude synaptic inputs from low-threshold afferents and from nociceptor inputs
outside their receptive fields, which constitute a subliminal fringe that normally does not drive
the output of the cells (Fig 1). Recruiting these subthreshold inputs to the output of a neuron
markedly alters its receptive field properties, with profound changes in receptive field
threshold, spatial, and temporal properties (Fig 2). This provides an opportunity for rapid
functional plasticity that can be revealed experimentally by increasing the excitability of the
neuron or by blocking inhibitory transmitters. After administration of GABA or glycine
receptor antagonists, for example, Aβ inputs are recruited to neurons in the superficial dorsal
horn,17 and pain-like behavior can be elicited by movement of just a few hairs.289 The receptive
field of somatosensory neurons are, therefore, not fixed or hard wired, but are instead highly
malleable. This malleability or plasticity is the substrate for the functional effects of central
sensitization, and the means is a change in synaptic efficacy.

When neurons in the dorsal horn spinal cord are subject to central sensitization, they exhibit
some or all the following: development of or increases in spontaneous activity, a reduction in
the threshold for activation by peripheral stimuli, increased responses to suprathreshold
stimulation, and an enlargement of their receptive fields (Fig 2). Several features appear
particular to central sensitization: conversion of nociceptive-specific neurons to wide-dynamic
neurons that now respond to both innocuous and noxious stimuli, progressive increases in the
responses elicited by a standard series of repeated innocuous stimuli (temporal windup), an
expansion of the spatial extent of their input, and changes that outlast an initiating trigger.
132,368,369,372,376 These electrophysiological changes correlate remarkably with the
development in human experimental subjects after a noxious conditioning input of allodynia
(particularly dynamic tactile or brush-evoked allodynia), the temporal summation of repeated
low-intensity stimuli from an innocuous sensation to pain, with “afterpain” on cessation of the
stimulus, and widespread secondary hyperalgesia. These changes can be elicited in human
volunteers by noxious stimulation of the skin (as with topical or intradermal capsaicin or
repeated heat stimuli340) and in the gastrointestinal tract by exposure to low pH solutions.272

Central sensitization contributes to neuropathic37 and inflammatory pain,26,274,395 migraine,
35 and irritable bowel syndrome.253 In these patients, it is involved in producing abnormal
responsiveness to noxious and innocuous stimuli and a spread of tenderness beyond lesion
sites. Central sensitization may also play a fundamental role in the abnormal and widespread
pain sensitivity in patients with fibromyalgia.6,68,301-303 Given the major role of central
sensitization in the generation of clinical pain hypersensitivity, it is essential that we understand
the triggers and mechanisms responsible for the induction and maintenance of the switch in
the somatosensory system from the physiological state, in which the sensory experiences
evoked by low-intensity stimuli (innocuous sensations) and noxious stimuli (pain) are quite
distinct and separate, to a dysfunctional hypersensitive system in which this discrimination is
lost.
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The Discovery of Central Sensitization
The first evidence for a central component to acute pain hypersensitivity was provided in
1983.369 Electrophysiological recordings from single biceps femoris α-motoneuron axons
were used to measure the output of the nociceptive system, in this case the flexor reflex
withdrawal response elicited by noxious stimuli (Fig 3). These recordings revealed, as
expected, that under normal conditions there was no spontaneous activity in the motor neurons
and that their activation required a noxious mechanical or thermal stimulus to the skin. These
neurons had high-threshold nociceptive-specific receptive fields restricted to the toes or hind
paw, in keeping with their activation only as part of the flexion withdrawal reflex. After
repeated peripheral noxious heat stimuli sufficient to generate mild inflammation of the hind
paw, however, an increased excitability of the motor neurons was detected that lasted for
several hours and included a reduction in threshold and enlargement of the cutaneous receptive
fields. The flexor motor neurons were now no longer nociceptive-specific but could be
activated by low-intensity (innocuous) peripheral inputs such as light touch.369 Three
experiments showed that this change in receptive field properties was due to alterations in the
CNS and not the periphery. First, electric stimulation of Aβ sensory fibers began to elicit
responses in the motor neurons after the conditioning noxious heat stimuli, whereas these inputs
elicited no response before. Second, a local anesthetic block of the site of the peripheral injury
did not result in collapse of the expanded receptive fields: The change was autonomous once
it was triggered by the peripheral input. Finally, the hypersensitivity produced by the noxious
heat could be mimicked in extent and duration by a brief 20-second low-frequency electrical
stimulation of the sural nerve only at C-fiber strength, which produced changes lasting for tens
of minutes. The interpretation of all these data was that noxious heat stimulation, by activating
C-fiber nociceptors, had induced a central plasticity of the nociceptive system, which was
thereafter capable of responding to stimuli outside of the injury area and to low-threshold
afferents that previously did not activate the nociceptive system. This led to the articulation of
a more general hypothesis that brief trains of nociceptor C-fiber input could trigger or condition
a long-lasting sensitization of the nociceptive system (an effect termed central sensitization)
by producing activity-dependent changes in the functional properties of neurons in the dorsal
horn of the spinal cord and that this contributed both to postinjury flexor reflex and pain
hypersensitivity.

Before the discovery of central sensitization, the receptive field properties of dorsal horn
neurons was thought to be fixed by the geometry of their dendrites relative to the central
terminals of sensory axons.33 Although plasticity of the receptive fields of dorsal horn neurons
had been shown to occur after peripheral nerve injury, this was thought to be due to a loss of
presynaptic inhibition increasing synaptic input from silent or ineffective synapses and not to
plasticity in dorsal horn neurons.71 After the first demonstration of central sensitization in
flexor motor neurons, essentially identical changes were soon described in many studies in
lamina I and V neurons in the dorsal horn of the spinal cord55,79,173,176,192,287,365,372 (Fig 3)
as well as in spinal nucleus pars caudalis (Sp5c),36 thalamus78 (Fig 3), amygdala,219,220 and
anterior cingulate cortex.364 More recently, functional magnetic resonance imaging, positron
emission tomography, and magnetoencephalography have revealed in human subjects that
several other brain structures implicated in pain (parabrachial nucleus, periaqueductal gray
[PAG], superior colliculus, prefrontal cortex) also exhibit changes compatible with increases
in excitability corresponding to central sensitization187,209,212,244,283 (Fig 3).

Activity-Dependent Central Sensitization
The original description of central sensitization referred to an activity- or use-dependent form
of functional synaptic plasticity that resulted in pain hypersensitivity after an intense noxious
stimulus. This plasticity was triggered by the activity evoked in dorsal horn neurons by input
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from C-nociceptors, as after repeated heat stimuli above 49°C,369 electrical stimulation of C-
fibers (1 Hz for 10 to 20 seconds),358 and chemical activation of nociceptors by irritant
compounds such as allyl isothiocyanate (mustard oil)372 and formalin, which both act through
the TRPA1 channel135,199 as well as capsaicin, which activates TRPV1 channels.158 To induce
central sensitization, the noxious stimulus must be intense, repeated, and sustained. Input from
many fibers is required over tens of seconds; a single stimulus, such as a pinch, is insufficient.
Peripheral tissue injury is not necessary, although the degree of noxious stimulation that
produces frank tissue injury almost always induces central sensitization, so that the
phenomenon is very prominent after post-traumatic or surgical injury. Interestingly, nociceptor
afferents innervating muscles or joints produce a longer-lasting central sensitization than those
that innervate skin.358

Once the phenomenon had been shown to be robust, easily activated, and detected in both
preclinical and human subjects, the issue then was what molecular mechanisms were
responsible. The first major mechanistic insight was that the induction and maintenance of
acute activity-dependent central sensitization was dependent on NMDA receptors,379 revealing
a key involvement of glutamate and its receptors. We now appreciate from 2 decades of
investigation by many labs that central sensitization comprises 2 temporal phases, each with
specific mechanisms. The early phosphorylation-dependent and transcription-independent
phase results mainly from rapid changes in glutamate receptor and ion channel properties.376

The later, longer-lasting, transcription-dependent phase drives synthesis of the new proteins
responsible for the longer-lasting form of central sensitization observed in several pathological
conditions.376 We will review the current understanding of these mechanisms.

Triggers of Activity-Dependent Central Sensitization
Glutamate, the fast transmitter of primary afferent neurons, binds to several receptors on
postsynaptic neurons in the dorsal horn of spinal cord, including ionotropic amino-3-
hydroxy-5-methyl-4-isoxazole propionate (AMPA), N-methyl-D-Aspartate (NMDA), and
Kainate (KA) receptors and several metabotropic (G-protein coupled) glutamate receptor
subtypes (mGluR). In the superficial laminae of the dorsal horn, AMPAR and NMDAR are
present in virtually every synapse and are arranged in a mosaic-like manner, whereas mGluRs
sit at the extremities of the postsynaptic density zone (PSD).10,11,15,247 At the subunit level,
NMDAR is a tetramer that contains 2 low-affinity glycine-binding NR1 subunits and 2 subunits
from the 6 different NR2A-D or NR3A/B subunits.305 The most common NMDA complexes in
the dorsal horn are composed of NR1-NR2A/B subunits.202,215,243 AMPAR is also a tetramer,
and its most abundant subunits in the dorsal horn of the spinal cord are the calcium (Ca2+)-
permeable subunits GluR1 and GluR3 and the non–Ca2+-permeable GluR2 subunit.252 In basal
conditions, inhibitory interneurons appear to preferentially express GluR1, whereas the
excitatory neurons appear to express mostly GluR2.145,338 The AMPAR complex can also be
a GluR1/GluR2 heteromer,11 in which case the receptor displays mainly GluR2 properties.
233 A subpopulation of lamina I neurons lacking the NK1 receptor and expressing the GluR4
(Ca2+-permeable) subunit has been identified.248 The mGluR family is composed of 8
receptors that form 3 groups, based on their sequence similarities and their coupling with
specific Gα-proteins.54 Group I mGluRs (mGluR1 and 5) are coupled with Gαq-proteins
(whose activation causes an increase of [Ca2+]i), whereas group II (mGluR 2 and 3) and group
III (mGluR4, 6, 7 and 8) are coupled with Gαi/o-proteins. All mGluRs except for mGluR6 and
8 are expressed in the spinal cord,346 whereas only mGluR6 appears not to be expressed by
primary afferent neurons.39 In addition, a lamina-specific pattern of expression has been
characterized for mGluR1α (lamina V), mGluR5 (laminas I-II),10,247 and mGluR2/3 (lamina
II inner),12 suggesting precise and distinct physiological roles for the different subtypes.
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Activation of NMDAR is an essential step in both initiating and maintaining activity-dependent
central sensitization as its blockade by noncompetitive (MK801) or competitive (D-CPP)
NMDAR antagonists prevent and reverse the hyperexcitability of nociceptive neurons induced
by nociceptor conditioning inputs184,379 and conditional deletion of NR1 abolishes NMDA
synaptic inputs and acute activity-dependent central sensitization.300 NMDAR is both a trigger
and effector of central sensitization. Under normal conditions, the NMDAR channel is blocked
in a voltage-dependent manner by a magnesium (Mg2+) ion sitting in the receptor pore.198

Sustained release by nociceptors of glutamate and the neuropeptides substance P and CGRP
leads to sufficient membrane depolarization to force Mg2+ to leave the NMDAR pore,
whereupon glutamate binding to the receptor generates an inward current.198 Removal of this
voltage-dependent block is a major mechanism for rapidly boosting synaptic efficacy and
allows entry of Ca2+ into the neuron, which then activates numerous intracellular pathways
that then contribute to the maintenance of central sensitization. In addition to the critical role
of NMDAR in increasing the excitability nociceptive neurons, activation of group I mGluRs
by glutamate also appear important for the development of central sensitization. Although these
receptors do not participate to basal nociception,221,392 their activation is necessary for activity-
dependent central sensitization mediated by C-fibers.14,67,165,296,392,393 In contrast, activation
of group II-III mGluRs is associated with a reduction of capsaicin-induced central sensitization.
296

Substance P (SP), which is co-released with glutamate by unmyelinated peptidergic
nociceptors, is also involved in the generation of central sensitization.8,146,183,192,365

Substance P binds to the neurokinin-1 (NK1) G-protein–coupled receptor, which is expressed
by spinothalamic, spinoparabrachial, and spino-PAG neurons101 and causes a long-lasting
membrane depolarization,112 and contributes to the temporal summation of C-fiber–evoked
synaptic potentials80,388,389 as well as to intracellular signaling. Ablation of NK1-positive
neurons in the spinal cord leads to a reduction in capsaicin-evoked central sensitization,
confirming the importance of projecting neurons expressing the substance P receptor in this
phenomenon.146,192 Calcitonin gene-related peptide (CGRP), also synthesized by small
diameter sensory neurons, potentiates the effects of SP367 and participates in central
sensitization through postsynaptic CGRP1 receptors, which activate PKA and PKC.307,308

CGRP also enhances release of brain-derived neurotrophic factor (BDNF) from trigeminal
nociceptors,34 which may contribute to its involvement in migraine and other primary
headaches.82,103

BDNF is a neurotrophic factor and synaptic modulator that is synthesized by nociceptor
neurons and released into the spinal cord404 in an activity-dependent manner,19 where it also
has a role in the production of central sensitization.113,144,330 On binding to its high-affinity
trkB receptor, BDNF enhances NMDAR-mediated C-fiber–evoked responses144 and causes
activation of several signaling pathways in spinothalamic track neurons, including ERK141,
245,292 and PKC.293

The inflammatory kinin bradykinin is produced in the spinal cord in response to intense
peripheral noxious stimuli and acts through its Gq-coupled B2 receptor, which is expressed by
dorsal horn neurons41,359 and boosts synaptic strength by activating PKC, PKA, and ERK.
152 ERK is also activated by a serotoninergic (5-HT) descending input involving the ionotropic
5-HT3 receptor143,310,313,396 and possibly the 5-HT7 GS-coupled receptor.29 Fig 4 summarizes
the key known synaptic triggers of central sensitization.

Signaling Pathways and Activity-Dependent Central Sensitization
An increase in intracellular Ca2+ beyond a certain threshold level appears to be the key trigger
for initiating activity-dependent central sensitization. Calcium influx through NMDAR
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appears to be particularly prominent in the induction phase but can also occur through calcium-
permeable AMPARs,159,355 voltage-gated calcium channels,52,376 as well as from release from
intracellular microsomal stores in response to activation of several metabotropic
receptors106,182 (Fig 5, A through C). Why is the calcium-induced activation of intracellular
kinases so important? The reason is that ionotropic NMDA and AMPA glutamate receptors
can be phosphorylated on several key residues located on their C-terminus,40,42 and this post-
translational modification changes their activity as well as their trafficking to or from the
membrane,40,161 which with similar post-translational changes in other ion channels, produces
the functional changes that manifest as central sensitization (Fig 6, A through C). AMPAR
subunit GluR1 residue Ser831 is phosphorylated by protein kinase C (PKC) and calcium-
calmodulin-dependent protein kinase II (CaM-KII); Ser845 is the phosphorylation target of
PKA, and GluR2 has 1 main site for phosphorylation by PKC, on Ser880.40 For the NR1 subunit
of NMDAR, PKC phosphorylates Ser896, whereas PKA has 2 potential phosphorylation sites
on Ser890 and Ser897.168,333 NMDAR conductance properties are modified by
phosphorylation of tyrosine residues located on the NR2A and NR2B subunits at 3 potential
sites (Tyr1292, 1325, or 1387 for NR2A and Tyr1252, 1336, or 1472 for NR2B), through
activation of nonreceptor tyrosine kinases such as Src or Fyn.42,106,107,268

Stimulation of AMPAR and group I mGluRs89,106,118,281 participate with NMDAR in the
activation of the intracellular pathways that sustain central sensitization. These include the
PLC/PKC pathway, through opening of Ca2+ channels on the endoplasmic reticulum,85,391 the
phosphatidylinositol-3-kinase (PI3 K) pathway,246 and the mitogen-activated protein kinase
(MAPK) pathway that involves the extracellular signal-regulated kinases (ERK1 and ERK2),
which are 44- and 42-kDa Ser/Thr kinases, respectively, with 90% sequence identity, and the
cAMP response element binding protein (CREB).130,138,141,357,363 One way that ERK and
CREB are activated is through an elevation in intracellular Ca2+ sufficient to drive a
calmodulin-induced stimulation of adenylyl cyclases 1 and 8, whose cAMP production in turn
activates PKA and subsequent cascade(s).363

The activation of ERK by phosphorylation is regulated by a core signaling module that consists
of an apical MAPK kinase kinase (MAP3 K), a MAPK kinase (MEK or MKK), and the
downstream ERK. Many different signaling pathways can induce ERK activation in addition
to its canonical ras/raf pathway, and this can be readily detected immunohistochemically in
the dorsal horn within minutes of peripheral noxious stimuli130 (Fig 7). The presence of
phosphorylated ERK reveals the anatomical distribution of those neurons whose intracellular
signaling has been activated by the nociceptor input and are presumably undergoing the
synaptic changes that constitute central sensitization120,131,141,152 (Fig 7). In the spinal cord,
ERK is only activated in neurons in response to intense peripheral noxious stimulation,
effectively identical to those stimuli that induce central sensitization,130,363 suggesting that
ERK phosphorylation is a better marker of the neural plasticity that mediates central
sensitization than c-Fos, which can be activated by low threshold stimuli that do not induce
central sensitization.126 Because the ERK pathway is composed of successive protein kinases,
each of which can be activated by several different signaling pathways,131 most of the triggers
of central sensitization such as NMDAR, group I mGluR, TrkB, NK1, or CGRP1 converge to
activate ERK120,130,131,171 (Fig 8). Once activated, ERK produces translational and post-
translational effects that participate in the maintenance of central sensitization in spinal cord
neurons.131,387 The post-translational effects include an increase of NMDAR function through
phosphorylation of its NR1 subunit152,293 (Fig 6, A), recruitment of AMPAR to the
membrane93,254 (Fig 6, B) leading to an increase in AMPAR, and NMDAR currents boosting
synaptic efficacy.152 Furthermore, ERK produces a decrease in K+ currents through
phosphorylation of the residue Ser616 of Kv4.2 channels leading to an increase in membrane
excitability118,119 (Fig 6, A). Transcriptional changes are mediated by activation of CREB as
well as other transcription factors, which drives expression of several genes including c-Fos,
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NK1, TrkB, and Cox-2131 (Fig 6, C). Inhibition of ERK activation using inhibitors of MEK
reduces behavioral measures of activity-dependent central sensitization.137,142

Nitric oxide (NO) synthesized by either neuronal or inducible NO synthases in the dorsal
horn381 also has a role in central sensitization.381-383 Potential mechanisms for NO actions
include the cGMP synthesis cascade, nitrosylation of membrane channels, ADP-ribosylation,
and production of reactive species.64,278 The NO-cGMP pathway involves soluble guanylate
cyclase, which is expressed by NK1-positive spinothalamic neurons, as well as inhibitory
interneurons.73 Fig 8 summarizes key intracellular pathways whose activation contributes to
the generation of central sensitization.

Effectors of Activity-Dependent Central Sensitization
AMPAR and NMDAR phosphorylation during central sensitization increases the activity/
density of these receptors, leading to postsynaptic hyperexcitability.32,86-88,134,178,345,394,
407,408 The first phase of central sensitization is a fast augmentation of excitatory glutamatergic
synapses in the superficial dorsal horn that strengthens nociceptive transmission and recruits
non-nociceptive input to the pathway. This is achieved by phosphorylation of numerous
receptor and ion channel targets that lead to changes in threshold, channel kinetics, and voltage
dependence, as well as a modification in the trafficking of the receptors to the synapse (Fig 6,
A and B). On noxious stimulation, PKA phosphorylates GluR1 subunits,87,88,214 leading to
an insertion of these receptors into the synapse84,93 and thereby an increase in synaptic strength.
20 Phosphorylation of GluR1-containing AMPAR by PKC and CaMKII also increases the
excitability of nociceptive neurons.40,88

NR1 phosphorylation by PKA408 or PKC32,407 participates in the development of
hypersensitivity97,262,345 by increasing the response of NMDARs to glutamate.44,259

Phosphorylation of the NR2B subunit of NMDAR, mediated through Src activation, increases
the opening of the receptor channel268 and prevents endocytosis of activated receptors by
disrupting the binding site of AP-2, a protein involved in clathrin-coated endocytosic vesicle
formation.42 Decoupling Src interaction with NMDAR blocks NR2B phosphorylation and
reduces formalin-induced and inflammatory pain without altering basal nociceptive pain.178

Activation of PKC contributes to hyperexcitability in nociceptive neurons by several different
pathways. First, PKC reduces the Mg2+ block of NMDAR and increases the probability of
channel opening, facilitating the activated state of NMDAR.44 Second, activation of PKC
decreases inhibitory transmission at the segmental level by reducing GABA and glycine tonic
inhibition174 and the descending inhibition driven from the PAG.175 Disinhibition, mediated
by whatever means, leaves dorsal horn neurons more susceptible to activation by excitatory
inputs including non-nociceptive A-fibers, and is 1 of the major mechanisms triggering and
maintaining central sensitization.17,289,341,390 Finally, PKC contributes with PKA to the
activation of ERK in a manner that requires their coactivation and is triggered by the central
release of bradykinin.152

Activation of guanylate cyclase seems to be the major way that NO contributes to the induction
of sensitization275,322,403 through increases in neuronal excitability and a reduction in
inhibition,173,176,275 although an NO-mediated activation of ADP-ribosyltransferase may
participate in the maintenance of central sensitization.403

Global Features of Activity-Dependent Central Sensitization
The key features of acute activity-dependent central sensitization are that it is induced with a
short latency (seconds) by intense, repeated, or sustained nociceptor inputs and typically lasts
for tens of minutes to several hours in the absence of further nociceptor input. It generally
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requires activation of NMDA receptors for its induction, and these receptors contribute to its
maintenance. Nevertheless, as reviewed above, multiple different triggers can contribute to the
establishment of this form of central sensitization: glutamate acting on NMDAR, but also on
AMPAR and mGluR, the neuropeptides substance P and CGRP, the kinin bradykinin, as well
as BDNF and NO (Fig 4). The reason so many different transmitters, modulators, and their
receptors are involved is that it is not their specific action that is important but rather that they
are released directly from or induced in response to nociceptor afferent activity, and each can
separately or together initiate the activation of those multiple intracellular signaling pathways
that lead to the establishment of hyperexcitability in dorsal horn neurons (Figs 6 and 8). In
other words, there are many parallel inputs to dorsal horn neurons that can independently or
cooperatively initiate central sensitization. Elevation in intracellular calcium, by whatever
means, is 1 major trigger, activating multiple calcium-dependent kinases that act on receptors
and ion channels to increase synaptic efficacy (Figs 5 and 6). Many central sensitization-
inducing inputs also activate ERK, and this MAPK appears to have a pivotal role, contributing
to increases in AMPA and NMDA currents as well as reducing potassium currents (Fig 6, A).
However, even this kinase may not be essential. Other kinases such as PKC, PKA, and Src
can, independent of ERK, also modulate ionotropic receptors to lead to an increase in synaptic
efficacy (Fig 6, A).

What has become clear is that there is no single defining molecular mechanism of central
sensitization but rather that it is a general phenomenon, one that produces distinct changes in
somatosensory processing but nevertheless can be mediated by several different processes that,
in response to nociceptor input, can (1) increase membrane excitability, (2) facilitate synaptic
strength, or (3) decrease inhibitory influences in dorsal horn neurons. Similarly, the effectors
of this plasticity are multiple: changes in the threshold and activation kinetics of NMDA and
AMPA receptors and in their trafficking to the membrane, alterations in ion channels to increase
inward currents and reduce outward currents, and reductions in the release or activity of GABA
and glycine (Fig 9). These changes produce dramatic alterations in function. However, they
are usually relatively short-lasting and reversible. Phosphatases will dephosphorylate receptors
and ion channels resetting their activity to baseline levels, trafficking to the membrane will
reverse by endocytosis, and, with time, the increased gain of the nociceptive neurons will fade,
at least in the absence of any further triggering inputs.186,400-402 Different, transcription-
dependent changes are required for longer-lasting effects, and these generally do not occur in
response only to nociceptor activity but are the consequence of peripheral inflammation and
nerve injury (see below). Activity-dependent central sensitization, even though it increases
pain sensitivity, is in most situations an adaptive mechanism. Unlike nociceptive pain, which
warns of potential damage in response to noxious stimuli, central sensitization creates a
situation in which pain is elicited by innocuous stimuli. This change is protective, because it
helps healing by limiting use of an injured body part until the injury is fully repaired. Central
sensitization becomes pathological, however, if inflammation persists, as with rheumatoid
arthritis, in which no healing occurs, and in situations in which central sensitization becomes
autonomous and is maintained in the absence of active peripheral pathology. Central
sensitization represents not only a state in which pain can be triggered by less intense inputs
but in which the central sensitization itself can be maintained by a lower level or different kind
of input. Ongoing activity in C-fibers, even at levels that do not elicit central sensitization in
basal conditions, is sufficient to maintain central sensitization once it has been induced for
prolonged periods (days).153 Furthermore, although nociceptor input is required to trigger
central sensitization, phenotypic changes in myelinated fibers after inflammation and nerve
injury can enable these afferents to acquire the capacity to generate central sensitization (see
later).
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Activity-Dependent Central Sensitization and Synaptic Plasticity
That the activity-dependent synaptic plasticity in the dorsal horn responsible for central
sensitization is reversible differs from the permanent activity-dependent synaptic change in
the cortex that leads to long-term memory, long-term potentiation (LTP), in which the efficacy
only of activated synapses is changed. Synaptic changes with some resemblance to cortical
LTP do occur in the spinal cord, that is, a form of homosynaptic potentiation. However, the
major synaptic alteration underlying activity-dependent central sensitization is heterosynaptic
potentiation, in which activity in 1 set of synapses enhances activity in nonactivated synapses,
typically by “sensitizing” the entire neuron, something that never occurs with cortical LTP.

Homosynaptic potentiation is a type of use-dependent facilitation of a synapse evoked by
activation of that same synapse (Fig 10, A). Classic LTP in the CA1 region of the hippocampus
is formally defined as input-specific homosynaptic facilitation27,164,384 and is dependent on
NMDAR activation, Ca2+ influx, and activation of Ca2+-dependent intracellular signaling
pathways, notably the CaMKII pathway.164 Although the increased Ca2+ is relatively
widespread in neurons after tetanic conditioning stimulation of afferents,128,182,260 only the
stimulated synapse is potentiated.164,260 The development of LTP by 2 independent synapses
using asynchronous pairing stimulation has been described in the hippocampus, but, once
again, only conditioned synapses are potentiated.123

One form of homosynaptic facilitation in spinal cord neurons is windup, in which the action
potential discharge elicited by a low-frequency (0.5 to 5 Hz) train of identical C-fiber strength
stimuli gets larger on each successive stimulus200 (Fig 11). Windup is the result of the activation
of NK1 and CGRP1 receptors after release of substance P and CGRP from peptidergic
nociceptors to produce a cumulative membrane depolarization from the temporal summation
of slow synaptic potentials.290 This then enables activation of NMDAR by removal of the
Mg2+ block, further boosting the responses in a nonlinear fashion63,72,331,379 (Fig 11). The
stimuli that induce windup (repeated C-fiber stimulation) can lead to central sensitization,379

and, although windup is often considered to be an aspect of central sensitization, it is instead
the reflection of activity-dependent excitability increases in neurons during a nociceptor
conditioning paradigm rather than changes that follow such inputs, which is when central
sensitization manifests. Windup disappears within tens of seconds of the end of the stimulus
train as the membrane potential returns to its normal resting level (Fig 11).

Another form of homosynaptic facilitation occurs in NK1-positive lamina I neurons in the
dorsal horn neuron. This has been termed LTP, although, unlike classic hippocampal LTP, this
form of homosynaptic facilitation appears not to be persistent, or at least the functional effects
on pain sensitivity are not permanent instead lasting, like central sensitization for a few hours,
with no evident change equivalent to long-term memory. Perhaps, therefore, to avoid confusion
with cortical plasticity, the term LTP should be avoided for homosynaptic potentiation in the
spinal cord because the changes in the dorsal horn are long-lasting (hours) rather than long-
term (persistent). The original description of this long-lasting homosynaptic potentiation in the
dorsal horn referred to an activity-dependent facilitation of excitatory postsynaptic currents in
spinoparabrachial neurons in response to high-frequency (tetanic burst; 100 Hz) stimulation
of C-fibers.127,177,271 The physiological relevance of this phenomenon was questionable
because C-fibers do not fire at such high frequencies. Conditioning C-fiber stimulation at a
low frequency (2 Hz) was subsequently shown also to elicit a long-lasting homosynaptic
potentiation in lamina I spino-PAG neurons but not in spinoparabrachial neurons.128 This low-
frequency potentiation is dependent on elevations in Ca2+, which activates PLC, PKC,
CaMKII, and NOS.128 Capsaicin and formalin injection also evoke a homosynaptic long-
lasting potentiation, as manifested by an enhancement of C-fiber–evoked synaptic potentials
after the capsaicin/formalin evoked conditioning input.128 Capsaicin is, of course, also a potent
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inducer of activity-dependent central sensitization,294,340,383 characterized by the production
of secondary hyperalgesia and tactile allodynia. However, both of these particular forms of
pain hypersensitivity reflect heterosynaptic and not homosynaptic facilitation. Indeed,
heterosynaptic facilitation characterizes most major changes in the receptive field properties
of neurons and in pain sensitivity, in preclinical models, and human subjects368,369,376 (Fig
10, B).

Interestingly, healthy human subjects receiving high-frequency stimulation of C-fibers exhibit
increased pain in the stimulated region, quite possibly caused by homosynaptic facilitation,
but also show evidence of heterosynaptic facilitation, as manifested by dynamic mechanical
allodynia in adjacent nonstimulated areas.149 The combination of the homosynaptic
potentiation of conditioning nociceptor inputs and the heterosynaptic facilitation of
nonconditioned fibers in the nociceptive pathway constitutes central sensitization.

Heterosynaptic facilitation represents a form of activity-dependent facilitation where activity
in 1 set of synapses (the conditioning input) augments subsequent activity in another
nonactivated group of synapses (the test input) (Fig 10, B). For homosynaptic potentiation, the
test and conditioning inputs are the same; for heterosynaptic facilitation they are different.
“LTP”-like phenomena in spinobrachial neurons can only account for the augmentation of the
same C-fiber inputs that evoked the facilitation and cannot contribute to either secondary
hyperalgesia or tactile allodynia. Repeated nociceptor input, such as that generated by
capsaicin, will simultaneously generate both a potentiation of the activated C-fiber synapses
(homosynaptic), and, unlike LTP in the hippocampus, also a potentiation of neighboring
nonactivated synapses (heterosynaptic). It seems likely, therefore, that long-lasting
potentiation in projecting dorsal horn neurons is simply a restricted aspect of the general
widespread changes induced in these neurons by nociceptor activity.

Heterosynaptic potentiation appears to dominate the functional sensory manifestations of use-
dependent central sensitization. After injection of capsaicin, for example, the thresholds of
sensory fibers innervating the area surrounding the injection site are not modified,23,157,340,
365 but pain hypersensitivity in these areas is prominent and depends on centrally mediated
heterosynaptic facilitation. The same argument holds for the activation of pain in response to
tactile stimulation or Aβ fiber inputs during central sensitization. It is no surprise, then, that
spinal “LTP” shares major mechanisms with central sensitization (NMDAR, Ca2+, kinases,
and NO) because it is very likely that the phenomenon of central sensitization includes both
homosynaptic and heterosynaptic facilitations triggered by the same process; the major
difference is that heterosynaptic potentiation results from the spread of signaling from the
conditioning synapse to other synapses in the neuron182,270,371 (Fig 10, B). Homosynaptic
changes will contribute with peripheral sensitization to primary hyperalgesia,128,270 whereas
heterosynaptic facilitation alone is responsible for secondary hyperalgesia and allodynia.

Although several different forms of LTP have been characterized in the hippocampus,188,
224,384 “spreading” or heterosynaptic LTP has not been reported, even though release of
Ca2+ from intracellular stores can cause a spread of long-term depression (LTD) to
neighboring, unstimulated synapses.227 What, then, is responsible for heterosynaptic
facilitation in dorsal horn neurons? Two major candidates are the activation of mGluRs and
NO. mGluRs are coupled to the Ca2+ channels of the endoplasmic reticulum85 and play an
important role in central sensitization.7 Consequently, the release of intracellular Ca2+ in spinal
cord neurons on mGluR activation may participate in spreading facilitation from conditioned
synapses to neighboring test synapses. NO is also a major effector of spinal cord neuronal
plasticity211,309 and diffuses rapidly from the site of its production to produce multiple effects
at a distance via its downstream signaling pathways, and in this way may contribute to the
heterosynaptic facilitation characteristic of central sensitization. It is certainly likely that these
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and other “spreading” signals cooperate to produce the widespread synaptic facilitation so
characteristic to central sensitization. Scaffolding proteins play a major role in the addressing
of specific kinases to the synapse and represent another potential mechanism for widespread
synaptic facilitation. A recent study has shown that in the hippocampus, CaMKII activation is
restricted to the synaptic bouton of a conditioned synapse, thus only allowing homosynaptic
facilitation at that specific site.164 It is likely in the dorsal horn that CaMKII activation will be
much more widespread and indeed the dendrites of dorsal horn neurons lack synaptic boutons.

Central Sensitization in Pathological Settings
In addition to its role in rapidly and reversibly sensitizing the nociceptive system by activity-
dependent changes in synaptic strength and excitability, central sensitization also contributes
to the longer-lasting and sometimes persistent pain hypersensitivity present in pathological
situations involving inflammation and damage to the nervous system. The molecular and
cellular mechanisms involved include some that are also responsible for activity-dependent
central sensitization and others that are unique to either inflammation or nerve injury. NMDAR,
47,193,255,280,315 AMPAR,180,239 group I mGluR,7,65,75,92,102,118,221,288,392,405 group II-III
mGluR,45,104,194,207,286,398 BDNF,144,179,190,230 SP and CGRP,2,4,163 NO,50,316 and
bradykinin241 have all been shown to contribute both to the development of central sensitization
and to pain hypersensitivity in inflammatory and neuropathic pain models.

Inflammatory Pain
Peripheral inflammation induces a phenotypic switch in primary sensory neurons that
comprises a change in their neurochemical character and properties due to alterations in
transcription and translation. We will only discuss here those changes that relate specifically
to central sensitization by virtue of changes in the synaptic input produced by the afferents and
will not review the major changes that also alter peripheral transduction sensitivity and
membrane excitability (peripheral sensitization), although of course, anything that increases
nociceptor afferent input will also indirectly lead to increased central sensitization. Large DRG
neurons begin, unlike in their naive condition, to express SP and BDNF when their peripheral
terminals are exposed to inflammatory signals and nerve growth factor (NGF).191,223

Consequently, activation of the myelinated fibers by low-intensity innocuous stimuli now
releases these neuropeptides in the spinal cord, and conditioning stimulation of the afferents
acquires the capacity to generate central sensitization, something they normally cannot
do185,190,223 (Fig 12). After peripheral inflammation, Aβ-mediated synaptic input to
superficial dorsal horn neurons is substantially increased from the very low levels found in
noninflamed animals.16 TrkA-expressing nociceptors, instead of a phenotypic switch, begin
to express higher levels of neuropeptides and other NGF-dependent proteins as a result of
exposure to the increased NGF produced by inflammation.370,375

A critical central pathway for the generation of inflammatory pain hypersensitivity involves
induction of cyclooxygenase-2 (Cox-2) in dorsal horn neurons, to drive production of
prostaglandin E2 (PGE2).269,349 PGE2 binds to its EP2 GPCR on dorsal horn neurons to
potentiate AM-PAR and NMDAR currents,152 activate nonselective cation channels,18 and
reduce in inhibitory glycinergic neurotransmission by blocking glycinergic receptors with α3
subunits9,111,152,213 (Fig 12). PGE2 also acts on EP4 receptors on presynaptic terminals to
increase transmitter release.350 The importance of the central neuronal induction of COX-2 to
inflammatory hyperalgesia is revealed by conditional deletion of COX-2 only in neurons,
which results in the retention of peripheral inflammation and heat hyperalgesia but an almost
complete loss of mechanical pain hypersensitivity.350

Under normal conditions, microglia are the only immunocompetent cells of the nervous
system66,362 and constantly probe or survey the CNS parenchyma to maintain homeostasis.
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62,225 After peripheral inflammation, some spinal cord microglial cells change their shape,
function, and chemical expression.115,258,311,312 In particular, p38 MAPK is activated311,312

and leads to the synthesis and release of pro-inflammatory cytokines,115,258 among which,
IL-1β and TNF-α contribute to the development of central sensitization by enhancing excitatory
and reducing inhibitory currents and by activating induction of COX-2142,269 (Fig 12).

Neurons in the superficial lamina of the dorsal horn usually display a GluR2 AMPAR
phenotype (ie, are Ca2+-impermeable)252; however, peripheral inflammation triggers a shift
from GluR2/3 to GluR1-containing AMPARs at the membrane159,238,355 (see “PSD Proteins
and AMPAR Recycling and Subunit Switch,” below). Under these conditions, activation of
AMPAR elicits entry of Ca2+, which can then participate in the activation of the signaling
pathways that drive central sensitization. Ca2+-permeable AMPARs appear to be a major
source of the [Ca2+]i increase in inflammatory pain, generating as much Ca2+ influx as with
NMDAR activation.182 The functional state of NMDAR is also modified in response to
peripheral inflammation, with phosphorylation of NR2B subunits by Src resulting in increased
activity of the receptors106,107,178 and in their maintenance at the synapse.42 Finally, peripheral
inflammation also promotes group I mGluR insertion into the membrane (mGluR5) and closer
to the synapse (mGluR1), thereby further clustering these receptors at the synapse.247

Neuropathic Pain
After peripheral nerve injury, damaged and nondamaged A- and C-fibers begin to generate
spontaneous action potentials. Because these do not arise from the peripheral terminal, it is a
form of ectopic input.70,74 Such input in C-fibers can initiate and then maintain activity-
dependent central sensitization in the dorsal horn.154 However, because of chemical and
structural changes in A fibers,56,229,386 input in these afferents can also begin to drive central
sensitization.69 Injured, and to a much lesser extent, noninjured sensory neurons in the dorsal
root ganglion exhibit a massive change in transcription that alter their membrane properties,
growth, and transmitter function.56,231,232,386 These changes are much greater than those that
occur in response to peripheral inflammation, where only a few tens of transcripts are altered
in the DRG195 and involve altered expression of about 1000 transcripts, including ion channels,
receptors, transmitters, and the molecular machinery necessary for axon regeneration.56,261

Among the many changes, large fibers begin to express new transmitters and neuromodulators
including substance P and BDNF and the synthetic enzymes for tetrahydrobiopterin, an
essential cofactor for NOS. Stimulation of non-nociceptive fibers now triggers release of
factors that can drive central sensitization.24,56,91,229,327,386

Structural changes also contribute to altered synaptic function. Peripheral nerve injury leads
to a transganglionic degeneration of C-fiber terminals in lamina II.13,136 This loss of
presynaptic input, together with the triggering of increases in the intrinsic axonal growth
capacity as part of the regenerative response of the injured neurons, provides an opportunity
and the molecular means for myelinated A-β fibers to sprout from laminae III-IV into laminae
I-II and make contact with nociceptive-specific neurons.166,191,285,377,378 The original
experiments describing the sprouting phenomenon were conducted using cholera toxin B
subunit as a selective tracer for A-fibers as well as single axonal label with HRP. The selectivity
of this toxin after peripheral nerve injury is somewhat controversial.125,339 Nevertheless,
immunostaining for c-Fos activation and electrophysio-logical recordings have clearly
established that peripheral nerve injury causes large myelinated fibers to begin to drive
nociceptive neurons in superficial lamina.24,151,235,366

A reduction in the synthesis, release, or activity of inhibitory transmitters leads to a state of
disinhibition, whose net functional effects are very similar to that produced by increases in
synaptic strength of excitatory synapses and in membrane excitability.289,341,390 In

Latremoliere and Woolf Page 13

J Pain. Author manuscript; available in PMC 2010 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



neuropathic pain states, there is substantial disinhibition in the superficial dorsal horn with loss
of GABAergic and a reduction in glycinergic inhibitory currents210 that can be attributed, at
least in part, to apoptosis of inhibitory interneurons.277 This neuronal death appears to be the
result of an NMDAR-induced excitotoxicity that develops over time rather than to the large
amount of glutamate released centrally at the time of nerve injury.277 One laboratory failed to
find significant loss of neurons or of GA-BAergic content in the dorsal horn of neuropathic
pain animal models.249-251 The reasons for this discrepancy are not clear but may reflect
technical differences in how the studies were performed. Interestingly, the reduction in
glycinergic neurotransmission caused by the activation of EP2 receptors after peripheral
inflammation does not appear to operate after nerve injury, further indicating that some
inflammatory and neuropathic pain mechanisms differ.117

Another mechanism contributing to the reduction in segmental inhibition in a subpopulation
of lamina I neurons in the spinal cord after nerve injury is dependent on BDNF effects on an
anion transporter, changing anion gradients across neuronal membrane to alter the inhibitory
efficacy of GABA. Under normal conditions, the intracellular concentrations of Cl- are
maintained by the opposed effects of Cl--cotransporter K+-Cl- exporter 2 channels (KCC2) and
Na+-K+-Cl- exporter 1 channels (NKCC1). KCC2 drives Cl- ions out of the cells (along with
K+) and NKCC1 is responsible for an influx of K+, Na+, and Cl- into the cells. The net effect
of these 2 co-transporters is a steady-state Cl- concentration gradient in which opening of Cl-
channels (such as GABAA receptors) causes entry of Cl- into the neuron and hyperpolarizes
the neurons. After peripheral nerve injury, BDNF released by activated microglial cells results
in a reduction of KCC2 expression in a subset of neurons in the superficial lamina of the dorsal
horn.57,58,203 Consequently, activation of GABAA receptors by GABA result in a diminution
or absence of Cl- entry into the cell and thus a disinhibition of these nociceptive neurons57,
58,179,203 (Fig 12). As after peripheral inflammation, there is also an increase in descending
excitatory controls from the RVM in the brainstem after peripheral nerve injury, as well as a
reduction of descending inhibitory controls.60,95,351,356

Peripheral nerve injury causes a massive activation of, and change in, glial cells in the spinal
cord as well as infiltration of peripheral immune-competent cells, notably macrophages and
T-cells.38,317,360 The extent and duration of the changes in microglia and astrocytes is much
greater than in response to peripheral inflammation. Activated microglia produce and release
trophic factors, neurotransmitters, cytokines, and reactive oxygen species263,361 and appear to
play an essential step in the development of pain after nerve injury by triggering central
sensitization through their interaction with neurons.133,160,162,201,206,256,257,352 Numerous
signals trigger microglial activation and recruitment, including ATP and NO,62,81,225

cytokines, and chemokines, some of which are released by injured sensory neurons and others
by microglial cells themselves or by astrocytes and T-cells.1,3,66,76,204,348,361,362 Release of
cytokines by microglia increases neuronal excitability through activation of ERK and CREB.
131,142 Activated microglia also release BDNF and NO,58,116 promoting segmental
disinhibition.57 Finally, microglia can also provoke neuronal death by producing ROS, pro-
apoptotic cytokines such as TNF,121 and by a diminished glutamate uptake.48,326,332 T-cells
produce specific cytokines such as IFN-γ, which reduce GABAergic currents in the dorsal
horn354 through activation of IFN-γ receptors353 and also activate and recruit microglia.
Astrocytes also become activated after peripheral nerve injury,98,131,205 with a slower onset
and more prolonged time course than microglia, and may play more of a role in the maintenance
of neuropathic pain hypersensitivity than microglia.94,399,406 What seems clear is that multiple
different mechanisms operate after nerve injury to increase excitability and reduce inhibition.
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Scaffolding Proteins, Synaptic Plasticity, and Central Sensitization During
Inflammation and After Nerve Injury

The proteins that make up the PSD can drive a major functional reorganization of synapses,
modifying post-synaptic efficacy by altering receptor density at the membrane and producing
switches from Ca2+-impermeable to Ca2+-permeable AMPARs (Fig 13). The PSD is not simply
a structural landmark of the synapse but contains elements essential both for the formation of
the synapse and for changes in its properties. Absence of scaffolding proteins or specific
disruption of their binding sites results in a dramatic reduction in synaptic plasticity because
the proteins contribute both to transcriptional and post-translational events. They initiate
signaling cascades that lead to the activation of transcription factors, traffic newly synthesized
receptors to the PSD, and “address” kinases and phosphatases to specific receptors in a
stimulus-dependent manner. Although the involvement of the PSD in synaptic plasticity in the
cortex is much better established than in the spinal cord, there is increasing evidence for a
major role for the PSD in changing synaptic efficacy in response to peripheral inflammation
and nerve injury.

The PSD consists of cytoskeletal proteins, signaling molecules, membrane receptors, and
scaffolding proteins.234 Scaffolding proteins are families of proteins characterized by their
ability to interact with numerous partners, and these proteins form the dense molecular structure
of the postsynaptic component of the synapse. A particularly abundant component of the PSD
are proteins containing a specific peptidergic domain called PDZ, which is named after the
protein in which the sequence was first identified (postsynaptic density protein 95 [PSD-95]/
discs large/zonula occludens 1). This family of proteins includes, among hundreds of members,
the 4 membrane-associated guanylate kinases (MAGUK): PSD-95, PSD-93, synapse
associated protein (SAP)-97, SAP-102. The MAGUKs represent the most abundant scaffolding
protein family in the PSD234 and are characterized by 3 PDZ domains, an Src homology region
(SH3) domain, and a guanylate kinase-like (GK) domain,148 making them central elements of
the synapse scaffold. The prime binding protein for the MAGUK family is the NMDAR subunit
NR2,155 but it also binds to the transmembrane AMPAR regulatory proteins (TARPs),43

nonreceptor tyrosine kinases,329 nNOS,30,31 GKAP,217 and AKAP79/150.53 MAGUKs can
be seen as the functional scaffold of the PSD and are essential for the structural integrity of
synapses but also modulate the insertion of glutamate receptors into the synapse and physically
bring together key enzymes to the PSD.59,148,167,197,265 Knock-down of PSD-95 and PSD-93,
as well as targeted mutagenesis of the residues required for their protein:protein interaction,
both prevent and reduce central sensitization in normal conditions321 as well as in
inflammatory319,323,397 and neuropathic pain models99,320,323,397 but do not alter nociception
or locomotor functions.319-321,323

Another member of the PDZ family, stargazin, is a 4-transmembrane domain protein whose
putative secondary structure is close to the Ca2+-channel γ subunit, and was named γ2.170

Stargazin however, does not play an important role in neuronal Ca2+ channels170 but is instead
highly concentrated in the PSD and co-immunoprecipitates with GluR1, 2, and 4.43,335 The
protein is a major AMPAR partner, along with the 4 other isoforms, γ3, γ4, γ7, and γ8,140,335

which form the TARP subgroup.335 Stargazin traffics AMPAR from the endoplasmic
reticulum to the extrasynaptic membrane.43,334 Once stargazin and AMPAR are addressed to
the extrasynaptic membrane, their recruitment to the synapse requires interaction of the C-
terminus segment of stargazin with PSD-95.21,276 Activity-dependent phosphorylation of
stargazin by PKC and CaMKII342 produces a massive insertion of AMPAR into the membrane,
337 whereas stargazin's dephosphorylation by PP1 or PP2B reduces the number of AMPAR at
the synapse.337 In addition, via the interaction between stargazin's ectodomain and the
glutamate binding region of AMPAR, stargazin modulates the activity of AMPAR by slowing
channel deactivation and desensitization and increasing the affinity of the receptors for
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glutamate,49,334,336 thereby potentiating synaptic strength. Disruption of stargazin in the spinal
cord inhibits the second phase of formalin-induced pain and reduces the heat hyperalgesia
caused by intraplantar CFA injection.318 Recently, cornichon homolog 2 (CNIH-2) and
cornichon homolog 3 (CNIH-3) have been found to be novel partner proteins for AMPAR in
the CNS.279 Cornichon proteins bind to GluR1-4 AM-PAR and, as for stargazin, they promote
AMPAR surface expression and slow their deactivation kinetics.279 Because their expression
in the CNS is estimated to be in 70% of neurons, and because cornichon and stargazin appear
to be mutually exclusive,279 the determination of their presence in spinal cord neurons and
their role in central sensitization is something that needs to be investigated.

EphrinB-ephBR receptor interactions participate in NMDAR clustering at the PSD.90 EphBRs
are receptor tyrosine kinases expressed by postsynaptic neurons, whereas EphrinB is anchored
to the presynaptic membrane.156 The kinase activity of EphBR is not required for the initial
clustering of NMDAR at the synapse but is essential for their maintenance.61 Stimulation of
EphBR potentiates NMDAR-induced Ca2+ influx and the phosphorylation of CREB through
the activation of the nonreceptor tyrosine kinase src314 and recruits CaM-KII to the
synapse236 to increase NMDAR activity.314 Activation of EphBR in the spinal cord induces
thermal hyperalgesia (but not allodynia),22,299 without modifying nociception.22 Inhibition of
EphRB prevents or reverses inflammatory22,291 and neuropathic150,299 pain and prevents
establishment of NMDAR-induced spinal cord “LTP.”299 More specifically, targeted
disruption of the coupling between EphRB-activated Src and NR2B also prevents the
development of central sensitization without altering basal nociceptive transmission.178 In
addition, sustained nociceptive activity leads to an upregulation and reorganization of
presynaptic EphB increasing EphB-EphRB interaction.22,298,299

The nonreceptor tyrosine kinase family also includes Fyn, which phosphorylates NR2
subunits268 and binds to PSD-93 to phosphorylate NR2A/B

273 and could play a role in the
maintenance of neuropathic pain.5

NMDA receptors are structurally connected with group I metabotropic glutamate receptors
through a complex composed of PSD-95, GKAP, Shank1, and Homer1b/c. GKAP binds to the
GK domain of PSD-95147,217 and recruits Shank1 to the PSD via their PDZ domain.216,264

Shank1 then binds to the EVH1 domain of homer1b/c.343 Homer1b/c proteins have a coiled-
coil structure in their C-terminus region that enables them to form homotetramers or
heterotetramers.284 This assembly of Homers leaves 3 available EVH1 domains that can bind
several other targets such as group I mGluRs (but not group 2 or 3 mGluRs),28 inositol
triphosphate receptors (IP3R), or the actin cytoskeleton.284,344 The interaction between
Homer1b and IP3R and between Shank1 and Homer1b/c controls local Ca2+ release from the
endoplasmic reticulum upon mGluRs activation.266,267 Homer1a, a short isoform of Homer1b/
c that lacks the coiled-coil structure, is an immediate early gene activated on neuronal activity
and participates in remodeling synapses in an activity-dependent manner.129 Homer1a is
upregulated in dorsal horn neurons after the subcutaneous injection of formalin or CFA324 as
well as transiently after peripheral nerve injury.208 Factors responsible for Homer1a activation
include NMDAR, ERK1/2 and Src.208,324 Knock-down of Homer1a increases pain-like
behaviors specific to central sensitization and not those associated with peripheral sensitization,
324 whereas overexpression reduced inflammatory pain-like behavior without altering basal
nociception.324 Homer1a probably causes a disruption of the clustering properties of Homer1b/
c protein and of Ca2+ release on NMDAR or mGluR activation.324 In contrast, homer1b
activation leads to an increase of AMPAR activity after the stimulation of mGluR, whereas
activation of Homer1a inhibits this.347 In addition, Homer1b/c proteins could play an important
role in clustering group 1 mGluRs at the synapse after CFA injection,247 an effect that is
reduced by Homer1a overexpression.385 Homer proteins are, therefore, convergent factors that
potentially link major glutamate receptors with Ca2+ stores in neurons, and the balance between
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Homer1b/c and Homer1a may play an important role in the development and maintenance of
central sensitization.

PSD Proteins and AMPAR Recycling and Subunit Switch
Stargazin may be important in creating the switch from GluR2- to GluR1-containing AMPAR
in response to peripheral inflammation159,355 by specifically addressing GluR1-containing
AMPARs to the synapse and then strengthening their activity via its ectodomain.334 Peripheral
inflammation leads via PKA to a phosphorylation of Ser831 and Ser845 on GluR1 in the spinal
cord,180 which, in association with CaMKII activation, promotes a transfer of GluR1-
containing AMPARs to the membrane,84 where they are maintained by synaptic activity.189

GluR2-containing AMPARs are associated with high affinity to GRIP-1, which clusters the
receptors at the synapse,77,114 whereas PICK-1 is a critical element for activity-dependent
endocytosis of the receptor.51,96,226 NMDAR activation leads to a PKC-mediated
phosphorylation of GluR2 at Ser880,172,238 which decreases GluR2's affinity for GRIP-1,
whereas the increase in intracellular Ca2+ recruits PICK-1 to the synapse,51,108,238 where it
reduces the clustering of GluR2-containing AM-PAR51,172,196,238,304,328 (Fig 14). On
endocytosis, vesicles can either be inserted back into the synapse under the action of NSF,
122,226,228,297 which disrupts the [GluR2-PICK-1] complex,109 or be maintained out of the
synapse through PICK-1.172 During inflammation, NSF expression is reduced in the spinal
cord,139 thereby preventing GluR2-containing AMPAR reinsertion into the synapse.

The net effect of these complex changes is an increase in GluR1 and a decrease in GluR2
containing AMPAR at the synapse (Fig 14). Once inserted into the synapse, GluR1-containing
AMPAR remain there for as long as there is glutamate release,83,189 and their activation is
potentially increased by stargazin's ectodomain, thereby further promoting the Ca2+-dependent
pathways required for maintenance of central sensitization. In addition, the phosphorylation
of stargazin's C-terminus domain by PKC and CaMKII342 increases its affinity for PSD-95,
thereby re-enforcing the clustering of AMPAR with NMDAR at the synapse.276

After peripheral nerve injury, GluR2 and GRIP-1 are up-regulated in dorsal horn neurons,
100,110 whereas PICK-1 expression is not modified and NSF is downregulated.100 Peptides
that disrupt the binding of GRIP-1 or NSF with GluR2 partially decrease neuropathic pain-like
behaviors.100 PICK-1 is also required for Gi/o-coupled mGluR7 trafficking to the membrane.
306 Activation of mGluR7 can block P/Q-type Ca2+ channels240 and reduces the pain caused
by injection of capsaicin218 or peripheral nerve injury.237 The upregulation of GRIP-1 but not
of PICK-1 in neuropathic pain models would promote AM-PAR maintenance at the synapse
but not that of mGluR7, resulting in increased excitability in these cells.

Finally, the A kinase-anchoring protein 79/150 (AKAP79/150) binds to PSD-9553 and is a
scaffold for protein kinases and phosphatases,53,169 specifically trafficking enzymes within
the PSD to increase (kinases) or reduce (phosphatases) synaptic transmission. When
AKAP79/150 recruits PKA181,295 or PKC325 in the PSD, it promotes insertion of new AMPAR
to the membrane (via PKA) as well as increasing their activity (via PKC). In contrast,
recruitment of PP2B25,169 triggers AMPAR endocytosis.25 AKAP79/150 may function
therefore as a “master switch” of central sensitization by promoting phosphorylation or
dephosphorylation of stargazin and AMPAR.

Conclusion
Before central sensitization was discovered, there were 2 major models of pain. The first was
that it was a labeled-line system, in which specific “pain pathways” were activated only by
particular peripheral “pain stimuli” and that the amplitude and duration of pain was determined

Latremoliere and Woolf Page 17

J Pain. Author manuscript; available in PMC 2010 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



solely by the intensity and timing of these inputs. The second model evoked “gate controls” in
the CNS, which, by opening or closing, enabled or prevented pain. Neither model envisaged,
however, that pain may arise as a result of changes in the properties of neurons in the CNS:
central sensitization. We now appreciate that there are indeed specific nociceptive pathways
and that these are subject to complex facilitating and inhibitory controls; both models were in
part correct. We also know though, that changes in the functional properties of the neurons in
these pathways are sufficient to reduce pain threshold, increase the magnitude and duration of
responses to noxious input, and permit normally innocuous inputs to generate pain sensations.
Pain is not then simply a reflection of peripheral inputs or pathology but is also a dynamic
reflection of central neuronal plasticity. The plasticity profoundly alters sensitivity to an extent
that it is a -major contributor to many clinical pain syndromes and represents a major target
for therapeutic intervention. The past 26 years have seen enormous advances both in our
appreciation of the nature and manifestations of central sensitization and in its underlying
molecular mechanisms. We have great insight into what triggers can induce central
sensitization, through which signaling pathways and by means of which effectors. The
complexity is daunting because the essence of central sensitization is a constantly changing
mosaic of alterations in membrane excitability, reductions in inhibitory transmission, and
increases in synaptic efficacy, mediated by many converging and diverging molecular players
on a background of phenotypic switches and structural alterations. Nevertheless, enormous
progress has been made in dissecting out where, when, and how the plasticity occurs, although
clearly, more is still waiting to be learned.
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Figure 1.
Subthreshold synaptic inputs. The substrate for receptive field plasticity. Intracellular in vivo
recordings from a nociceptive-specific rat dorsal horn neuron revealing subthreshold synaptic
inputs. The output of somatosensory neurons is determined by those peripheral sensory inputs
that produce sufficiently large-amplitude monosynaptic and polysynaptic potentials to evoke
an action potential discharge (A and B). This constitutes the receptive field or firing zone of
the neuron. However, stimuli outside the receptive field can evoke synaptic inputs that are too
small normally to produce action potential outputs (C), and this constitutes a subliminal fringe
or low-probability firing fringe, which can be recruited if synaptic efficacy is increased, to
expand and change the receptive field. In this particular neuron, a standard pinch stimulus
applied to points A, B, and C evoked only action potentials at points A and B but clear
subthreshold synaptic inputs at C. Modified from Reference 365.
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Figure 2.
Expansion of receptor fields during central sensitization. Recruiting subthreshold synaptic
inputs to the output of a nociceptive-specific neuron can markedly alter its receptive field
properties, producing changes in receptive field threshold and spatial extent. When neurons in
the dorsal horn spinal cord are subject to activity-dependent central sensitization, they exhibit
some or all the following: development of or increases in spontaneous activity, a reduction in
threshold for activation by peripheral stimuli, increased responses to suprathreshold
stimulation, and enlargement of their receptive fields. The examples in this figure of
intracellular recordings of rat dorsal horn neurons show the cutaneous receptive fields before
central sensitization (pre mustard oil) and after the induction of central sensitization (post
mustard oil) and indicate how subthreshold nociceptive (pinch, top) and low-threshold (brush,
bottom) inputs in the low-probability firing fringe (LPFF) are recruited by central sensitization.
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Central sensitization was produced by topical application of mustard oil, which generates a
brief burst of activity in TRPA1-expressing nociceptors and resulted in the neural equivalent
of secondary hyperalgesia (top) and tactile allodynia (bottom). Note that the mustard oil
(conditioning input) was applied to a different area (in red) from the test pinch or brush inputs
(in blue), so that the changes observed are due to hetero-synaptic facilitation. Modified from
Reference 364.

Latremoliere and Woolf Page 43

J Pain. Author manuscript; available in PMC 2010 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Schematic representation of the structures exhibiting central sensitization. The first evidence
for central sensitization was generated in 1983 by revealing injury-induced changes in the
cutaneous receptive field properties of flexor motor neurons as an integrated measure of the
functional plasticity in the spinal cord. A conditioning noxious stimulus resulted in long-lasting
reductions in the threshold and an expansion of the receptive field of the motor neurons that
was shown to be centrally generated. Essentially identical changes were then described in
lamina I and V neurons in the dorsal horn of the spinal cord (b) as well as in spinal nucleus
pars caudalis (Sp5c), thalamus (c), amygdala, and anterior cingulate cortex. Imaging techniques
have revealed several brain structures in human subjects that exhibit changes compatible with
central sensitization (blue dots).
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Figure 4.
Central sensitization triggers: Schematic representation of key synaptic triggers of central
sensitization. (A), Model of the synapse between the central terminal of a nociceptor and a
lamina I neuron under control, basal conditions. mGluR receptors sit at the extremities of the
synapse and are linked to the endoplasmic reticulum (ER). Note that NMDAR channels are
blocked by Mg2+ in the pore (black dot). After a barrage of activity in the nociceptor (B), the
primary afferent presynaptic terminal releases glutamate that binds to AMPAR, NMDAR (now
without Mg2+), and mGluR, as well as substance P, CGRP, and BDNF, which bind to NK1,
CGRP1, and TrkB receptors, respectively. B2 receptors are also activated by spinally produced
bradykinin. NO is produced by several cell types in the spinal cord and can act presynaptically
and postsynaptically.
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Figure 5.
Sources of Ca2+ in the synapse of nociceptive neurons for inducing central sensitization. (A),
Model of a nociceptor–dorsal horn neuron synapse under control, nonactivated conditions.
After nociceptor input (B), activation of NMDAR and mGluR result in a rapid increase of
[Ca2+]i that activates PKC and CaMKII, 2 major effectors of central sensitization. (C),
Representation of a synapse during peripheral inflammation-induced central sensitization,
where there is a shift from GluR2/3 to GluR1-containing AMPARs that enables, along with
voltage-dependent calcium channels and NMDAR, entry of Ca2+ and which, together with
activation of the G-coupled MGluR, NK1, B2, and CGRP1 receptors, which release
intracellular Ca2+ stores, recruits PKC and CaMKII, strengthening the excitatory synapse.
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Figure 6.
Contribution of PKC, CaMKII, PKA, and ERK activation to central sensitization. (A),
Phosphorylation by PKC, CaM-KII, PKA, and ERK cause changes in the threshold and
activation kinetics of NMDA and AMPA receptors, boosting synaptic efficacy. ERK also
produces a decrease in K+ currents through phosphorylation of Kv4.2 channels, increasing
membrane excitability. (B), PKA, CaMKII, and ERK promote recruitment of GluR1-
containing AMPAR to the membrane from vesicles stored under the synapse. (C),
Transcriptional changes mediated by activation of CREB and other transcription factors driving
expression of genes including c-Fos, NK1, TrkB, and Cox-2, to produce a long-lasting
strengthening of the synapse.
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Figure 7.
Key effectors of central sensitization in the dorsal horn. Subcutaneous injection of capsaicin,
a potent inducer of central sensitization, causes rapid activation of ERK and CREB (upper
panels) as well as a PKC-induced phosphorylation of the NR1 subunit of NMDAR in c-Fos–
positive neurons of the superficial laminas of the spinal cord (middle panels). ERK activation
participates in transcriptional and post-translational changes, CREB activation promotes
transcription of several genes involved in central sensitization. NR1 phosphorylation by PKC
increases NMDAR activity. ERK and PKC are activated through the increase of intracellular
calcium that occurs during stimulation of nociceptive fibers (lower panels). Signals are shown
in pseudocolor from blue (weak intensity) to red (strong intensity). ERK and CREB staining
are from Reference 141; NR1 phosphorylation staining from Reference 32, and calcium imaging
from Reference 179.
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Figure 8.
Key intracellular pathways contributing to the generation of central sensitization. NMDAR
activation causes activation of PKC, CaMKII, and ERK (black arrows); GluR1-containing
AMPAR activate PKC (red arrow); NK1 and CGRP1 receptors activate PKC, PKA, and ERK
(orange and brown arrows, respectively); TrkB s activates of PKC and ERK (purple arrows);
and mGluR, via release of Ca2+ from microsomal stores, activates PKC and ERK (gray arrows).
Note that most of the triggers of central sensitization: Activation of NMDAR, mGluR, TrkB,
NK1, CGRP1, or B2 converge to activate ERK.
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Figure 9.
Multiple cellular processes lead to central sensitization. Central sensitization is not defined by
activation of a single molecular pathway but rather represents the altered functional status of
nociceptive neurons. During central sensitization, these neurons display 1 or all of the
following: i, development of or an increase in spontaneous activity; ii, reduction in threshold
for activation; and iii, enlargement of nociceptive neuron receptive fields. These characteristics
can be produced by several different cellular processes including increases in membrane
excitability, a facilitation of synaptic strength, and decreases in inhibitory transmission
(disinhibition). Similarly, these mechanisms can be driven by different molecular effectors
including PKA, PKC, CaMKII, and ERK1/2. These kinases participate in changes in the
threshold and activation kinetics of NMDA and AMPA receptors and in their trafficking to the
membrane, cause alterations in ion channels that increase inward currents and reduce outward
currents, and reduce the release or activity of GABA and glycine.
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Figure 10.
Homo synaptic and heterosynaptic facilitation. (A), Homosynaptic potentiation is a form of
use-dependent facilitation of a synapse evoked by activation of that same synapse (in red). A
nonconditioned synapse (green) is not potentiated. This type of potentiation is commonly called
long-term potentiation (LTP). LTP-like homosynaptic potentiation can contribute to primary
hyperalgesia. (B), Heterosynaptic facilitation represents a form of activity-dependent
facilitation in which activity in 1 set of synapses (conditioning input, red) augments subsequent
activity in other, nonactivated groups of synapses (test input, green). Heterosynaptic
potentiation is responsible for the major sensory manifestations of use-dependent central
sensitization: pain in response to low-threshold afferents (allodynia) and spread of pain
sensitivity to noninjured areas (secondary hyperalgesia).
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Figure 11.
Action potential windup. Windup is the consequence of a cumulative membrane depolarization
resulting from the temporal summation of slow synaptic potentials. Under normal conditions,
low-frequency stimulations of C-fibers (0.2 Hz) cause steady neuronal discharges (A) as the
membrane potential has sufficient time to return to resting potential between stimuli. At a
frequency of 0.5 Hz or higher, activation of NK1 and CGRP1 receptors by release of substance
P and CGRP from peptidergic nociceptors produces a cumulative increase in membrane
depolarization. This then enables activation of NMDAR by removal of the voltage-dependent
Mg2+ block, further boosting the responses in a non-linear fashion (B). Windup disappears
within tens of seconds of the end of the stimulus train as the membrane potential returns to its
normal resting level (B). Modified from Reference 323.
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Figure 12.
Central sensitization in pathological settings. A, Representation of the superficial lamina of
the dorsal horn of the spinal cord. Nociceptive peptidergic fibers contact lamina I and II outer
(I and IIo) neurons that express GluR2-containing AMPAR (in blue). Some of these neurons
project to the thalamus, parabrachial nucleus, and PAG. Nociceptive nonpeptidergic fibers
contact neurons in dorsal lamina II inner (IIid), which also express GluR2-containing AMPAR.
Non-nociceptive large fibers contact deeper laminae but also send collaterals to inhibitory
interneurons in the ventral part of lamina II (IIiv).222 B, Alterations in the superficial lamina
in inflammatory pain. Because large DRG neurons begin to express SP and BDNF, stimulation
of these afferents acquires the capacity to generate central sensitization. Neurons now express
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GluR1-containing AMPAR at their synapse (in red), resulting in an increase of Ca2+ influx on
their activation. Some spinal cord microglial cells are activated and release factors that
contribute to the development of central sensitization by enhancing excitatory and reducing
inhibitory currents. C, Representation of superficial lamina in neuropathic pain states. After
peripheral nerve injury, there is a loss of C-fiber central terminals and the sprouting of
myelinated A-β fibers from deep to superficial lamina. Injured sensory neurons in the dorsal
root ganglion exhibit a change in transcription that alters their membrane properties, growth,
and transmission. Large fibers begin to express substance P, BDNF, and the synthetic enzymes
for tetrahydrobiopterin, an essential cofactor for NOS and can drive central sensitization.
Recruitment and activation of microglial cells is an essential step in the development of pain
after nerve injury and to trigger central sensitization by releasing proinflammatory cytokines
that increase neuronal excitability and BDNF that induces a switch in Cl- gradients, resulting
in a loss of inhibition. Loss of inhibition is also caused by excitotoxic apoptosis of inhibitory
interneurons.
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Figure 13.
Role of scaffolding proteins in central sensitization. Representation of the post synaptic density
(PSD) region of a synapse of a nociceptive neuron in the superficial lamina of the spinal cord
under basal conditions (A) and during inflammatory pain (B). The proteins that make up the
PSD can drive a major functional reorganization of synapses, modifying postsynaptic efficacy
by altering receptor density at the membrane and producing switches from Ca2+-impermeable
to Ca2+-permeable AMPARs. In addition, scaffolding proteins mediate the “addressing” of
kinases to the receptors, thereby increasing their activity. Under normal conditions (A), neurons
mostly express GluR2-containing AMPAR that are anchored to the PSD via GRIP-1. NMDAR
are recycled in an activity-dependent manner via PICK-1 and NSF. During inflammation
(B), there is an endocytosis of GluR2-containing AMPAR (initiated by PKC phosphorylation
of GluR2) along with a loss of NSF that prevents their reinsertion into the synapse. GluR1-
containing AMPAR are expressed at the membrane, where their activity is increased by
phosphorylation with PKA as well as by the ectodomain of stargazin, whose C-terminus
segment is phosphorylated by PKC and CaMKII. MAGUK can participate to increase
glutamate receptors density at the synapse, and phosphorylated stargazin promotes AMPAR
and NMDAR clustering. Scaffolding proteins such as AKAP79/150 and the MAGUKs also
“address” kinases to specific synaptic position at the right time to phosphorylate AMPAR and
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NMDAR subunits, thereby increasing their activity. The Homer-Shank1-GKAP-MAGUK
complex couples mGluR and NMDAR to intrasomal Ca2+ stores, so that activation of
glutamate receptors leads to high levels of Ca2+ in the PSD that activate PKC and CaMKII,
also recruited to the PSD by scaffolding proteins. PKC, CaMKII, and other kinases converge
to activate ERK, which reduce K+ channels activity and promote transcriptional activity.
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Figure 14.
Synaptic scaffolding proteins and the switch to GluR1-containing AMPAR after peripheral
inflammation. Under basal conditions, GluR2-containing AMPARs are associated in the
synapse with stargazin and GRIP-1. The C-terminus of stargazin binds to PSD-95 (1).
Peripheral inflammation leads to glutamate release from nociceptors and AMPA and NMDA
receptor activation. NMDAR activation leads to a Ca2+ influx that activates PKC (2). Activated
PKC phosphorylates GluR2-containing AMPARs at ser880, which leads to a loss of affinity
for stargazin and GRIP-1, allowing PICK-1 to bind to the receptor (3). The GluR2-containing
AMPAR and PICK-1 complex undergo endocytosis, whereas NSF is downregulated,
preventing reinsertion of GluR2-containing AMPAR into the synapse. Meanwhile, peripheral

Latremoliere and Woolf Page 57

J Pain. Author manuscript; available in PMC 2010 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



inflammation also leads to activation of PKA that promotes GluR1-containing AMPAR to be
inserted into the membrane (4). Because GluR2-containing AMPARs are internalized and the
Ca2+-permeable GluR1-containing AMPAR are inserted into the membrane, there is a switch
from GluR2- to GluR1-containing AMPAR (5 and 6). Increased [Ca2+]i causes an activation
of PKC and CaMKII, which phosphorylate the C-terminus of stargazin, increasing its affinity
for PSD-95 (CaMKII) and modifying its ectodomain (PKC), which causes increased GluR1
affinity for glutamate and single-channel conductance and a higher channel opening
probability, further increasing Ca2+ influx (7).
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