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Centralized pain syndromes are associated with changes within the central nervous
system that amplify peripheral input and/or generate the perception of pain in the
absence of a noxious stimulus. Examples of idiopathic functional disorders that are
often categorized as centralized pain syndromes include fibromyalgia, chronic pelvic
pain syndromes, migraine, and temporomandibular disorder. Patients often suffer
from widespread pain, associated with more than one specific syndrome, and report
fatigue, mood and sleep disturbances, and poor quality of life. The high degree of
symptom comorbidity and a lack of definitive underlying etiology make these syndromes
notoriously difficult to treat. The main purpose of this review article is to discuss
potential mechanisms of centrally-driven pain amplification and how they may contribute
to increased comorbidity, poorer pain outcomes, and decreased quality of life in
patients diagnosed with centralized pain syndromes, as well as discuss emerging
non-pharmacological therapies that improve symptomology associated with these
syndromes. Abnormal regulation and output of the hypothalamic-pituitary-adrenal (HPA)
axis is commonly associated with centralized pain disorders. The HPA axis is the primary
stress response system and its activation results in downstream production of cortisol
and a dampening of the immune response. Patients with centralized pain syndromes
often present with hyper- or hypocortisolism and evidence of altered downstream
signaling from the HPA axis including increased Mast cell (MC) infiltration and activation,
which can lead to sensitization of nearby nociceptive afferents. Increased peripheral
input via nociceptor activation can lead to “hyperalgesic priming” and/or “wind-up” and
eventually to central sensitization through long term potentiation in the central nervous
system. Other evidence of central modifications has been observed through brain
imaging studies of functional connectivity and magnetic resonance spectroscopy and
are shown to contribute to the widespreadness of pain and poor mood in patients with
fibromyalgia and chronic urological pain. Non-pharmacological therapeutics, including
exercise and cognitive behavioral therapy (CBT), have shown great promise in treating
symptoms of centralized pain.

Keywords: stress, hypothalamic-pituitary-adrenal (HPA) axis, pain, exercise, cognitive behavioral therapy, central
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INTRODUCTION

Chronic pain, or pain lasting or recurring for more than
3 to 6 months (Merskey and Bogduck, 1994), has a high
prevalence rate in the United States. There are currently
120 million chronic pain patients (Nahin, 2015), which is greater
than those suffering from cardiovascular disease (85.6 million,
Mozaffarian et al., 2016), diabetes (29.1 million, ADA, 2016),
or cancer (14.5 million, ACS, 2016). This costs $600 billion
annually due to health care costs, lost productivity, and
long-term disability (Gaskin and Richard, 2012). Individuals
with chronic pain may have spinal, musculoskeletal, or arthritic
conditions that generate pain in a distinct and localized
part of the body. Conversely, a significant proportion of
patients are diagnosed with one or more specific regional or
widespread pain conditions that are generally not associated
with damage or disease of the affected tissue. These presumed
centralized pain syndromes are generally idiopathic functional
disorders with distinct adaptations within the central nervous
system that amplify peripheral input and/or generate the
perception of pain in the absence of peripheral input (Harper
et al., 2016). Examples of centralized pain syndromes include
fibromyalgia, chronic pelvic pain syndromes (irritable bowel
syndrome (IBS), interstitial cystitis/painful bladder syndrome
(IC/PBS), vulvodynia, and chronic prostatitis/chronic pelvic
pain syndrome (CP/CPPS)), migraine, chronic fatigue syndrome
(CFS), and temporomandibular disorder (Clemens et al., 2014;
Clauw, 2015; Harper et al., 2016). These disorders have a high
degree of co-occurrence and are generally accompanied by
fatigue, sleep problems, and cognitive difficulties (Williams and
Clauw, 2009). Mood disorders are also frequently encountered
in patients with chronic centralized pain syndromes, including
difficulty coping with stressful situations, and many suffer from
depression, anxiety, and panic disorder (Arnold et al., 2006;
Nickel et al., 2010; Bullones Rodríguez et al., 2013). Women
are twice as likely as men to be diagnosed with a centralized
pain disorder, with the obvious exception of CP/CPPS (Vincent
et al., 2013). Besides sex, other factors are known to contribute
to the development of centralized pain disorders including, but
not limited to: abnormal neuroendocrine system and autonomic
nervous system functioning, as well as environmental triggers
such as psychosocial/life stressors and emotional/physical
trauma (Bradley, 2008; Haviland et al., 2010).

Much debate has taken place regarding whether chronic pain
states are due to ‘‘bottom up’’ or ‘‘top down’’ pain amplification
mechanisms. The ‘‘bottom up’’ theory supports an increase in
pain perception due to excess noxious peripheral input that
eventually sensitizes the central nervous system to the point
of perceiving pain even when there is no peripheral drive
(Price and Gold, 2017). The ‘‘top down’’ theory suggests that
changes already present within the central nervous system drive
the perception of pain, regardless of peripheral noxious input
(Harper et al., 2016). Regardless of mechanism, both of these
theories support changes in the way the central nervous system
processes noxious input and how pain is ultimately perceived.
The main purpose of this review article is to discuss potential
mechanisms of centrally-driven pain amplification and how

they may contribute to increased comorbidity, poorer pain
outcomes, and decreased quality of life in patients diagnosed with
centralized pain syndromes. We highlight two phenomena that
have been shown to be associated with stress-induced chronic
pain disorders: dysregulation of the hypothalamic-pituitary-
adrenal (HPA) axis and central sensitization. In addition,
this manuscript will also explore the rodent models that are
commonly employed to study the consequences of stress, which
include both peripheral and central nervous system alterations,
with a particular focus on chronic pelvic pain, fibromyalgia, and
migraine. Finally, we describe evidence supporting exercise and
cognitive behavioral therapy (CBT) as potential therapies for
chronic pain disorders, including centralized pain syndromes.

THE HYPOTHALAMIC-PITUITARY-
ADRENAL (HPA) AXIS

Stress is defined as an alteration in homeostasis that can be
caused by a psychological, environmental, or physiological threat
(Chrousos and Gold, 1992). It has long been known to affect
the perception of pain, in both acute and chronic settings. Acute
stress is crucial for the survival of an organism: individuals
are alerted to dangerous and life-threatening situations and can
subsequently respond to the perceived or anticipated stress.
However, stress can become detrimental when experienced in
the long-term, especially early in life, and is associated with the
development of chronic pain disorders (Anand, 1998; Bennett
et al., 1998; Moore and Kennedy, 2000).

Patients with chronic pain disorders that can be partially
attributed to central mechanisms, such as fibromyalgia, migraine,
and chronic pelvic pain syndromes, often report a history of
abuse or neglect (Hu et al., 2007; Riegel et al., 2014; Nicol
et al., 2016). These patients are also more likely to present with
overlapping pain syndromes and comorbidmood disorders, such
as depression, anxiety, or panic disorder, with decreased quality
of life scores (Nicol et al., 2016; Lai et al., 2017). One explanation
for this heightened symptom severity and comorbidity is an
alteration in the functioning of the HPA axis. Programming
of the HPA axis happens early on in development and the
perception of neglect or mistreatment can permanently affect
both the regulation and output of the stress response system, as
well as its downstream effects on nociceptive processing in the
periphery (Heim et al., 1998; Mayson and Teichman, 2009; Burke
et al., 2017).

Central Regulation
The HPA axis is the primary regulator of the stress response.
Under normal conditions (schematized in Figure 1), an
acute stressor will signal the paraventricular nucleus (PVN)
of the hypothalamus to release corticotropin-releasing factor
(CRF) and arginine vasopressin into the hypophyseal portal
veins, which cause the anterior pituitary gland to release
adrenocorticotrophic hormone (ACTH). Circulating ACTH
signals the adrenal cortex to release glucocorticoids (GCs;
cortisol in humans and corticosterone in rodents) that have
downstream metabolic effects (Herman et al., 2005; Ulrich-Lai
and Herman, 2009). A negative feedback loop is established
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FIGURE 1 | Under normal conditions, an acute stressor will signal the
paraventricular nucleus (PVN) of the hypothalamus to release
corticotropin-releasing factor (CRF) into the hypophyseal portal veins, which
causes the anterior pituitary gland to release adrenocorticotrophic hormone
(ACTH). Circulating ACTH signals the adrenal cortex to release glucocorticoids
(GC) that have downstream metabolic effects. A negative feedback loop is
established to turn off activation of the hypothalamic-pituitary-adrenal (HPA)
axis by suppressing the production of CRF and ACTH upon cessation of the
initial stressor. The hippocampus and the amygdala play inhibitory and
excitatory roles in regulation of the HPA axis, respectively. CRF released upon
HPA axis activation also has peripheral effects. Mast cells (MC) can become
activated by CRF, causing the release of cytokines and growth factors that
have reciprocal interactions with peripheral nociceptors. Nociceptor activation
signals through the dorsal horn of the spinal cord, leading to activation of
supraspinal somatosensory brain regions. The descending pain pathway also
plays a role in the regulation of painful experiences.

to turn off activation of the HPA axis by suppressing the
production of CRF and ACTH upon cessation of the initial
stressor (Kageyama and Suda, 2009; Tasker and Herman,
2011). Regulation of the HPA axis is driven in part by
glucocorticoid and CRF receptors that are located at each
level of the HPA axis and in higher limbic regions (Ulrich-
Lai and Herman, 2009). Corticotropin-releasing factor receptor
1 (CRF1) and 2 (CRF2) are G-protein coupled receptors
that play a prominent role in HPA axis regulation by
binding CRF and its related ligands, Urocortin (Ucn) 1–3.
Once activated, CRF1 and CRF2 work in opposition to one
another to enhance and reduce HPA output, respectively
(Bale and Vale, 2004). Glucocorticoid-mediated regulation
occurs via two receptors, mineralocorticoid receptor (MR)
and glucocorticoid receptor (GR) that function both as
transcriptional regulators (Reul and de Kloet, 1985) and through
glucocorticoid-mediated retrograde endocannabinoid release
from parvocellular neurons, which suppresses the release of
excitatory glutamatergic molecules from pre-synaptic terminals
and subsequently inhibits the hypothalamic release of CRF
(Di et al., 2003).

Limbic structures, including the hippocampus, amygdala, and
prefrontal cortex, assist in resetting the HPA axis following

a stressful event, as well as help regulate its tone. Neural
projections from the hippocampus and prefrontal cortex are
mostly glutamatergic and synapse on GABAergic interneurons
within the PVN, thereby dampening HPA axis activation
(Herman et al., 2003; Ulrich-Lai and Herman, 2009). Lesioning
the hippocampus leads to increased stress-induced HPA axis
activation as evidenced by increased CRF immunoreactivity in
the PVN, glucocorticoid hypersecretion, and behavioral evidence
of heightened anxiety in rats (Herman et al., 1998). Disruption of
GR expression in the forebrain of mice resulted in heightened
stress-induced locomotor activity and acute stress exposure
increased ACTH secretion, plasma corticosterone levels, and
CRF expression in the PVN (Boyle et al., 2006). The amygdala
works to activate the HPA axis through disinhibition, sending
GABAergic projections to the GABAergic neurons of the
PVN (Herman et al., 2003; Ulrich-Lai and Herman, 2009).
Administration of corticosterone to the amygdala in rats resulted
in an increase in anxiety-like behaviors as well as somatic and
visceral hypersensitivity (Myers and Greenwood-Van Meerveld,
2010). These observations were likely caused by GR and/or
MR signaling as it was shown that repeated exposure to
water avoidance stress (WAS) induced an increase in plasma
corticosterone and visceral hypersensitivity that was inhibited in
rats that received a GR (mifepristone) or MR (spironolactone)
antagonist applied to the amygdala (Myers and Greenwood-Van
Meerveld, 2012). Further evidence that the amygdala plays a role
in HPA axis regulation comes from a study where either direct
application of corticosterone onto the amygdala or exposure
to WAS increased CRF expression in the amygdala, which
coincided with visceral and somatic hypersensitivity (Johnson
et al., 2015). These effects were attenuated after knock down
of CRF in the central amygdala. Taken together, these studies
highlight the important balance of inhibition/activation coming
from the limbic structures, which plays a significant role in
regulating normal stress responses from the HPA axis and
ultimately affects the perception of pain.

Downstream Signaling
While activation of the HPA axis does not directly initiate
pain signaling, downstream mediators can influence the
neuroimmune status of peripheral tissues and increase
nociceptive tone. In human tissue, CRF1 has been observed
in adrenal tissue, adipose, gonads, endometrium, myometrium,
placenta, skin, spleen, and various immune cells; whereas CRF2
has been found in skin and all three types of muscle tissue
(Hillhouse and Grammatopoulos, 2006). Immunoreactivity for
both CRF receptors has been observed in rat colon, primarily in
the mucosal layer, inflammatory cells, and enteric innervation
for CRF1 and on goblet cells and in submucosal blood vessels
for CRF2 (Chatzaki et al., 2004). CRF signaling influences both
contractility (Buckley et al., 2014) and transepithelial resistance
(Overman et al., 2012) of the gastrointestinal tract. Feline
urothelial cells express functionally-active CRF1 and CRF2, as
well as their intrinsic ligands CRF and Ucn1 (Hanna-Mitchell
et al., 2014). The naturally-occurring feline interstitial cystitis
model shows altered CRF signaling in the urothelium, indicating
a potential role for CRF in the etiology of IC.
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Mast cells (MCs) are a critical part of the innate immune
system and are highly responsive to activation of the HPA axis, as
they express five isoforms of the CRF1 receptor, a single isoform
of the CRF2 receptor, and contain one of the largest peripheral
stores of CRF (Theoharides et al., 2004). They are found in highly
vascularized tissues, most predominantly in areas with direct
contact to the environment: skin, airway, gastrointestinal and
urinary tracts. They are derived from hematopoietic stem cells,
circulate in the blood stream as immature cells, and mature upon
entry into peripheral tissues (Kitamura, 1989; Galli and Tsai,
2010). Their differentiation depends on the presence of cytokines
and growth factors. The c-kit tyrosine kinase receptor and its
ligand stem cell factor (SCF) are important in the migration
and distribution of MC precursors (Galli et al., 1993). MC are
filled with granules that contain histamine, heparin, tryptase, as
well as other proteases and cytokines (Theoharides, 1990). They
are activated by immune and non-immune signals, including
endogenous neuropeptides such as CRF and substance P (SP),
and cause hypersensitivity reactions (Johnson and Krenger,
1992; Anand et al., 2012). Although the hallmark form of MC
activation is evidenced by the partial or complete release of
granular stores, stress-activated release of cytokines and growth
factors from MC can occur in the absence of degranulation
(Theoharides et al., 2004; Anand et al., 2012).

MCs are observed adjacent to unmyelinated nerves
throughout the body, including the skin (Wiesner-Menzel
et al., 1981), trachea (Uddman et al., 1985), and intestine
(Stead et al., 1989) as well as in direct contact with nerve fibers
in the dura mater (Rozniecki et al., 1999). These afferents
express receptors involved in nociception, including transient
receptor potential vanilloid 1 (TRPV1), transient receptor
potential ankyrin 1 (TRPA1), and protease-activated receptor
2 (PAR2; Birder et al., 2002; Brierley et al., 2009; Kim et al.,
2010). PAR2 is a G protein-coupled receptor activated by MC
tryptase, trypsin, and coagulation protease FVIIa, and FXa
(Ossovskaya and Bunnett, 2004). Activation of PAR2 initiates
downstream sensitization of TRPV1 and TRPA1 through
several mechanisms including phosphorylation by protein
kinase C (PKC; Vellani et al., 2001) and protein kinase A
(PKA; Bhave et al., 2003), and TRPV1 channel release from
phosphatidylinositol 4,5-bisphosphate (PIP2)- dependent
inhibition through phospholipase C (PLC) activation (Chuang
et al., 2001). All three receptors are all expressed on neurons with
cell bodies in the dorsal root ganglia (DRG), trigeminal ganglia
(TG), and nodose ganglia (Steinhoff et al., 2000; Zhang and
Levy, 2008; Nassini et al., 2014) and on peripheral projections
to the skin and deeper tissues, such as muscle and viscera
(D’Andrea et al., 1998; Bautista et al., 2013). Both TRPV1 and
TRPA1 have been shown to be involved, if not required, for the
generation of visceral hypersensitivity (Xu et al., 2007; Schwartz
et al., 2011; DeBerry et al., 2014; Kojima et al., 2014). Increased
activation of these receptors enhances pain-related afferent
input to the central nervous system; however, they also generate
and maintain peripheral neurogenic inflammation by releasing
neuropeptides, including SP and CGRP, which perpetuates
inflammatory mediator release in the proximate milieu (Julius
and Basbaum, 2001). Therefore, increased peripheral CRF

FIGURE 2 | Chronic early life or adult stress leads to alteration in limbic
regulation of the HPA axis. This is due to increased CRF expression and drive
from the amygdala (1) and decreased glucocorticoid receptor (GR) and
brain-derived neurotrophic factor (BDNF) expression in hippocampus, which
dampens inhibition (2). These changes ultimately lead to increased CRF
release from the hypothalamus (3), increased and prolonged release of ACTH
after cessation of the stressor (4), and increased glucocorticoid (GC)
production (5) with decreased negative feedback at higher structures.
Increased CRF release leads to greater MC activation and infiltration
(6) leading to enhanced peripheral nociceptor interaction (7). Increased
peripheral drive can lead to hyperalgesic priming (8) and/or wind-up (9),
eventually increasing ascending pain signaling, while simultaneously
decreasing descending inhibition (10).

release due to dysregulated HPA axis activity (schematized in
Figure 2) could result inMC activation and, in turn, sensitization
of nearby sensory nerve endings and lowered pain thresholds.

Role in Centralized Pain Disorders
Altered functioning of the HPA axis has been observed
in patients suffering from a number of centralized pain
disorders (Vierck, 2006). Approximately 20%–25% of patients
with stress-related disorders have hypocortisolism, which has
been postulated to come about as a compensatory response
to a preceding period of hypercortisolism and excessive
glucocorticoid release (Fries et al., 2005). Glucocorticoid
resistance, either through reduced availability of GC or impaired
function of GR, has also been proposed to contribute toward
comorbidity of inflammatory disorders, including centralized
pain syndromes (Silverman and Sternberg, 2012). A history of
abuse or early life stress is linked to both HPA abnormalities
and chronic pain syndromes; however, a clear and convincing
connection between all three has yet to be fully established
in a clinical setting. Conflicting studies have shown both
hypercortisolism (Heim et al., 2001; Tyrka et al., 2008) and
hypocortisolism (Heim et al., 1998; Gunnar and Quevedo, 2008)
in adults that report a history of childhood abuse or stress. It is
likely that the form of abuse and sex of the patient may influence
the eventual effect on glucocorticoid production and more
work is needed to determine these genetic and environmental
interactions. The potential role of the HPA axis in three major
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centralized pain disorders, fibromyalgia, chronic pelvic pain, and
migraine, is discussed in more detail below.

Fibromyalgia
Hypocortisolism has overwhelmingly been reported in
fibromyalgia patients. A meta-analysis and meta-regression of
85 case-control comparisons reported on HPA axis involvement
in functional somatic disorders, including CFS, fibromyalgia,
and IBS, and showed a significant reduction in basal cortisol in
all CFS and female fibromyalgia patients compared to healthy
controls (Tak et al., 2011). When compared to patients with
shoulder and neck pain or healthy controls, fibromyalgia patients
had significantly lower waking cortisol levels (Riva et al., 2012).
Strikingly, the patients with shoulder and neck pain had waking
cortisol levels higher than either control or fibromyalgia patients
and the authors suggest that this group may represent an
intermediate step in the progression from regional to widespread
musculoskeletal pain similar to the proposed mechanism of
hypercortisolism leading to hypocortisolism described by Fries
et al. (2005). A recent study compared basal and stress-evoked
salivary cortisol levels between fibromyalgia and control patients
with and without a history of early childhood abuse (Coppens
et al., 2017). They reported a decrease in stress-evoked cortisol
release in fibromyalgia patients, that was largely driven by
increased cortisol release in control patients with a history of
early childhood abuse. This observation again underscores the
disparate effects of childhood experiences on later output of the
HPA axis and its involvement in pain processing.

Rodent models of adult stress are commonly used to induce
behaviors and molecular changes similar to what is observed
in fibromyalgia patients. These models include intermittent
cold stress (Nishiyori and Ueda, 2008), unpredictable sound
stress (Green et al., 2011), WAS (Chen et al., 2011), and
restraint stress (Bardin et al., 2009) and induce long-lasting
widespread mechanical allodynia and hyperalgesia. An early life
stress model of fibromyalgia that incorporates limited nesting
material during the pre-weaning period produces adult rats
that display mild muscle hyperalgesia that worsens following
sound stress (Alvarez et al., 2013). We have reported hind paw
mechanical hypersensitivity in both male (Fuentes et al., 2016)
and female (Pierce et al., 2014) mice that also demonstrate
urogenital hypersensitivity (discussed below) following neonatal
maternal separation (NMS). Interestingly, we observed evidence
of decreased HPA axis output in male (Fuentes et al., 2018) and
increased HPA axis output in female (Pierce et al., 2016) NMS
mice, suggesting that regardless the effect of early life stress on
glucocorticoid production, widespread allodynia is a common
final pathway of HPA axis dysregulation in this model.

Themost commonly employed rodentmodels of fibromyalgia
involve direct activation of the peripheral nervous system via
intramuscular injection of carrageenan (Kehl et al., 2000) or
acidic saline (Sluka et al., 2001). Carrageenan is a chemical
nociceptive stimulus that evokes inflammation and excites
muscle nociceptors (Hargreaves et al., 1988). When injected
intramuscularly, grip strength is reduced in the ipsilateral
limb (Kehl et al., 2000). Repeated intramuscular injection of
low pH saline causes ipsilateral and contralateral mechanical

hyperalgesia lasting 4 weeks after the second injection (Sluka
et al., 2001), likely via activation of acid-sensing ion channels
(ASIC) present on primary afferent fibers (Waldmann and
Lazdunski, 1998). The use of these stress- or nociceptor-induced
models can be used to tease out the various ‘‘bottom up’’ and
‘‘top down’’ mechanisms that likely contribute to the disparate
etiologies underlying fibromyalgia (Sluka and Clauw, 2016).

Chronic Pelvic Pain
Alterations in HPA axis output have been reported for all
chronic pelvic pain syndromes, although the impact, in terms
of hyper- or hypocortisolism, largely depends on the type of
syndrome. Patients with IBS have increased basal and evoked
cortisol release that, in some cases, is linked to early life
adverse events (Chang et al., 2009; Videlock et al., 2009).
Treatment with CRF1 antagonist has shownmixed clinical results
with no effect on stooling symptoms in diarrhea-predominant
IBS patients (Sweetser et al., 2009), but a positive impact on
significantly reducing the blood oxygen level-dependent signal
in the hypothalamus in IBS patients (with average or high levels
of anxiety) during the expectation of abdominal pain (Hubbard
et al., 2011). Men with CP/CPPS have greater waking cortisol
levels (Anderson et al., 2008) and delayed ACTH release in
response to an acute stressor, which correlates with significant
psychological disturbances (Anderson et al., 2009). Finally,
women with vulvodynia have blunted serum cortisol cycles and
reported higher symptoms of stress compared to healthy controls
(Ehrstrom et al., 2009).

Despite showing disparate cortisol levels, chronic pelvic
pain syndromes all have evidence of increased activation
downstream of the HPA axis in affected peripheral tissues.
Biopsies from patients with IBS (Barbara et al., 2004; Akbar
et al., 2008), CP/CPPS (Theoharides et al., 1990; Amir et al.,
1998), IC/PBS (Larsen et al., 2008; Liu et al., 2012), and
vulvodynia (Leclair et al., 2011) all revealed increased MC
infiltration and altered granular structure including a reduced
proportion of intact MC. Serum (Jiang et al., 2013) and urine
(Corcoran et al., 2013) samples from IC/PBS patients also had
elevated MC granule components, including nerve growth factor
(NGF), histamine, and pro-inflammatory cytokines, indicating
an increase in MC activation. Tissue biopsies from IC/PBS
patients revealed increased MC infiltration in close proximity to
densely-populated SP-immunopositive nerve fibers (Pang et al.,
1995). Expressed prostatic secretions from CP/CPPS patients
had elevated MC tryptase and NGF levels (Done et al., 2012)
and urine samples also had increased tryptase, as well as
carboxypeptidase A3, a marker of MC activation (Roman et al.,
2014).

In line with these observations in humans, MC activation,
histamine release, NGF expression, and associated pelvic organ
hypersensitivity have all been shown to be increased by
stress exposure in adult male rats (Merrill et al., 2013). We
demonstrated that NMS increased vaginal (Pierce et al., 2014),
bladder (Pierce et al., 2016), and referred prostatic (Fuentes
et al., 2015, 2018) sensitivity in mice, which corresponded to an
increased percentage of degranulated MC in urogenital tissues,
compared to naïve mice. Exposure to WAS further increased
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MC degranulation in the bladder of NMS and naïve female
mice (Pierce et al., 2016) and the prostate of NMS and naïve
male mice (Fuentes et al., 2018). The limited nesting material
method was also employed for assessing visceral sensitivity.
Adult male rats that were exposed to limited nesting material
as neonates exhibited increased colonic sensitivity and anxiety
behaviors, which were not present in female littermates (Prusator
and Greenwood-VanMeerveld, 2015). The finding is particularly
intriguing considering the larger number of female chronic
pelvic pain patients, as well as the preponderance of preclinical
research that has been done in male rodents. Both restraint stress
and central administration of CRF caused MC degranulation
in the colon in rats (Pothoulakis et al., 1998). The role of
MC activation in stress-induced pain is further illustrated by
studies using MC stabilizers. When injected 30 min before
restraint stress, the MC stabilizer doxantrazole attenuated the
stress-induced increase in abdominal contractions during CRD
(Gué et al., 1997). Pre-treatment with a non-specific CRF
antagonist, α-helical-CRF, also prevented stress-induced visceral
hypersensitivity in NMS rats followingWAS, in aMC-dependent
manner (van den Wijngaard et al., 2012). Treatment with a MC
stabilizer, but not α-helical-CRF, was also capable of reversing
WAS-induced visceral hypersensitivity, suggesting that non-CRF
dependent factors are involved in the maintenance of post-stress
hypersensitivity. In a study of a transgenic autoimmune cystitis
mouse model of IC/PBS that displays bladder inflammation,
increased number of MC, and urinary tract dysfunction,
treatment with the MC stabilizer cromolyn reversed these
symptoms (Wang et al., 2016). Furthermore, crossing this
transgenic model with MC-deficient mice produced mice with
reduced bladder inflammation and no urinary tract dysfunction.
However, both of these symptoms were reestablished upon MC
reconstitution.

Migraine
Stress is a commonly-reported trigger for migraine attack;
however, evidence of altered cortisol release, compared to other
centralized pain syndromes, is less prevalent among migraine
patients. A recent literature review of seven cross-sectional
studies largely showed no baseline differences in cortisol level
between migraineurs and healthy controls (Lippi and Mattiuzzi,
2017). A potential for increased HPA axis responsiveness was
noted, as nitroglycerin- and CRF-evoked cortisol levels were
reportedly higher in migraineurs, compared to healthy controls,
across four observational studies. Another study looking at
blood cortisol levels over a 12-h period revealed a greater
total cortisol release and peak in migraineurs compared to
control patients (Wang et al., 2016). One prospective study
of 17 migraine patients reported on stress-related parameters
prior to and during a migraine attack (Schoonman et al., 2007).
While a subgroup of patients did report an increase in perceived
stress, which also reportedly triggered their migraine attacks, no
objective measures of increased cortisol or other measures of a
biological stress response were present either prior to or during
a migraine attack. The mouse model of Familial Hemiplegic
Migraine type 1 (FHM1), which was generated by knocking-in
an R192Q missense Cav2.1 Ca2+ channel mutation, displayed

an increase in cortical spreading depression following treatment
with corticosterone, which was blocked by pretreatment with a
GR antagonist (Shyti et al., 2015). The same FHM1 mice did not
show increased cortical spreading depression following an acute
stress. The authors explained this discrepancy as a direct effect
of corticosterone on glutamatergic neurotransmission, via a
GR-mediated mechanism, that is otherwise counteracted during
bouts of acute stress. This observation suggests that future studies
on the effect of stress and the HPA axis on migraine should take
into account the type of stressor and etiology of the patient, as
migraineurs represent a heterogeneous population of patients.

It has been known for several decades that patients with
migraine have increased plasma histamine levels, an indicator
of MC activation, both during migraine attack and at rest,
when compared to healthy controls (Heatley et al., 1982).
MC reside in the dura and have been hypothesized to
release their pro-inflammatory contents following activation
by neuropeptides released from nearby sensory nerve endings,
thereby generating neurogenic inflammation (Levy, 2009). A
recent study revealed that cultured human MCs do not express
receptors for either calcitonin gene-related peptide (CGRP) or
pituitary adenylate cyclase-activating polypeptide (PACAP), the
two neuropeptides most commonly associated with migraine,
but rather express and release PACAP upon activation (Okragly
et al., 2017). Animal models of migraine have investigated the
role of MCs more thoroughly and shown that application of MC
mediators can sensitize dural afferents and evoke migraine-like
behaviors (Yan et al., 2013). Restraint stress has also been shown
to induce dural MC degranulation and increase protease I levels
in the cerebrospinal fluid (Theoharides et al., 1995). These
outcomes could be attenuated by pretreatment with antisera to
CRF or neonatal treatment with capsaicin to deplete peptidergic
innervation, further supporting the role of neuropeptide release
in MC activation and the generation of migraine.

CENTRAL SENSITIZATION

Central sensitization is defined as ‘‘an amplification of neural
signaling within the central nervous system that elicits pain
hypersensitivity’’ (Woolf, 2011). It presents as allodynia, a painful
response to a stimulus that is usually considered ‘‘non-noxious’’,
and/or hyperalgesia, an increased response to a noxious stimulus,
in widespread locations in addition to areas associated with
the underlying pain disorder (Woolf, 2011).The mechanism
underlying central sensitization is not fully understood, but it
is likely that there are both peripheral and central components
that play a role in the establishment and maintenance of this
phenomenon that is seen inmany centralized pain disorders. The
instigating factor of central sensitization could originate in the
periphery through mechanisms that eventually lead to long-term
potentiation (LTP) in the spinal cord as well as structural changes
in the brain. These central nervous system changes are then key
to the maintenance of increased pain perception.

“Hyperalgesic Priming” and “Wind Up”
Both peripheral and central neurons show great plasticity,
meaning they are able to adapt to the sensory information that
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they receive. This usually leads to an amplification of signaling
(Woolf and Walters, 1991) and can establish a ‘‘pain memory’’
(Dennis and Melzack, 1979). One such ‘‘pain memory’’ is
termed ‘‘hyperalgesic priming’’, which occurs when a peripheral
nociceptor is exposed to an injury or other priming event
that results in long-term alterations rendering the afferent
more excitable to subsequent activation (Reichling and Levine,
2009). One proposed mechanism behind hyperalgesic priming
is increased localized translation of mRNA that is otherwise
kept in a dormant state at the synapse (Price and Geranton,
2009). This rapid response in translation is made possible by
ribosomes located at the base of dendritic spines (Steward
and Levy, 1982), avoiding the need to traffic mRNA from
the cell body to effect changes in gene expression. NGF
and IL-6 are able to activate kinases important for protein
synthesis including the mechanistic target of rapamycin complex
1 (mTORC1) and extracellular signal regulated kinase (ERK).
An increase in mTORC1 and ERK signaling at the synapse
leads to local increase in protein synthesis (Melemedjian
et al., 2010) and therefore alterations in nociceptor sensitivity.
Once this ‘‘pain memory’’ is established in the nociceptor,
it can eventually become established in the CNS as a
form of LTP. Although most spinal LTP is thought to be
induced by high-frequency stimulation of afferent fibers, it
has been shown that activation of low frequency c-fibers
can lead to LTP in the spinal dorsal horn (Ikeda et al.,
2006).

Another process involved in the development of central
sensitization is known as ‘‘wind-up’’, which involves repetitive
low frequency input to peripheral c-fibers leading to temporal
summation and activation, ultimately generating a pain response
(Mendell and Wall, 1965). This leads to hypersensitivity
characterized by lowered thresholds necessary to elicit and
maintain wind-up (Li et al., 1999). Wind-up is commonly seen
in fibromyalgia patients and, once it is maintained, pain ratings
to subsequent stimuli are higher and more prolonged than those
of healthy control patients (Staud et al., 2004). Trigeminal wide
dynamic range neurons also display wind-up and may play a role
in chronic pain in the orofacial region including migraine and
TMD (Coste et al., 2008).

NGF has been implicated in ‘‘hyperalgesic priming’’ as
a mediator of synaptic protein synthesis (Price and Inyang,
2015), whereas SP-binding and internalization of its receptor,
Neurokinin-1 (NK1), is necessary for sensitization of dorsal horn
neurons and LTP (Ikeda et al., 2006). MC are a significant source
of both NGF and SP (Leon et al., 1994) and, as discussed in
the previous section, are activated and increased in a number of
centralized pain disorders (Theoharides et al., 2001, 2005; Lucas
et al., 2006; Walker et al., 2011). Additionally, increased NGF
and SP levels have been detected in the CSF of patients with
fibromyalgia (Russell et al., 1994; Giovengo et al., 1999), chronic
daily headache (Sarchielli et al., 2001), and CP/CPPS (Miller
et al., 2002). An increase in SP-immunopositive nerves has been
also observed in bladders of IC patients (Pang et al., 1995) and
SP release activates TRP channels, resulting in hypersensitivity in
rodent models of chronic pelvic pain (Wick et al., 2006; Pan et al.,
2010). Therefore, NGF and SP are uniquely poised to play roles

in hypersensitivity resulting from HPA axis abnormalities and in
the establishment of central sensitization.

Functional and Structural Changes within
the Brain
Increased peripheral input eventually results in long-term or
permanent changes within the brain, particularly in regions
associated with the affective component of pain. Repetitive
activation of peripheral nociceptors causes remodeling of the
central nucleus of the amygdala (CeA; Cheng et al., 2011),
which is important in pain regulation and the emotional
response to pain. Additionally, cortical plasticity and LTP has
been reported following peripheral nerve injury (Zhuo, 2008).
Specifically, changes in structure and connectivity are seen in
the anterior cingulate cortex (ACC) and insular cortex (IC)
of chronic pain patients (Kutch et al., 2017b). Alterations in
these brain regions can lead to diminished descending inhibitory
control and facilitatory pain signaling through their connections
that ultimately terminate in the spinal cord. Two other major
components of the descending pain inhibitory pathway, the
periaqueductal gray (PAG) and brainstem rostral ventromedial
medulla (RVM), project to inhibitory interneurons in the
spinal cord and turn off nociceptive signals under normal
conditions (Zhuo, 2008). Decreased function of these inhibitory
interneurons is yet another mechanism that could be underlying
central sensitization (Scholz et al., 2005).

Recent advances in brain imaging techniques have allowed
for thorough examination of gray matter volume, functional
connectivity, and metabolite levels in pain-relevant areas of the
brain in chronic pain patients. While brain imaging studies
of chronic back pain patients have revealed decreased gray
matter in areas involved with pain perception and modulation
(Apkarian et al., 2004), patients with centralized pain syndromes
largely show an increase in gray matter that is associated with
greater widespread pain and comorbidity (Schmidt-Wilcke et al.,
2007; Schweinhardt et al., 2008; Seminowicz et al., 2010; Kutch
et al., 2017a). Functional connectivity between sensorimotor and
insular cortices have largely been reported in chronic urological
pain patients, again with an association with pain that is more
widespread and lower quality of life scores (Kutch et al., 2015,
2017b; Harper et al., 2018). Abnormal levels of choline and
GABA have been observed in the ACC of chronic urological
pain patients, which was associated with greater functional
connectivity and negative mood (Harper et al., 2018).

Evidence of Central Sensitization in
Centralized Pain Syndromes
Fibromyalgia is characterized by central sensitization due to
widespread musculoskeletal pain, hypersensitivity to normally
non-noxious stimulation of tissue (allodynia), and physical and
mental fatigue associated with the disorder (Mease et al., 2005).
Fibromyalgia patients display reduced mechanical and thermal
pain thresholds in the absence of tissue injury (Desmeules et al.,
2003; Petzke et al., 2003), as well as a decrease in the frequency
of stimulation needed to maintain experimentally-provoked pain
(Staud et al., 2004). Likewise, the aforementioned brain imaging
studies support long-term structural and functional changes
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TABLE 1 | Evidence of non-pharmacological therapies for the treatment of centralized pain symptoms and associated comorbidities.

Therapeutic
treatment

Disorder Outcomes measured References

Exercise (walking,
aerobic strength
training, yoga, pilates,
or swimming)

Psychological
disorders

Depression scores; anxiety scores; mood Byrne and Byrne (1993)

Irritable bowel
syndrome

Irritable bowel specific quality of life, GI symptoms
(constipation, diarrhea, pain)

Daley et al. (2008) and Johannesson et al. (2011)

Chronic prostatitis
and/or chronic pelvic
pain

Pain scores; quality of life Dhillon and Holt (2003), Zhang et al. (2015) and
Saxena et al. (2017)

Migraine Headache frequency, headache intensity, number of
headache days, disability, quality of life, depression,
anxiety

Kelman (2007), Baillie et al. (2014), Santiago et al.
(2014) and Daenen et al. (2015)

Fibromyalgia Fibromyalgia Impact Questionnaire score, 6-min walk
test, self-efficacy, grip strength, pain severity, social
functioning, quality of life, psychological distress, brain
response and pain rating to heat stimuli

Gowans et al. (1999), Mannerkorpi et al. (2000, 2010),
Busch et al. (2011), Thompson (2012) and Ellingson
et al. (2016)

Cognitive behavioral
therapy

Psychological
disorders

Depression scores, self-esteem scores, anxiety scores Reynolds and Coats (1986), Lewinsohn and Clarke
(1999), Hofmann and Smits (2008)

Chronic pelvic pain Pelvic pain, widespread pain, dyschezia, dyspareunia,
quality of life, disability, depression, anxiety

Eccleston et al. (2014) and Meissner et al. (2016)

Migraine Headache frequency, headache duration, headache
intensity, anxiety, depression, self-efficacy

Andrasik (2007)

Fibromyalgia Fibromyalgia Impact Questionnaire score, 6-min walk
test, self-efficacy, quality of life, social functioning,
psychological distress, McGill ratings of pain, physical
functioning

Gowans et al. (1999), Mannerkorpi et al. (2000) and
Williams et al. (2002)

within the brains of patients with fibromyalgia (Cummiford et al.,
2016; Kutch et al., 2017a).

Central sensitization is also believed to play a role in
migraine due to the wide range of symptoms that present in
this disorder including throbbing cranial pain, sensitivity to
light (photophobia) and sound (phonophobia), nausea, fatigue,
irritability, muscle tenderness, and cutaneous allodynia including
extracephalic allodynia (Silberstein, 1995). Studies have found
that rats display both local (facial) and widespread (hind paw)
allodynia following meningeal application of noxious agonists
to elicit migraine (Wieseler et al., 2010; Burgos-Vega et al.,
2016). The pathway involved in migraine, the trigeminovascular
pathway, is made up of central neurons located in the spinal
trigeminal nucleus that receive sensory input from the meninges,
periorbital skin, and pericranial muscles and subsequently send
projections to the thalamus leading to pain perception (Burstein
et al., 2000). Sensitization of the trigeminovascular pathway is
thought to not only underlie the coinciding headache pain and
cutaneous allodynia experienced during migraine, but also the
association with widespread dysregulation of pain perception
and, consequently, the presentation of comorbid chronic pain
disorders. In a large study of migraine patients, it was shown
that migraineurs with allodynia were more likely to be diagnosed
with depression, IBS, fibromyalgia, or CFS than those without
cutaneous allodynia (Tietjen et al., 2009). Additionally, there was
a significant positive correlation in the number of pain disorders
experienced and the severity of allodynic symptoms.

Central sensitization could also play a role in the
establishment and maintenance of chronic pelvic pain. For

example, IC/PBS, a disorder characterized by bladder and pelvic
pain and an increase in urinary voidance frequency (Hanno
et al., 2011), has been found to be associated with other pelvic
pain disorders as well as disorders beyond the pelvis including
fibromyalgia and migraine (Warren et al., 2011). Clauw et al.
(1997) investigated the association of IC/PBS and fibromyalgia
and found that both fibromyalgia and IC/PBS patients exhibited
greater tenderness than controls at all points measured, with
fibromyalgia patients displaying greater responses to tender
points. This indicates that similar to fibromyalgia patients,
IC/PBS patients also display widespread allodynia suggesting
a dysfunction in the CNS pain processing pathways in both of
these disorders.

THERAPEUTIC INTERVENTIONS

A growing area of research in the study of pain is
non-pharmacological therapeutic interventions for treating
chronic pain disorders. These therapies include exercise, CBT,
trigger point injection, physical therapy, and neuromodulation
(Till et al., 2017). The advantage of these therapeutic
interventions is that they generally result in symptom
improvement without the harmful side effects commonly
associated with pharmacological treatments (Table 1).

Exercise
Exercise is defined as physical activities that are planned,
structured, repetitive, and centered on an improvement in
physical health (Caspersen et al., 1985). In humans, exercise
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therapy can take the form of a wide range of activities
such as walking, aerobic strength training, yoga, pilates, or
swimming. This variety is important so that a patient can find
an activity that they enjoy and therefore are more likely to
view exercise as a long-term life style change rather than a
quick fix treatment. Exercise has been shown to relieve stress
and reduce depression and anxiety (Byrne and Byrne, 1993)
and has successfully been implemented in the treatment of
chronic pain disorders including chronic pelvic pain (Daley
et al., 2008), migraine (Baillie et al., 2014), and fibromyalgia
(Thompson, 2012). In a 12-week exercise intervention in patients
with IBS, exercise led to improvements in the IBS Severity
Scoring System score, which includes measurements in pain
severity and pain frequency, and IBS-quality of life score, which
measures qualities related to emotional functioning compared
to patients that received usual care for IBS (Johannesson et al.,
2011). Similarly, in a cohort of women with chronic pelvic
pain, an 8-week yoga intervention resulted in improvement in
pain and quality of life scores compared to the control group
that was treated with non-steroidal anti-inflammatory drugs
(Saxena et al., 2017). The frequency, intensity, and duration
of migraine pain was significantly reduced when 12 weeks
of outdoor walking was added to the treatment regime of
migraine patients taking amitriptyline (Santiago et al., 2014) and
Nordic walking (walking with poles) for 15 weeks resulted in
improvements in the Fibromyalgia Impact Questionnaire score
compared to control fibromyalgia patients (Mannerkorpi et al.,
2010). Not only has exercise been utilized as a therapeutic
intervention for chronic pain, being more physically active has
also been shown to reduce the chance of developing chronic
pain disorders. Specifically, higher levels of both moderate- and
high-intensity physical activity were associated with a lower
risk of developing CP/CPPS in older men (Zhang et al., 2015)
and endometriosis in young adult women (Dhillon and Holt,
2003).

In rodents, exercise has been shown to have positive effects
on neurodevelopment (van Praag et al., 1999), as well as increase
neuronal survival and resistance to brain insult (Carro et al.,
2001), and stimulate brain vascularization (Black et al., 1990).
Exercise protocols can take the form of resistance training or
aerobic exercise such as wheel running, treadmill running, and
swimming. Voluntary wheel running prevented the development
of autonomic dysfunction and paw and muscle allodynia in a
mouse model of fibromyalgia (Sabharwal et al., 2016). Forced
treadmill running in rodents could be considered a stressor
due to the fact that it generally involves the use of an aversive
stimulus, such as probing or foot shock, to provoke the rodent
to continue running. In contrast, voluntary wheel running
is considered rewarding, as most rodents will choose to run
when provided a running wheel (Sherwin, 1998) and therefore
this form of exercise is generally not viewed as a stressor.
In support of this, corticosterone levels and anxiety behaviors
have been shown to be elevated after forced treadmill running
compared to sedentary controls, but these effects were not seen
in rodents following voluntary wheel running (Leasure and
Jones, 2008; Ke et al., 2011; Svensson et al., 2016). Furthermore,
voluntary exercise induced higher hippocampal brain-derived

neurotrophic factor (BDNF) concentration compared to rats
subjected to forced exercise or sedentary controls (Ke et al.,
2011).

A potential explanation for the beneficial effects of exercise
is that it influences gene expression and structural complexity
in the limbic structures that regulate the HPA axis (Figure 3).
Specifically, running wheel access has been shown to normalize
hippocampal GR and BDNF mRNA levels in NMS rats (Maniam
and Morris, 2010), and increase neurogenesis and dendritic
spine density in the hippocampus of adult rats (Stranahan
et al., 2007). Other groups have also evaluated the effects of
exercise on stress-induced changes in rodents. It was shown
that chronic unpredictable stress induced a depressive phenotype
in rats, decreased hippocampal BDNF and GR mRNA levels,
and increased circulating corticosterone, while 4 weeks of
voluntary wheel running attenuated these effects (Zheng et al.,
2006). Similarly, 3 weeks of voluntary wheel running before
exposure to immobilization stress was able to prevent the
decrease in BDNF protein levels caused by the stressor (Adlard
and Cotman, 2004). These findings are relevant to the study
of treatment of chronic pain because of the association of
stress causing or exacerbating pain symptoms as previously
described.

Another hypothesis for the mechanism underlying the
positive influence of exercise on pain is through improved
conditioned pain modulation (CPM), formerly referred to as
diffuse noxious inhibitory control (DNIC). CPM is a ‘‘pain-
inhibits-pain’’ mechanism and represents a measure of the
function of descending analgesic pathways. This system has
been shown to be defective in chronic pain patients (Lewis
et al., 2012) and these deficits in pain inhibitory pathways are
involved in the development of central sensitization (Scholz
et al., 2005). The relationship between exercise and improved
CPM was demonstrated in a study evaluating the ability of
self-reported physical activity to predict thermal sensitivity as
well as pain facilitatory and inhibitory function, tested by
temporal summation (TS; perceived increase in pain intensity to
repeated stimulation at a constant stimulus intensity, reflecting
central sensitization) and CPM respectively. Results indicated
that individuals reporting greater total physical activity showed
reduced TS of pain and greater CPM (Naugle and Riley,
2014).

There are different mechanisms that could explain the
beneficial influence of exercise on CPM including causing an
increase in endogenous opioids, stimulating brain structures
involved in descending analgesic pathways, and/or maintaining
the balance between excitatory (glutamate) and inhibitory
(GABA) neurotransmitters in the CNS (Naugle and Riley, 2014).
Exercise increases endogenous opioids in the CNS (aan het
Rot et al., 2009) and the effects of this increase are often
compared to effects following administration of the opioid
receptor antagonist naloxone. One study assessing changes in
pain threshold after swimming found that there was a significant
increase in hind limb hot plate withdrawal threshold in exercised
mice that received saline injection before exercise but no increase
in pain threshold in exercised mice that received naloxone
(Willow et al., 1980). Similar results were seen in humans
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FIGURE 3 | Non-pharmaceutical interventions restore proper signaling within the HPA axis and between higher structures. Exercise increases dendritic complexity
and BDNF expression in the hippocampus, which restores negative input onto the hypothalamus to restore proper HPA axis output (1). Decreased CRF release
stabilizes MC activation and infiltration associated with chronic pain disorders (2), thereby reducing peripheral nociceptive input. Exercise influences the descending
pain pathway, likely through release of endogenous opioids, increasing neuronal activity, and balancing excitatory and inhibitory transmission (3). Cognitive behavioral
therapy (CBT) alters the intrinsic functional connectivity (iFC) between brain regions associated with pain management, including connections between the prefontal
cortex (PFC) and amygdala and somatosensory cortex and the basal ganglia network (BGN) (4). Cortical and hippocampal gray matter densities are also increased in
patients following CBT (5).

when saline or naloxone was administered to long-distance
runners after a run. Long-distance running produced thermal
and ischemic hypoalgesia and mood elevation, but most of
these effects were attenuated after administration of naloxone
(Janal et al., 1984). Further evidence of the influence of exercise
on CPM comes from studies evaluating brain activity in areas
involved in descending pain modulation pathways. Ellingson
et al. (2016) examined brain activity during administration
of painful heat stimuli following moderate intensity cycling
exercise or quiet rest in fibromyalgia patients. They found
that exercise, but not quiet rest, prior to heat stimulation,
elicited increased activity in brain regions involved in the
anterior insula and dorsolateral prefrontal cortex, as well as
lower pain ratings. A final potential mechanism regarding
the beneficial role of exercise on CPM is that exercise can
influence the balance of excitatory and inhibitory transmission
in pain pathways. Four weeks of voluntary wheel running in
rats resulted in significant changes in the forebrain GABAergic
system compared to sedentary control rats (Hill et al., 2010).
All of the previously described results suggest that exercise
significantly alters structures and signals involved in CPM
and these alterations could begin to explain why exercise has
been shown to reduce pain symptoms in many chronic pain
disorders.

It is important to note that the length of exercise protocol, as
well as intensity of exercise, have been shown to have differential
outcomes. In regards to duration of exercise intervention,
both short- and long-term periods of voluntary wheel running
increased cell proliferation in the rat hippocampus, but
a longer-term exercise protocol was required to increase
neurogenesis (14 days) and LTP (56 days; Patten et al., 2013).
In a study comparing the effects of low-intensity running,
high-intensity running, or sedentary conditions in rats, it was
found that low-intensity running increased BDNF levels and
dendritic complexity and branching in the hippocampus while
not significantly affecting corticosterone levels. In contrast,
high-intensity exercise did not increase hippocampal BDNF
levels or induce structural hippocampal changes but did cause
a significant increase in corticosterone. This suggests that the
high-intensity exercise elicited a stressful response and therefore
did not have the beneficial effects that the low-intensity exercise
did (Shih et al., 2013). These preclinical results are similar to
what is seen in humans, where there appears to be a narrow
‘‘therapeutic window’’ for the use of exercise in chronic pain
treatment. For example, the majority of studies evaluating
the efficacy of exercise for fibromyalgia treatment have found
that low or moderate levels of aerobic training reduces tender
point pain compared to before training or a control group.

Frontiers in Cellular Neuroscience | www.frontiersin.org 10 February 2018 | Volume 12 | Article 35

https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Eller-Smith et al. Mechanisms of Centralized Pain

However, more strenuous exercise regimes often result in an
increase in fibromyalgia pain (Vierck, 2006). Additionally, it
has been shown that the greatest improvement in fibromyalgia
patients is seen after long-term (12 weeks) moderate intensity
aerobic training (Busch et al., 2011). There is evidence that
exercise can be a trigger or increase pain during migraine
attacks (Kelman, 2007). However, it is suggested that exercise
treatment for migraine be implemented with a slow increase
in intensity and duration to allow the patient to habituate
to exercise and eventually see benefits (Daenen et al., 2015).
Therefore, in the instances where exercise has been found to have
detrimental effects on chronic pain symptoms, it is likely due
to improper application of exercise treatment. This highlights
the importance of tailoring exercise regimes specifically to
individual patients to achieve the most benefit and avoid
exacerbation of pain symptoms due to overly intense exercise
prescription.

Cognitive Behavioral Therapy
Another form of non-pharmacological therapy is CBT, which
consists of educating patients about their pain, techniques on
how to cope with their pain, such as relaxation training, and
how to implement these cognitive coping techniques in real-life
situations (Waters et al., 2007). This technique is particularly
useful in stress-induced pain syndromes as the premise behind
CBT is to reduce stress and emotional responses and thereby
subsequently reduce symptom severity or frequency. The use
of CBT for improving symptoms of depression and anxiety has
been well-established (Reynolds and Coats, 1986; Lewinsohn and
Clarke, 1999; Hofmann and Smits, 2008). In a study evaluating
CBT as a form of fibromyalgia treatment, a greater percentage
of patients displayed improvement in physical functioning after
CBT compared to patients that received standard care in the
form of pharmacological management of symptoms (Williams
et al., 2002). Although CBT is most commonly used in treating
symptoms in fibromyalgia patients, it has also been used
effectively to treat chronic pelvic pain symptoms. In a study
of women with endometriosis-associated pelvic pain, CBT was
implemented in addition to somatosensory stimulation in the
form of acupuncture and this combination of treatments resulted
in a decrease in pelvic pain and an increase in quality of life
(Meissner et al., 2016). Additionally, a recent review categorized
studies that used Internet-delivered CBT into headache and
non-headache chronic pain conditions. They found that pain,
disability, depression, and anxiety were reduced in non-headache
chronic pain conditions and there was insufficient evidence to
make conclusions in headache conditions due to having only
two studies to analyze (Eccleston et al., 2014). However, another
review focused on CBT in headache disorders found that CBT
reduced headache activity 30%–60% on average across studies
but notes that there are a fair number of patients who were
non-responders (40%–70%; Andrasik, 2007).

It is hypothesized that the positive effects of CBT seen in
the treatment of chronic pain are due to structural changes
in the gray matter in regions of the brain associated with
pain management and/or in the functional connectivity of
these regions (Figure 3). CBT induced changes in gray

matter volume have been observed when implemented to
treat patients with chronic pain disorders (Seminowicz et al.,
2013), CFS (de Lange et al., 2008), and posttraumatic stress
disorder (Levy-Gigi et al., 2013). One study found that
11 weeks of CBT in a mixed group of chronic pain patients
resulted in significant gray matter differences in sensory,
motor, and affective brain areas as measured using voxel-
based morphometry (Seminowicz et al., 2013). The majority
of the CBT induced changes were increases in gray matter,
however one region, the supplementary motor area (SMA),
showed a significant gray matter decrease after CBT. The
patients in this study showed significant improvements in pain
measurements as well as region-specific positive and negative
correlations in gray matter changes and pain catastrophizing.
Changes in intrinsic functional connectivity (iFC) are also seen
in areas of the brains of chronic pain patients. Baliki et al.
(2012) found that functional connectivity patterns between
the medial prefrontal cortex and nucleus accumbens could
predict whether a patient with sub-acute back pain would
recover or develop persistent pain. They also describe iFC
differences in other brain regions including the insula and
basal ganglia in these patients (Baliki et al., 2012). In a study
investigating the effect of CBT on iFC, 11-weeks of CBT in
patients with various types of chronic musculoskeletal pain
led to significant pre-post changes in iFC. Specifically, they
found a decrease in iFC between the medial prefrontal cortex
and amygdala and PAG and an increase in iFC between
the basal ganglia network (BGN) and the right secondary
somatosensory cortex. These changes were correlated with
significant improvements in clinical measures of pain. CBT
patients that showed the greatest improvement in self-efficacy
and pain symptoms exhibited the greatest pre-post change in
iFC. These results were not seen in an active control group who
received educationalmaterials that did not include CBT (Shpaner
et al., 2014).

Due to the fact that no treatment for chronic pain disorders
has been found to be universally successful, it is imperative to
try and find alternative treatments to those that are currently
available. Additionally, due to the negative side effects that
often accompany pharmacological therapies, finding successful
treatments that avoid these side effects is key. Evidence suggests
that exercise and CBT are both able to improve symptoms
associated with multiple chronic pain disorders, usually without
harmful side effects. It is likely that a combination of therapies
tailored specially to individual patients will produce the most
benefit. In support of this are studies that have shown that a
combination of exercise and CBT significantly reduced pain,
anxiety, depression, and fatigue as well as increased physical
functioning in fibromyalgia patients (Gowans et al., 1999;
Mannerkorpi et al., 2000). The mechanisms of how these
non-pharmacological therapies benefit chronic pain patients
have not been fully established. However, in regards to exercise
there is evidence that it influences both HPA axis and central
sensitization pathways through altered limbic regulation and
CPM respectively. CBT likely works by reducing stress in
chronic pain patients, thereby decreasing HPA axis activation
and downstream negative effects of this activation.
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FUTURE DIRECTIONS FOR THE FIELD

Recent findings, particularly from the Multidisciplinary
Approach to Pelvic Pain (MAPP) network, have greatly
increased our knowledge of phenotypic and central changes that
occur in patients with centralized pain syndromes (Clemens
et al., 2014; Kutch et al., 2017a,b; Lai et al., 2017; Harper
et al., 2018). We know that changes in gray matter density
and functional connectivity are associated with widespreadness
of pain and negative affect (Kutch et al., 2017a); however,
we do not know what causes some patients to develop these
exaggerated symptoms, while some never progress beyond
localized or regional pain with no additional comorbidities.
Animal models can help identify the contribution of the
HPA axis, in terms of assessing whether exposure to early
life adversity can functionally and structurally alter the brain,
thereby increasing the susceptibility to developing centralized
pain. Conversely, these types of investigations may shed light
on whether adverse early life experiences result in hyperalgesic
priming, thereby inducing central changes following subsequent
exposure to noxious stimuli. It is clear that pain and comorbidity
arise independent of symptomatic differences in cortisol release.
Therefore, the dysfunction of the HPA axis, regardless of the
direction it goes, may be key to the downstream dysregulation
of neuroimmune interactions and increased peripheral drive.
Future studies centered on restoring proper HPA axis output
and regulation should heed the results of previous studies
(Sweetser et al., 2009; Hubbard et al., 2011) and focus on the
emotional and affective aspects of pain in patients exhibiting
evidence of central nervous system pain amplification, and not
just on symptomology within a broad group of patients. It has
become clear that the comprehensive phenotyping of chronic
pain patients will be essential for determining how centralized
their pain has become, if at all, and for determining the most
effective course of treatment to help ease their symptoms.

CONCLUSION

Centralized pain syndromes are often comorbid with one
another and are accompanied by fatigue, mood and sleep

disturbances, and poor quality of life scores (Clauw, 2015).
This high degree of comorbidity and a lack of definitive
underlying etiology make these syndromes notoriously difficult
to treat. Despite heterogeneity in presentation, these syndromes
do appear to share some similar underlying mechanisms.
Abnormal regulation and output of the HPA axis is commonly
associated with centralized pain disorders as evidenced by
altered cortisol release in patients and preclinical research in
rodent models of stress-induced pain. Disrupted HPA axis
output can lead to central and peripheral changes that have
negative downstream consequences, including an increase in
epithelial leakage and MC activation/nociceptor interaction.
Increased c-fiber activation can lead to ‘‘hyperalgesic priming’’
and/or ‘‘wind-up’’ and eventually to central sensitization
through LTP in the CNS. Therefore, although HPA axis
dysregulation and central sensitization are separate phenomena,
they share some mechanistic overlap suggesting that they
could work together to cause, worsen, and/or maintain
symptoms associated with centralized pain disorders.
Currently, there are no established treatments for most
chronic pain disorders. Non-pharmacological treatments, such
as exercise and CBT, show evidence of being beneficial in the
treatment of fibromyalgia, chronic pelvic pain, and migraine
patients. It is likely that the most efficacious treatment for
chronic pain will be a combination of treatments tailored
specifically to each individual patient, based on life history and
symptomology.
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