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Prescription opioid misuse is an ongoing and escalating epidemic. Although these 
pharmacological agents are highly effective analgesics prescribed for different types of 
pain, opioids also induce euphoria, leading to increasing diversion and misuse. Opioid 
use and related mortalities have developed in spite of initial claims that OxyContin, 
one of the first opioids prescribed in the USA, was not addictive in the presence 
of pain. These claims allayed the fears of clinicians and contributed to an increase 
in the number of prescriptions, quantity of drugs manufactured, and the unforeseen 
diversion of these drugs for non-medical uses. Understanding the history of opioid 
drug development, the widespread marketing campaign for opioids, the immense 
financial incentive behind the treatment of pain, and vulnerable socioeconomic and 
physical demographics for opioid misuse give perspective on the current epidemic 
as an American-born problem that has expanded to global significance. In light of the 
current worldwide opioid epidemic, it is imperative that novel opioids are developed 
to treat pain without inducing the euphoria that fosters physical dependence and 
addiction. We describe insights from preclinical findings on the properties of opioid 
drugs that offer insights into improving abuse-deterrent formulations. One finding is 
that the ability of some agonists to activate one pathway over another, or agonist bias, 
can predict whether several novel opioid compounds bear promise in treating pain 
without causing reward among other off-target effects. In addition, we outline how the 
pharmacokinetic profile of each opioid contributes to their potential for misuse and 
discuss the emergence of mixed agonists as a promising pipeline of opioid-based 
analgesics. These insights from preclinical findings can be used to more effectively 
identify opioids that treat pain without causing physical dependence and subsequent 
opioid abuse.

Keywords: biased agonism, pharmacokinetics, opioid epidemic, chronic pain, opioid use disorder, oxycodone, 
mixed agonists
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OXYCODONe AND OXYCONTiN AT THe 
CeNTeR OF THe PReSCRiPTiON OPiOiD 
ePiDeMiC

The History of Oxycodone Treatment of 
Chronic Non-Cancer Pain
Oxycodone, a semisynthetic opioid, was first formulated in 
1916 from thebaine, a chemical found in opium poppy plants. 
The drug was first marketed as a less addictive alternative to 
“narcotic” drugs, such as morphine and heroin, which were 
typically prescribed to patients as an analgesic in the early 1900s. 
Oxycodone was first released in the USA in 1939 by Merck as 
a combination drug containing scopolamine, oxycodone, and 
ephedrine, but was discontinued in 1987 (1). Purdue Pharma 
then developed an extended-release formulation of oxycodone, 
called OxyContin. The FDA approved OxyContin in 1995 
(2), noting that the reduced frequency of dosing was the only 
advantage of OxyContin over regular oxycodone (3). This drug 
was aggressively marketed by Purdue Pharma for opioid-based 
management of moderate-to-severe cancer and non-cancer pain 
where the use of an opioid analgesic was considered appropriate 
for more than a few days (2). Purdue used an aggressive market-
ing strategy to target-specific physicians (4), particularly those 
with less time to evaluate patients and often with less training 
in pain-management techniques. This led to more than half of 
the total OxyContin prescriptions being written by primary care 
physicians rather than pain specialists (4). In addition, direct-to-
consumer pharmaceutical advertising, allowed only in the USA 
and New Zealand, has contributed to mass consumer awareness 
of the availability of these drugs with a demonstrated influence 
on the prescribing practice of physicians (5, 6). This aggressive 
physician directed marketing, as well as direct-to-consumer mar-
keting, has become a benchmark for the marketing of opioids.

The Financial incentive for Prescription 
Opioid Distribution
The Purdue-Frederick company first marketed MsContin 
(morphine sulfate) as an extended-release opioid-containing 
formula to treat pain in terminal cancer patients. MsContin 
generated $475 million in sales over a decade. After the Sackler 
brothers acquired Purdue-Frederick and rebranded the company 
as Purdue Pharma, they released OxyContin, which generated 
$45 million in sales in just the first year after its release in 1996. 
By 2001, the annual revenue from OxyContin sales reached $1.1 
billion and rose to $2.528 billion by 2014 in the USA alone.

Currently, the Purdue Pharma company is 100% owned by 
members of the Sackler family, who are worth $13 billion and 
ranked as the 19th wealthiest family in the USA in 2016 (7). In 
addition to Purdue Pharma and other Sackler holdings, there are 
several other companies manufacturing oxycodone and related 
opioid compounds to fill the 259 million annual prescriptions 
written to patients in the USA, generating an additional $11 billion 
in opioid sales annually in 2011 (8). These include Abbot Labs, 
Novartis, Teva, Pfizer, Endo Pharmaceuticals, Impax, Actavis, 
Sandoz, Janssen Pharmaceuticals, etc. Together, these figures 
demonstrate the significant financial incentive pharmaceutical 

companies have to market opioid compounds despite growing 
concerns of the abuse liability and safety of these drugs.

Recognition of the Abuse Liability of 
Oxycodone and OxyContin
OxyContin was marketed as a delayed-release formulation allo-
wing 12  h of continuous analgesia with fewer side effects than 
other opioid-based analgesics if used as directed. This formula-
tion was promising in that the delayed-release would enable 
patients to sleep through the night, improving the standard of 
care for chronic pain patients at the time. However, this drug  
has been widely misused for non-medical purposes. At the time 
of the release of OxyContin in 1996, it was already known that 
68% of an OxyContin tablet could be extracted by crushing the 
tablet (4). Since the first published reports of OxyContin abuse in 
2000 (9), public awareness of its abuse liability has grown. Indeed, 
Purdue-Frederick, a holding of Purdue Pharma, paid $470 mil-
lion dollars in fines to federal and state agencies and $130 million 
of payments in civil suits due to the misbranding of OxyContin as 
non-addictive in 2007 (10). Three executives of Purdue Pharma 
also pleaded guilty to OxyContin misbranding charges and paid 
$34.5 million in fines. By early 2017, there were daily reports of 
the diversion and misuse of prescription opioids with a number 
of states and counties across the country filing suit against five 
pharmaceutical companies, including Purdue. The plaintiffs in 
these suits claimed that the aggressive marketing campaign of opi-
oid compounds is founded on fraudulent assertions of the safety 
of these drugs and that this misinformation has contributed to 
the ongoing opioid crisis. Purdue has responded to these claims 
by emphasizing that opioids are essential in pain management 
(2) and that their extended-release abuse-deterrent formulations 
are evidence of their drive to reduce the diversion of OxyContin 
(8). In 2018, Purdue stated it will no longer advertise directly to 
American doctors, a measure that will hopefully reduce over-
prescription of opioids (11).

The Patterns of Prescription Opioid 
Misuse and Overdose Mortalities 
worldwide
The incidence of lifetime OxyContin abuse in the USA increased 
from 0.1% in 1999 to 0.4% in 2001 (12). By 2013, over 1,000 
Americans were treated daily in emergency departments for 
prescription opioid misuse and in 2014, 4.3 million people used 
prescription opioids for non-medical reasons (13, 14). This trend 
was also seen in the number of deaths attributed to oxycodone, 
which increased from 14 cases in 1998 to ~14,000 cases in 2006 
and 18,000 in 2015 (15). Although not of the same magnitude 
and somewhat delayed, this increase in opioid abuse and mor-
tality is also occurring in other countries (16, 17). In Australia, 
oxycodone-related deaths increased sevenfold between 2001 and 
2011 (18). In Finland, opioid mortalities increased from 9.5% of 
all drug overdose deaths in 2000 to 32.4% in 2008 (19), and data 
from Brazil, China, and the Middle East show similar increases 
in opioid diversion (17). In the United Kingdom, although 
tramadol and methadone are misused over oxycodone, the pat-
tern of opioid misuse shows a similar increase to the USA albeit 
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on a smaller scale (20). While Americans consume 80% of the 
global opioid supply and 99% of the global hydrocodone supply 
(21) and the number of overdose mortalities is considerably 
higher in the USA, the opioid epidemic is growing worldwide.

The Most vulnerable Populations
The incidence of opioid overdose mortality in the USA shows 
three hotspots: (1) the Appalachian states of Kentucky, Virginia, 
West Virginia, Pennsylvania, and Ohio, (2) the Northeast states of 
Maine, New Hampshire, and Rhode Island, and (3) the Southwest 
states of Nevada, Utah, New Mexico, and Arizona (15). This could 
be related to the demographics of these areas and the prescrib-
ing habits of the local medical professionals and pharmacies 
(22–25). Within all of these affected areas, opioid-related deaths 
are predominately Caucasians of middle age and are a result of 
drug overdose, alcohol-related disease, suicide, and psychiatric 
disorders. This has resulted in the first decline in life expectancy 
in the USA since 1993 (26–29). This has been highlighted in a 
series of articles that describe this population as subject to the 
“deaths of despair” (27, 30) and a “toxic stress” response to benign 
early-life events (31).

The primary factor contributing to these “deaths of despair” 
is the collapse of the white high-school educated working class 
from its heyday of the 1970s. This population’s struggles in the job 
market in early adulthood became more difficult over time and 
are accompanied by health and personal issues that contribute to 
an increased morbidity from chronic pain, and physical and men-
tal health disorders including opioid use disorder [OUD (32)]. 
The (USA) National Bureau of Economic Research found that for 
every 1% increase in unemployment, there is a 3.6% increase in 
opioid-related deaths, suggesting that macroeconomic conditions 
have influence over national drug misuse (33). Considering the 
global economic aftershocks of the USA’s recession, we suggest 
that global economic recession contributed to the developing 
international opioid epidemic. To this point, a meta-analysis of 
research published from 1995 to 2015 in South America, the 
Caribbean, Europe, Asia, the USA, and Australia suggests that 
economic depression causes mental health issues that exacerbate 
illicit drug use (34). Case and Deaton additionally report that the 
use of prescription opioids did not create the vulnerable American 
profile, but the ease of availability of these compounds and the 
difficulty in treating opioid misuse in a depressed economy has 
inflamed the “sea of despair” that extends across the USA (27, 30).

Addressing Chronic Pain in the Midst of 
the Opioid epidemic
It is clear that mass production, marketing, and prescription 
of opioids for pain treatment has contributed to the opioid 
epidemic in vulnerable demographics, characterized by mental 
health disorders, socioeconomic challenges, and susceptibil-
ity to occupational injury. We discuss the interplay of mental 
health, pain, and depression, and how these factors contribute 
to the misuse and addiction of prescription opioids. One of the 
key marketing claims of pharmaceutical companies was that 
the presence of pain is protective against opioid misuse. The 
evidence for this claim is shockingly limited due to evolving 

diagnostic criterion for opioid misuse and does not account for 
the influence of mental health on opioid misuse behavior in the 
pain state. This gives us perspective toward treating pain with 
the intent to limit the pro-addiction properties and off-target 
effects of future pharmaceuticals to decrease opioid dependence 
in the chronic pain state. We look to insights from behavioral 
research on addiction and reward, and then to mechanistic 
research on the pharmacokinetic and signaling properties on 
opioids to address these issues.

ARe CHRONiC PAiN PATieNTS AT RiSK 
FOR OPiOiD MiSUSe?

The Use of Opioids to Treat Chronic Pain
Opioids are highly effective analgesics for the management of 
acute pain or pain associated with cancer but it is the opioid treat-
ment of non-cancer pain that is at the root of the opioid epidemic. 
Before the introduction of OxyContin, patients of all ages suffer-
ing from chronic non-cancer pain were commonly under-treated 
due to a fear of opioid addiction and of other side effects of these 
drugs (35–37). There were also few viable alternatives, heroin and 
its metabolite, morphine, had been abused during the Vietnam 
war and a prevailing public stigma against the use of drugs devel-
oped (38). This culminated in an “opioid-phobia” and recurrent 
under-treatment of pain. Spurred by the promise that the pres-
ence of pain protects against opioid addiction in patients with 
chronic cancer pain (39), the availability of a slow-release opioid 
(OxyContin) and an aggressive marketing strategy by Purdue, 
opioid-phobia was replaced by an over-willingness to prescribe 
opioids. This openness, based on the success of long-term opioid 
treatment of cancer patients by oncologists and pain specialists 
(39) was coupled with a lack of adequate physician training in 
the appropriate use of opioids or evidence for their use in other 
pain conditions, increasing market pressure and a lack of regula-
tory control by the government. This timely interplay of multiple 
factors resulted in the number of opioid prescriptions per 100 
persons per year increasing from 61.9 in 2000 to 83.7 in 2009, 
and to 259 million prescriptions by 2012, almost one per person 
(40–42). This increase has not been reflected by a change in the 
percentage of either ambulatory Americans or those reporting to 
the emergency department in pain, suggesting that the increase 
in opioid prescriptions is unrelated to the presence or absence of 
pain (43, 44). However, these large scale epidemiological stud-
ies make it difficult to assess whether opioid-based treatment 
of the ~100 million Americans in pain (45) has influenced the 
incidence of opioid misuse that affects 4.3 million Americans (14, 
46). Assessing the risk of opioid misuse in chronic pain patients 
provides greater insight into the vulnerability of these patients 
for addiction.

The Risk of Opioid Misuse in Chronic Pain 
Patients
At the center of the opioid epidemic lies an unanswered question 
as to whether pain is protective of opioid misuse, a claim first 
made by Purdue in the 1990s. This was based on the findings 
from two studies that suggested the risk of addiction in pain 
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patients was less than 1% (4). In the first study, Porter and Jick 
found iatrogenic addiction in 4 of 11,882 patients (47) and in 
the second, Perry and Heidrich found no addiction among 
10,000 burn patients treated with opioids (48). A third study 
by Portenoy and Foley found no evidence of abuse behaviors in 
38 patients treated with different opioids (49). The 5-sentence, 
101-word letter to the New England Journal of Medicine in 1980 
by Porter and Jick was recently found to have been uncritically 
cited by 439 authors as proof that addiction was rare in long-term 
opioid therapy. Despite its limitations, this letter and its citations 
have made a seminal contribution to the opioid crisis (50).

Before considering the evidence for a protective effect of pain 
in preventing opioid misuse, the criterion by which to assess 
opioid misuse must be defined. Initially, opioid dependence and 
addiction were considered the definitive benchmark. These terms 
have recently been replaced by the term “opioid misuse” or the 
use of opioids for any other reason or under any other dosing 
schedule than originally prescribed. The diagnostic classification 
system of patients misusing opioids has similarly evolved and 
the terms “abuse” or “dependence” have been replaced by the 
diagnosis of OUD. According to the criteria established by the 
Diagnostic and Standard Manual of Mental Disorders (DSM) V 
(51), OUD has levels of severity depending on the number of cri-
teria met in several categories. The four categories of criteria that 
characterize OUD include impaired control, social impairment, 
risky use, and pharmacological properties (physical tolerance and 
withdrawal symptoms).

Using these criteria, recent reports clearly show that the 
incidence of opioid misuse and aberrant drug-related behavior 
is in fact higher, not lower, in pain patients compared with the 
general population (52–63). Chronic pain patients have a higher 
rate of comorbid depression and anxiety, likely contributing to 
their increased use and misuse of opioids (64). Indeed, 30–80% 
of chronic pain patients are concurrently diagnosed with both 
depression and chronic pain, a comorbidity known as the pain-
depression dyad (65, 66). Both conditions are closely interwoven 
in that they respond to similar treatments, aggravate or improve 
each other, and share common biological mechanisms [for review 
see Ref. (67)]. Using opioids to relieve pain in the presence of 
this dyad may in itself drive further psychiatric comorbidities 
(68). This patient population is unsurprisingly more likely to 
increasingly misuse opioids (58, 63, 69–71). Patient escalation of 
opioid doses in response to the progressive interaction between 
pain and affect or to compensate for tolerance and changes in 
pain sensitivity over time (“pseudoaddictive” behaviors) (71–73) 
may explain enhanced aberrant drug-related behaviors in chronic 
pain patients (61), as well as the positive correlation between 
baseline pain and the presence of OUD at a 3-year follow-up (74).

wHY ARe OPiOiDS SO ADDiCTive?

The motivation to continue taking drugs in spite of adverse con-
sequences can be explained by several concurrent theories. The 
Opponent Process theory (75) results from a balance between two 
valuationally opposite components, a loss of function within the 
reward-mediating dopaminergic circuits and an increased func-
tion of stress-related circuitry involving the extended amygdala, 

the kappa/dynorphin opioid and corticotrophin-signaling systems 
[reviewed in Ref. (76)]. The latter system becomes hyperactive 
during opioid dependence and manifests as increased anxiety 
and aggressive behaviors (77, 78). Another, co-occurring theory 
of the motivation behind continued drug use is the Incentive 
Sensitization theory that proposes an increase in drug-paired 
cues with chronic drug taking (79). Together, these systems 
drive drug-seeking behavior that is a product of (1) a decrease 
in positive outcome coupled with the promise and pullof drug-
associated cues and (2) an increase in dysphoria between drug 
exposures and during withdrawal (80–82). This is particularly 
relevant for opioids as these compounds induce a tolerance to 
repeated exposures of the same dose of the drug. This leads to  
(1) an escalating intake of opioids over time resulting in compul-
sive opioid-taking behaviors (83), (2) increasing dependence, and 
(3) increasing negative affect seen in the absence of the drug (84) 
that together culminate in further dysregulation of the reward 
system (85).

The negative affective state of depression and anxiety asso-
ciated with chronic pain can be relieved temporarily by the 
analgesic and euphoric properties of acute opioid use, which 
contributes to their abuse liability in the chronic pain state (86). 
However, both pain and opioid use create a new homeostasis in 
the reward and stress-related pathways [reviewed in Ref. (87)],  
an example of which can be seen in chronic pain patients who 
misuse opioids and also fail to show a positive affect from 
natural rewards (84, 88). Preclinical studies in rodent models 
have been able to examine the interaction between pain and 
opioids at several levels. Pain does not affect the number of low 
doses of opioid infusions (of heroin, morphine, and oxycodone) 
earned in a self-administration model of drug-seeking behavior 
but does increase heroin self-administration to binge levels at 
higher doses and during prolonged access to the drug (89–93). 
By contrast, pain reduces the self-administration of fentanyl 
(94), a shorter-acting but highly efficacious opioid that rapidly 
crosses the blood–brain barrier (BBB) (95). Pain also increases 
drug (morphine)-seeking behavior when the drug is no longer 
available (96). This result suggests that the abuse liability of 
opioids in the chronic pain state is not directly motivated by 
analgesia-seeking and intensifies when the drug is no longer 
available yet drug-associated cues and environmental stimuli are 
present. Together, these preclinical findings suggests that chronic 
pain produces a vulnerability to addiction-like behavior, bearing 
a similarity to the behavior of opioid addicts in chronic pain 
who are more likely to relapse once tapering off a maintenance 
buprenorphine naloxone treatment (97).

THe CURReNT CLiNiCAL TReATMeNT OF 
CHRONiC PAiN PATieNTS wiTH OPiOiD 
USe DiSORDeR

The current clinical treatment of chronic pain in patients with 
OUD in the USA relies on 3 FDA-approved medications: 
buprenorphine naloxone, methadone, and long-acting injectable 
naltrexone (98). These strategies seek to antagonize or minimize 
the agonist properties of opioids to reduce the likability of 
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opioids. The use of methadone in the USA for OUD is limited to 
highly restricted methadone programs, but buprenorphine can 
be prescribed for office-based treatment by certified physicians. 
Buprenorphine, an opioid partial agonist, has analgesic effects 
and can be used to treat co-occurring chronic pain and OUD. 
While outcomes for OUD treatment with buprenorphine are 
similar for patients with and without chronic pain (99), poorly 
controlled pain during buprenorphine treatment is a risk for 
opioid relapse (97, 100, 101). Buprenorphine combined with 
naloxone, an opioid antagonist added to reduce diversion of 
buprenorphine for intravenous abuse, is FDA approved for OUD 
(e.g., Suboxone®), while a transdermal formulation (Butrans®) 
and a buccal film (Belbuca®), both without added naloxone, are 
approved for chronic pain. There are several novel compounds 
and approaches under development to treat pain, non-opioid 
compounds such as those that target cannabinoid receptors 
(102) and non-pharmaceutical, behavioral-based options to treat 
pain patients (103). However, for patients with chronic pain who 
continue to prefer a “quick fix from pain pills,” the development 
of analgesic compounds that are not rewarding and have minimal 
off-target effects remains a challenge in the current context of the 
opioid epidemic.

NOT ALL OPiOiD ANALGeSiCS ARe THe 
SAMe: eXPLORiNG NOveL 
PHARMACeUTiCAL APPROACHeS TO 
GUiDe THeRAPeUTiC iNTeRveNTiONS 
FOR CHRONiC PAiN

Opioids have been used for centuries as the treatment of choice 
for pain but “abuse-deterrent” formulations may decrease opioid 
misuse and deaths if strategically developed. Abuse-deterrent for-
mulations of existing opioids are one strategy to reduce misuse, but 
they have been demonstrated to be modifiable, necessitating the 
consideration of additional properties to minimize abuse liability 
and fatalities. We suggest that therapeutics that do not produce 
reward are most likely to reduce diversion for misuse. Focusing 
on this approach, we discuss novel interventions that maximize 
analgesic properties while minimizing reward-promoting effects 
on the affective state. To provide background information for this 
section, we have included a table (Table 1) of the clinical use and 
pharmacological properties of opioids commonly used in the 
clinic and those that are often abused. This table shows that most 
opioids used clinically to relieve pain are either full or partial 
agonists of the mu opioid receptor (MOR) with some activity at 
other members of the family of opioid receptors.

Biased Agonism of the Mu Opioid 
Receptor
Over the years, many opioid compounds have been classified by 
their efficacy to activate a downstream pathway (such as cAMP), 
their selectivity for a specific opioid receptor, and ability to 
desensitize, internalize, and re-sensitize the ligand-bound recep-
tor. More recently, many opioids have been further classified by 
their ability to induce a specific ligand-receptor conformation 
to recruit and activate different downstream signaling cascades 

[reviewed in Ref. (153)]. This bias toward either activation of 
G-protein-dependent or G-protein-independent, arrestin signal-
ing pathways is known as “biased agonism” (154). This is an excit-
ing discovery with obvious translational significance if specific 
pathways can indeed be activated to reduce non-analgesic opioid 
signaling. For MORs and other G-protein coupled receptors, such 
as the Cannabinoid 1 receptor, agonists biased toward arrestin-
mediated signaling rather than G-protein-dependent signaling 
pathways seem to produce greater adverse side effects (155, 156). 
This has led to an emphasis on developing compounds that do 
not recruit either of the non-visual arrestin isoforms very well. 
Herkinorin was the first example of a MOR agonist showing that 
reduction of arrestin-signaling bias is associated with reduced 
adverse side effects. Using this logic, novel MOR agonists such 
as TRV130, TRV0109101, and PZM21, have been developed that 
do not recruit arrestin very well and also induce fewer adverse 
side effects (156–159). In particular, TRV130 has been shown 
to be G-protein biased, has a greater or equal analgesic potency 
to morphine, and induces less tolerance (160, 161). However, 
it is controversial as to whether TRV130 causes less rewarding 
behaviors, inhibition of gastrointestinal transit, or induction 
of respiratory depression than morphine (158, 160, 161). This 
compound is now in a Phase III clinical trial for parenteral treat-
ment of acute pain (NCT02656875). TRV0109101 is also biased 
toward G-protein signaling and does not induce hyperalgesia, a 
common side effect of chronic opioid use (159). PZM21 similarly 
does not recruit β-arrestin 2 but is less potent than morphine and 
appears to induce less constipation, less respiratory depression, 
and reduced reward-seeking behaviors (158).

Using agonist bias profiles to predict the abuse of the com-
monly abused semisynthetic and synthetic opioids yields mixed 
results. For example, morphine shows the same or greater arrestin 
bias than oxycodone (162, 163), yet oxycodone has a greater abuse 
liability than morphine (136). Fentanyl and its analogs are highly 
abused yet this class shows no overt bias for either signaling 
pathway. This suggests that biased agonism alone cannot be used 
to separate the analgesic from rewarding properties of opioids.

Pharmacokinetics
The action of opioids in the central nervous system facilitates 
analgesia mediated at supraspinal sites, such as those in the ros-
tral ventral medulla, but also induces euphoria due to signaling 
at different central opioid receptor populations mediating reward 
(164). These central effects of opioids are also the major cause of 
overdose lethality due to respiratory depression (165), which is 
mediated by opioid receptors in breath-pattern generating neu-
rons such as those in the pre-Bötzinger’s complex of the medulla 
(166). Limiting the access of opioids to the central nervous system 
is a beneficial pharmacokinetic manipulation that may bypass 
these off-target effects while preserving the potential for analgesia 
mediated by signaling at opioid receptors in the spinal cord or 
primary nociceptive afferent neurons.

This relationship between the pharmacokinetic profile of 
opioids and their abuse liability was first described in the 1970s  
(167, 168) and resulted in the use of buprenorphine and metha-
done as a non-rewarding analgesic or to treat OUD (104, 167, 169).  
It is now well-known that the intrinsic abuse liability of an opioid 
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TABLe 1 | Descriptive and clinically relevant information of common opioids including clinical formulations, class of opioid, clinical uses, and cellular targets.

Drug [brand or 
alternative name(s)]

Common clinical 
formulation(s) (USA  
unless stated otherwise)

Classification; origin Clinical use Cellular target

Buprenorphine  
(e.g., Suboxone, 
Subutex, Buprenex)

Buprenorphine  
hydrochloride, buprenorphine 
naloxone (4:1)

Semisynthetic opiate; 
thebaine of the opium  
poppy (104)

Analgesia and maintenance therapy or 
opiate addiction treatment (Step 3 pain 
medication) (104)

Partial MOR agonist, KOR 
antagonist, nociceptin receptor 
agonist and antagonist (105, 106)

Fentanyl (e.g., Actiq, 
Duragesic, Fentora)

Fentanyl citrate Synthetic opioid; 
N-phenethyl- 
piperidone (95)

Chronic and acute pain; administered 
orally, IV, transdermal patches (Step 3 
pain medication) (107, 108)

Full MOR agonist, weak KOR 
agonist (109)

Heroin (i.e., 
diamorphine)

Diamorphine (UK) (110), 
diacetylmorphine (Canada/
Switzerland) (111)

Opiate; morphine, and 
opium poppy (112)

Strong analgesic (Step 3 pain medication) 
(113, 114), opiate addiction treatment 
(Switzerland, Netherlands, Germany, 
England, Denmark) (115)

Partial MOR agonist (116) acts as 
prodrug (see active metabolites).

Hydrocodone  
(i.e., dihydrocodeinone) 
(e.g., Zohydro ER, 
Vicodin)

Hydrocodone bitartrate, 
hydrocodone bitartrate,  
and acetaminophen (117)

Semisynthetic opioid  
(118, 119); codeine  
(from opium poppy)

Chronic pain and opioid maintenance 
therapy (117)

Full MOR agonist (118)

Hydromorphone  
(e.g., Dilaudid)

Hydromorphone 
hydrochloride (120)

A semisynthetic opioid; the 
hydrogenated ketone of 
morphine (121)

Acute and chronic analgesia (Step 3 pain 
medication) (122), 5–8× more potent  
than morphine (123)

Full MOR agonist, partial DOR 
agonist, and weak KOR agonist 
(124, 125)

Methadone  
(e.g., Dolophine)

Methadone hydrochloride  
[(R) or racemic mixture]  
(126, 127)

Synthetic opioid (128); 
diphenylacetonitrile (129); 
and 1-dimethylamino-2-
chloropropane (130)

Opioid dependence treatment 
(detoxification), chronic pain (131, 132)

Levo: full MOR agonist (109);  
dextro (d) NMDA antagonist (127).

Morphine (e.g., 
morphine sulfate ER, 
Roxanol, MsContin)

Morphine sulfate Opiate; opium poppy (133) Acute and chronic pain (Step 3 pain 
medication) (134)

Partial MOR agonist, weak DOR 
agonist (109, 135)

Oxycodone  
(e.g., Oxycontin, Norco, 
etc.)

Oxycodone hydrochloride, 
oxycodone acetaminophen, 
and oxycodone aspirin

Semisynthetic opiate; 
thebaine of the (136) opium 
poppy (137, 138)

Acute and chronic pain; may be superior 
than morphine for some types of pain 
(Step 3 pain medication) (139, 140)

Medium MOR agonist, partial  
KOR agonist (141), and partial  
DOR agonist (137, 142)

Remifentanil  
(e.g., Ultiva)

Remifentanil hydrochloride 
(always administered IV)

Synthetic opioid (143); 
derivative of fentanyl (144)

Acute pain or sedation (50–100× more 
potent than morphine) often used for 
surgical procedures (145–148)

Full MOR agonist (143)

Tramadol  
(e.g., Ultram)

Tramadol hydrochloride 
[racemic (+/−)], Tramadol 
hydrochloride, and 
acetaminophen

Synthetic opioid; salicylic 
acid with addition 
of 3-methoxyphenyl 
magnesium halide (149)

Moderate pain (Step 2 pain medication) 
(149, 150). Analgesic potency is 10%  
that of morphine (149)

(+/−) MOR agonist (151), (−) 
monoamine reuptake  
inhibitor (152)

Alternative names refer to either the chemical name (referred to as i.e.) or brand name (referred as e.g.). Pain medication steps of analgesia are derived from World Health 
Organization classifications.
MOR; mu opioid receptor, DOR; delta opioid receptor, KOR; kappa opioid receptor.
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is a product of different pharmacokinetic parameters such as the 
time to peak plasma concentration, lipid solubility, BBB transport 
(a combination of passive diffusion and active transport in and 
out of the brain), and the presence of bioactive metabolites. 
Abuse liability may also be influenced by availability, with some 
compounds such as remifentanil being less available than others, 
such as methadone and heroin. We have outlined these pharma-
cokinetic properties and the abuse potential of commonly abused 
opioids and those used clinically (Table 2). This shows that fen-
tanyl is one of the most rapidly bio-available opioids but has the 
same elimination half-life as morphine. However, it is highly lipid 
soluble (580× that of morphine) and so more easily crosses the 
BBB in both directions, shortening its effective duration of action. 
Heroin is a prodrug that is quickly transported across the BBB and 
converted to 6-acetyl-morphine, morphine, and demethylated to 
hydromorphone (170). Both of these opioids have a high abuse 
liability, but fentanyl and its derivatives are both more potent and 

have a longer elimination half-life making the fentanyl family of 
opioids fatal if taken in unknown or high quantities, as has often 
been the case (171). In comparison, morphine is hydrophilic, has 
poor protein binding capacity and its transport across the BBB 
is regulated, making it less likely to be abused. Compared with 
morphine, oxycodone is actively transported across the BBB, has 
a more rapid onset of effect and several active metabolites that 
all contribute to its greater abuse profile. At the other end of the 
spectrum are methadone and buprenorphine with medium-to-
low abuse liabilities explained by low BBB permeability and a 
longer elimination half-life, in addition to differences in receptor 
selectivity and pharmacological profiles (Tables 1 and 2).

The positive correlation between BBB permeability/transport 
with abuse liability is the cornerstone of the strategically designed 
novel mu-opioid agonist, NKTR-181, which is analgesic but has 
limited abuse liability in humans (208, 209). This compound has a 
poly-ethylene glycol side chain and shows delayed transfer across 
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TABLe 2 | The abuse liability, aspects of the pharmacokinetic profile, and bioavailability of select clinical and abused opioid compounds.

Drug Abuse liability Onset of effect and 
time to peak plasma 
concentration (min to h)

elimination 
half-life 
(generally 
oral/human)

Metabolite(s) Metabolite half-life Bioavailability and 
blood–brain barrier (BBB) 
permeability/transport

Buprenorphine Low in relation 
to other opioids 
(172, 173)

Sublingual onset of 
0.25–0.75 h, peak plasma 
concentration at 2 h (174)

3–48 h (175), 
variable

Buprenorphine-
3-glucuronide, 
norbuprenorphine-3-
glucuronide (106)

Unknown (106) 28–51% bioavailability (176), 
low BBB permeability (177)

Fentanyl Very high 
(178–180)

2–5 min onset of action, 
and peak plasma 
concentrations of 20 min 
after oral and 12 min  
after intranasal 
administration (95)

1.5–7 h  
(181)

Norfentanyl; minimal 
activity (182)

N/A 50–90%, highly lipophilic  
and high BBB permeability 
through passive and active 
transport (178, 183).  
Transfer half-life of  
4.7–6.6 min (95)

Heroin Very high (184) 45 s to onset of effect, 
heroin undetectable in 
blood and CSF by 20 min 
in rats (185)

3 min (IV) 
(170)

6-Monoacetylmorphine 
(6-MAM), morphine,  
and morphine’s 
metabolites (182)

6-MAM < 10 min after 
BBB crossing (116). 
Plasma conversion to 
morphine: 1.5–4.5 h, 
hydromorphone: 5 h, 
M6G: 2 h, M3G: 1.5 h

High (lipophilic) 60% or  
greater BBB permeability  
(116, 186)

Hydrocodone High (136, 179, 
187)

10 min to onset of effect 
and peak effects within 
30–60 min (188)

3–9 h (189) Hydromorphone and 
norhydrocodone (190).

Hydromorphone: 5 
norhydrocodone: 8 (191)

25% bioavailability; 50%  
BBB permeability (187)

Hydromorphone High (179) 5–30 min to onset of 
action, 30 min to peak 
effect (125, 189)

2–3 h (192) Hydromorphone-3-
glucuronide (182)

1.5–3 h (193) 55% bioavailability (194), 
higher BBB permeability  
than morphine; transfer  
half-life; 18–38 min (191)

Methadone Medium (172) 30 min for onset of action, 
1–5 h (132, 185)

4–6 h (132) or 
longer (195) 

None (196) N/A 41–99% bioavailability (195), 
40% permeability (186)

Morphine High (136, 179) 15–60 min (125, 139) 1.5–4.5 h  
(IV and IM)  
(121, 137)

Active: morphine-6-
glucuronide (M6G) and 
hydromorphone. Inactive: 
morphine-3-glucuronide 
(M3G) (182). 

M6G: 2 h (197); 
hydromorphone: 5 h 
(191); M3G: 1.5 h (198)

30% bioavailability, low  
BBB permeability; transfer 
half-life; 1.6–4.8 h (191)

Oxycodone Very high 
(greater than 
morphine and 
hydrocodone) 
(136, 179)

10–30 min for onset of 
action (199), peak plasma 
levels occur ~1 h (137)

2–3 h (199), 
3–5 h plasma 
after oral 
(137)

Noroxycodone (low 
activity) and oxymorphone 
(potency > morphine) 
(141), both metabolize 
into noroxymorphone 
(8–30× morphine’s 
activity, BBB 
impermeable) (141)

Noroxycodone is 
converted slowly into 
noroxymorphone (200), 
oxymorphone (7–8 h) 
(141), noroxymorphone 
significantly longer than 
oxycodone (3–5 h but 
limited BBB permeability) 
(201)

60–90% bioavailability  
(142), active transport  
across the BBB and can  
reach 3× higher levels in the 
brain than blood (140, 202)

Remifentanil Medium, 
possibly due to 
low availability 
(few cases) 
(203, 204)

1–2 min (143) 3–4 min (IV) 
(143)

Remifentanil acid, 
relatively inactive (205)

Negligible (205) 50% bioavailability and  
BBB equilibration half-life  
is 2–5 min (205)

Tramadol  
(e.g., Ultram)

Medium (179, 
206);

2–3 h (149, 187) 5.1 h (149) O-desmethyltramadol 
(M1), an MOR agonist 
(149)

9 h (149) Actively transported (207)
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the BBB (208). It is currently in Phase III clinical trials to treat 
chronic lower back pain or non-cancer pain (NCT02367820).

Mixed Opioid Agonists
Another interesting development is the use of ligands that 
simultaneously bind to and activate multiple receptors to relieve 
pain. Careful design of these bivalent ligands and their linkers has 
been shown to increase signaling efficacy of the target receptors, 

allowing a lower dose of the ligand to be used to achieve the 
same analgesic effect. Such bitopicity, or action at two sites, 
was first described for biphalin, a dual enkephalin analog that 
showed greater analgesic efficacy than enkephalin alone (210). 
Furthermore, incorporating the pharmacological properties of 
an opioid that has a reduced abuse liability, i.e., a slow onset of 
action, a long half-life and low BBB permeability, would result in 
an effective analgesic that is not rewarding. Several such mixed 
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ligands have now been generated that are based on the structure 
of buprenorphine (211–213), a partial MOR agonist, kappa 
opioid receptor (KOR)antagonist and nociceptin receptor ligand 
(214, 215) with reduced reward liability (172, 173). There are also 
other bivalent compounds that activate MOR and delta opioid 
receptors (DOR) (216), MOR and mGluR5 (217), and MOR, 
DOR and KORs (218).

In summary, we propose that the preclinical examination of 
novel opioid agonists that are pharmacologically designed to be 
(1) biased and so able to influence one signaling pathway over 
another, or (2) show a pharmacological profile that reduces a 
central duration of action, or (3) are able to signal selectively 
through mixed receptors, may provide better insight into and 
predictability of their abuse and lethality profiles. Such novel 
agonists may also incorporate aspects of each of these designs 
to obtain the desired clinical outcome. An example of this multi-
faceted approach is the family of mixed ligands that are based 
on the structure of buprenorphine, which may target multiple 
receptors to enhance analgesia but have a buprenorphine-like 
pharmacological profile of reduced reward and overdose 
liability. The specificity and effects of these novel pharmaceutical 
compounds may be further influenced by the use of a positive 
allosteric modulator for which a conserved site has been found 
on MORs, DORs, and KORs (219).

TReATiNG PAiN wiTH PeRSPeCTive AND 
wiTH THe PURPOSe OF ReDUCiNG 
HARM DURiNG THe OPiOiD ePiDeMiC

Many pain patients have now found themselves physically and 
psychologically dependent on their opioid prescriptions, as both 
fail to relieve their pain in the chronic setting but are also now 
known to be addictive and harmful with long-term use. We 
have described the etiology of the opioid epidemic from the 
financial motivation for the over-prescription of these drugs, 
to the socioeconomic and physical issues that contribute to 
pain and addiction-prone populations worldwide. Navigating 
through the devastation caused by the opioid epidemic requires 
some perspective. While acknowledging that many opioids are 
harmful and addictive, they are still the most efficacious class 
of drugs for analgesia. Here, we aim to guide the refinement of 

prescription opioid compounds by improving upon the currently 
available abuse-deterrent formulations. These treatments should 
maximize analgesic properties by directing ligand bias toward 
signaling through G-proteins rather than β-arrestins, delaying or 
minimizing the BBB entry of drugs, minimizing metabolites with 
pro-addictive or off-target properties and using mixed agonists 
to provide more specific clinical effects. These strategies have 
led to the development of some promising compounds that may 
provide pain relief while minimizing the likelihood of addiction 
and misuse. Of course, these pharmaceutical agents should 
only be used following a comprehensive screening strategy to 
both exclude patients likely to misuse their medications and to 
identify those who may respond to alternate, non-opioid-based 
pain-management strategies.
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