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The endocannabinoid system (ECS) is a major lipid signalling network that plays important pro-homeostatic (allostatic) roles not
only in the nervous system but also in peripheral organs. There is increasing evidence that there is a dietary component in the
modulation of the ECS. Cannabinoid receptors in hominids co-evolved with diet, and the ECS constitutes a feedback loop for food
selection and energy metabolism. Here, it is postulated that the mismatch of ancient lipid genes of hunter-gatherers and pasto-
ralists with the high-carbohydrate diet introduced by agriculture could be compensated for via dietary modulation of the ECS. In
addition to the fatty acid precursors of endocannabinoids, the potential role of dietary cannabimimetic phytochemicals in agri-
culturist nutrition is discussed. Dietary secondary metabolites from vegetables and spices able to enhance the activity of
cannabinoid-type 2 (CB2) receptors may provide adaptive metabolic advantages and counteract inflammation. In contrast,
chronic CB1 receptor activation in hedonic obese individuals may enhance pathophysiological processes related to hyperlipid-
aemia, diabetes, hepatorenal inflammation and cardiometabolic risk. Food able tomodulate the CB1/CB2 receptor activation ratio
may thus play a role in the nutrition transition of Western high-calorie diets. In this review, the interplay between diet and the ECS
is highlighted from an evolutionary perspective. The emerging potential of cannabimimetic food as a nutraceutical strategy is
critically discussed.
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The endocannabinoid system (ECS) is an ancient panorgan
eicosanoid signalling network in which arachidonic acid
(AA) derived lipids act in concert with particular receptors
and enzymes resulting in the complexmodulation of numerous
central and peripheral physiological and pathophysiological
processes (Pertwee, 2005, 2009; Di Marzo, 2008a; Pacher and
Mechoulam, 2011; DiPatrizio and Piomelli, 2015). The ECS
comprises classical GPCR cannabinoid receptors (CB1 and CB2)
and potentially also the orphan receptor GPR55 (Pertwee,
2007; Ryberg et al., 2007), which are differentially activated by
the endocannabinoids (ECs) 2-arachidonoyl glycerol (2-AG)
and N-arachidonoylethanolamine (anandamide, AEA) (Devane
et al., 1992; Mechoulam et al., 1995; Sugiura et al., 1995; Hanus,
2009). AEA and 2-AG, which are generated from discrete
phospholipid precursors at the inner cellular membrane leaflet,
alsomodulate different ion channels and nuclear receptors, like,
for example, transient receptor potential vanilloid 1 (TRPV1),
GABAA receptors and PPAR-γ (O’Sullivan, 2007; Ross, 2009;
De Petrocellis and Di Marzo, 2010; Pertwee, 2010; Sigel et al.,
2011). Importantly, the enzymes degrading the ECs AEA and
2-AG, namely, fatty acid amide hydrolase (FAAH) and
monoacylglycerol lipase (MAGL), but also α-β hydrolases-6
(ABHD6) have been shown to regulate local and paracrine EC
concentrations (Di Marzo, 2008a; Marrs et al., 2010). In
inflamed tissue, COX-2 catalyses the oxygenation of both AA
and ECs, leading to an additional control of tissue EC concentra-
tion during inflammation (Hermanson et al., 2014). Finally,
there is an as yet unidentified facilitated EC cellular reuptake
mechanism in certain neuronal cell types and immune cells that
can be selectively inhibited and may thus present another level
of biological regulation (Nicolussi and Gertsch, 2015). CB1

receptors are involved in the control of behaviour (e.g. motiva-
tion, reward, memory processing and habituation to stress)
and are thus expressed widely in the CNS where they act as
major neuronal circuit breakers, generating a negative retro-
grade feedback at both glutamatergic and GABAergic synapses

in the CNS (Freund et al., 2003; Kano, 2014). CB1 receptors are
not only among the most frequent GPCR species in the brain,
but functional CB1 receptors are also expressed peripherally
and overall probably evolved under the selection pressure of
fundamental physiological stress stimuli (Bowles et al., 2015;
Morena et al., 2016). These include physical activity, famine,
the fight or flight response, traumata and microbial infections.
The peripheral signal transduction pathways of CB1 receptors
are still poorly understood. Activation of the ECS is associated
with the major stress response (i.e. via the hypothalamic pitui-
tary adrenal axis) or just physical activity (Tantimonaco et al.,
2014). While the glucocorticoid receptor regulates expression
of the CNR1 gene encoding CB1 receptors (Hillard, 2014), ECs
modulate stress factors in the brain (McEwen et al., 2015). This
regulation appears to be dynamic and not static. For instance,
studies in rodents indicate that acute glucocorticoid administra-
tion enhances the activity of ECs whereas chronic exposure to
glucocorticoids down-regulates the ECS (McPartland et al.,
2014). In healthy mammals, CB1 receptor signalling may facili-
tate their survival after excessive physical activity, stress and
trauma by restoring homeostasis, suppressing negative memo-
ries and reducing anxiety at the level of the CNS (Ruehle et al.,
2012), as well as reactivating appetite and catabolic processes
at the peripheral level (Watkins and Kim, 2015). The CB1

receptor-mediated neuronal responses are linked to central re-
ward andmotivation (Hernandez and Cheer, 2015), and hedon-
ically positive sensory properties of food lead to activation of
CB1 receptor-mediated reward circuits, which control food se-
lection in rodents (DiPatrizio and Simansky, 2008; Deshmukh
and Sharma, 2012; Hernandez and Cheer, 2012; Thompson
et al., 2016). The selection of palatable food (i.e. lipid and sugar
craving) is already present in newborns. It has been shown that
milk suckling in newborns is partly mediated via CB1 receptor
activation (Mechoulam et al., 2006). Accordingly, CB1 receptors
are present in taste buds, and their activation enhances neural
responses to sweet foods (DiPatrizio and Piomelli, 2012). Milk
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is also a significant source of AA, which can trigger EC biosyn-
thesis in the brain (Berger et al., 2001), thus having potentially
broad physiological effects. ECs are not only involved in the ini-
tiation of suckling and, therefore, in the feeding and growth of
the offspring but also impact behaviour (Manduca et al., 2012).
The amount of 2-AG in human milk is in the range of
7–20 nM, that is, close to receptor-active concentrations and
about 100 times higher than AEA (Di Marzo et al., 1998).
Distinct dairy fat compositions have been shown to modulate
the levels of ECs in plasma in a yet poorly understood manner
(Pintus et al., 2013; Dunn et al., 2014). It remains unclear
whether fat intake in humans is directly linked to ECS-mediated
pathophysiological effects (i.e. via chronic CB1 receptor activa-
tion). For instance, carnivores and pastoralists ingest ECs and
significant amounts of the EC precursor AA from raw meat or
dairy products without adverse effects. While the ingestion of
ECs may not lead to systemic physiological effects beyond the
gastrointestinal (GI) tract because they are locally metabolized
(DiMarzo et al., 1998), themodulation of the EC concentrations
by bioavailable polyunsaturated fatty acids (PUFAs) like AA is
well described and will be discussed below.

Experiments with genetically modified mice have shown
that central CB1 receptors can exert paradoxical effects on
food intake, depending on whether they are localized to pre-
synaptic terminals of excitatory or inhibitory neurons
(Bellocchio et al., 2010). In order to better understand this ap-
parent hormetic complexity, the functioning of the ECS
needs be put into context with evolution, that is, the envi-
ronmental selection pressures and dietary habits, which are
very different among different mammals, but also between
distinct human populations (e.g. hunter-gatherers versus
Western societies or upon the introduction of agriculture).
Comparisons with great apes and the fossil and archaeologi-
cal records suggest that among the most important changes
in diet was an increase in plant carbohydrates during human
evolution (Aiello and Wells, 2002). Generally, in the context
of high-calorie diets as found in plant starch farming socie-
ties, chronic CB1 receptor activation is associated with in-
creased obesity, an unfavourable lipid profile, insulin
resistance, exacerbation of inflammation in the liver and kid-
ney (Di Marzo, 2008b; Gruden et al., 2016) and cardiometa-
bolic risk (Janero, 2012).In contrast, CB2 receptors, which
show 68% homology to CB1 receptors in the transmembrane
region, appear to be primarily expressed in the periphery in
immune cells like monocytes/macrophages where they nega-
tively modulate inflammatory stress, for example, via attenu-
ation of Toll-like receptor-induced signal transduction
pathways (Tomar et al., 2015). In the liver and kidney, CB2

receptor activation is clearly protective (Pacher and
Mechoulam, 2011). Many other cell types seem to express
low amounts of CB2 receptors, although they may not be
present functionally at the cell surface (Kleyer et al., 2012).
CB2 receptors have been shown to protect tissues from fi-
brotic processes, possibly also by modulating macrophage
polarization (Pacher and Mechoulam, 2011; Gertsch, 2016).
Intriguingly, CB2 receptors have more recently been shown
to stimulate a number of positive metabolic processes leading
to antidiabetic effects and cardiometabolic protection (vide
infra). As proposed here, one role of CB2 receptors in diet-
driven metabolic processes could be to antagonize the patho-
physiological metabolic effects mediated by CB1 receptors, at

least in a high-calorie and pro-inflammatory dietary context.
Although CB2 receptors in the brain are clearly expressed in
microglia cells (Maresz et al., 2005), the presence or physio-
logical relevance of functional CB2 receptors in subsets of
neurons is still debated. Importantly, both CB receptors play
pro-homeostatic physiological roles, whichmay however dif-
fer in distinct animal species. The metabolic effects of the
overall EC concentrations in tissues are clearly complex as
these lipids are promiscuous in their action (Di Marzo and
De Petrocellis, 2012) and in addition to CB receptors also tar-
get different channels and nuclear receptors (vide supra). For
instance, AEA also activates the PPARs (O’Sullivan, 2007), a
family of transcription factors that regulate energy balance
by promoting either energy deposition or energy dissipation
(Medina-Gomez et al., 2007). Under normal physiological
conditions, PPARγ is mainly expressed in adipose tissue to-
gether with CB1 receptors where it regulates diverse functions
such as the development of fat cells and their capacity to store
lipids. Since there are numerous PPARmodulators (e.g. PPARγ
activators) in vegetable diets (Wang et al., 2014; Li et al.,
2015), PPAR-active phytochemicals in diet may play a co-
regulatory role in modulating the ECS. From an evolutionary
perspective, depending on dietary habits, the role of the ECS
in energy metabolism could be distinctly different between
herbivores, carnivores and omnivores. The ECS is also a regu-
lator of intestinal function and the brain-gut axis. It generally
inhibits neural activity in pathways involved in the physio-
logical regulation of the GI tract, including visceral sensation,
pain, motility but also different forms of inflammation (Izzo,
2007; Izzo et al., 2015; Sharkey and Wiley, 2016). The dysreg-
ulation of the ECS has been implicated in numerous human
diseases, and its pharmacological modulation is a very prom-
ising strategy to prevent or treat inflammatory, neurodegen-
erative, cardiovascular, metabolic disorders, ischaemia
damage, as well as pain and maybe certain types of cancer
(Di Marzo, 2008a; Pacher, 2009; Maccarrone et al., 2015).

Although several comprehensive reviews on the connec-
tion between diet and the ECS have been published (Matias
et al., 2006; Osei-Hyiaman et al., 2006; Carr et al., 2008;
Di Marzo et al., 2009; DiPatrizio and Piomelli, 2012; Bisogno
and Maccarrone, 2014; Kleberg et al., 2014), little emphasis
has been put on the evolutionary context and the differential
roles CB1 and CB2 receptors might play in food selection and
metabolic stress. One exception is the excellent review by
DiPatrizio and Piomelli (2012) providing open questions on
the role of the CB1 receptors in energy needs andmaintaining
metabolic balance in mammals. Here, an evolutionary per-
spective on the link between diet and the ECS is provided,
with emphasis on the changes introduced by agriculture
and potential health implications of a ‘cannabimimetic diet’.

Cannabimimetics in the plant kingdom
and vegetable food
Secondary metabolism in plants is an enormously rich source
of chemically diverse molecules (Firn and Jones, 2003; Koch
et al., 2005), and it is therefore not surprising to find numer-
ous biologically active natural products in plants, including
food plants (Nilius and Appendino, 2013; Atanasov et al.,
2015, Russo, 2016). From a phylogenetic perspective,
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secondary metabolite ligands of mammalian receptors do al-
ready occur in the plant kingdom. Apart from peptides, virtu-
ally all neurotransmitters and hormones have already been
‘invented’ by plants and fungi (Murch, 2006), pointing to-
wards receptor evolution driven by chemical environmental
selection pressures (i.e. ligand-based selection of mutations
based on function). Nevertheless, chemical diversity in
plants is shaped by environmental conditions and predation
pressure, leading to vitamin-like (i.e. essential), nonspecific
(Gertsch, 2016) or even xenohormetic secondary metabolites
(Lamming et al., 2004; Howitz and Sinclair, 2008) in the
Animalia food pyramid. Neurotransmitters, modulators and
hormones naturally have very short half-lives and are not
generally orally bioavailable due to the metabolic enzymes
present in most tissues, including the GI tract. Noteworthy,
ECs are present widely in lower plants, including mosses
and ferns but not in flowering plants that serve as food for
mammals (Gachet et al., 2017). However, based on the
chemotype diversity and substrate plasticity of secondary
metabolism, numerous ‘similars’ are being produced from re-
lated chemical scaffolds, mimicking or modulating the action
of mammalian receptor ligands or enzyme substrates
(Appendino et al., 2014). If such phytochemicals by chance
have a better metabolic stability than an endogenous ligand,
they are likely to exert targeted pharmacological effects.
Through diet, such effects can be chronic. In the context of
this short review and perspective, Δ9-tetrahydrocannabinol
(THC) from Cannabis sativa L. mimics the effects of 2-AG
and AEA by activating cannabinoid receptors, a coincidence
that has led to themedicinal and recreational use and cultiva-
tion of this plant species and ultimately the discovery of the
ECS (Mechoulam, 2002). Nutritious cannabis seeds lacking
phytocannabinoids have played a role as food and have been
cultivated since millennia (Chen et al., 2012). Although the
ECS has been elucidated thanks to research on
phytocannabinoids from cannabis, there are food-derived
natural products that are able to indirectly modulate this sys-
tem, at least in the periphery. Given the apparent prominent
modulatory role of the ECS in energy metabolism, the eluci-
dation of ECS active dietary factors beyond common nutri-
ents could serve as basis to search for a covariance between
genes and diet.

In order to identify secondary metabolite signatures in
plants that potentially modulate ECS proteins, we are cur-
rently screening global plant extract libraries within the
frameworks of MedPlant.EU and the Swiss NCCR TransCure.
Different widespread (canonical) triterpenoids have already
been shown to inhibit metabolic enzymes of the major EC
2-AG (King et al., 2009; Bento et al., 2011b; Chicca et al.,
2012; Parkkari et al., 2014), ubiquitous plant flavonoids were
found to inhibit FAAH, the metabolic enzyme degrading AEA
and other N-acylethanolamines (NAEs) (Thors et al., 2007;
2008; 2010) and to weakly modulate CB receptors (Khedr
et al., 2016) (Table 1). Intriguingly, the ubiquitous plant ses-
quiterpene β-caryophyllene (BCP) has been shown to exert
potent CB2 receptor-mediated cannabimimetic effects in
mice (Gertsch, 2008; Gertsch et al., 2008; Bento et al.,
2011a; Horváth et al., 2012; Cheng et al., 2014; Klauke et al.,
2014) andN-alkylamides frommaca (LepidiummeyeniiWalp.)
and black pepper (Piper nigrum L.) show cannabimimetic ef-
fects in vitro and in vivo respectively (Hajdu et al., 2014;

Nicolussi et al., 2014). The polyacetylene falcarinol
(carotatoxin) present in carrots and other vegetables was
shown to inhibit CB1 receptor activation by AEA in vitro
(Leonti et al., 2010). Several isoprenylated analogues of the
naturally occurring plant stilbenoid trans-resveratrol bind to
both CB1 and CB2 receptors with low affinity (Brents et al.,
2012). The widespread dietary triterpnoids oleanolic acid
(present in olive oil) and ursolic acid (Table 1) have been
shown to inhibit ABDH12 (Parkkari et al., 2014), an enzyme
that controls 2-AG levels in immune cells. Thus, different di-
etary phytochemicals have already been shown to directly or
indirectly modulate the ECS (here referred to as
cannabimimetics) (Gertsch et al., 2010; Russo, 2016). The
emerging question is whether such phytochemicals in spices
and food are bioavailable and exert physiological effects
in vivo and how diet modulates the ECS and vice versa? Cur-
rently, the best evidence of a dietary link to ECS modulation
stems from studies on PUFAs, that is, the indirect effects of
Ω6 and Ω3 fatty acids on EC production and/or ECS proteins
(vide infra). Yet the more recent discovery of CB2 receptor-
selective cannabimimetics in spices may play a widely unrec-
ognized physiological role, coinciding with the emerging
evidence that certain spices and vegetables in the diet can
reduce the risk of metabolic syndrome and diabetes mellitus
type 2 (T2DM) and associated risk factors (Sikand et al., 2015).

The endocannabinoid food-medicine
continuum in the context of life-style
Bioactive phytochemicals form the molecular basis of the
food-medicine continuum, which has its origin in the co-
evolution of diet and biochemical processes underlying ani-
mal physiology (Etkin and Ross, 1982; Johns, 1990;
Moerman, 1996; Heinrich and Prieto, 2008). Just like essen-
tial fatty acids and vitamins have evolved from the constant
animal–plant interactions in time and space, there are proba-
bly numerous yet poorly understood dietary biochemical
modulations that shape our fitness. Almost certainly, many
of these plant–animal interactions remain to be discovered.
Based on the concept of phytochemical network pharmacol-
ogy (Hopkins, 2008; Gertsch, 2011), weak yet constant mod-
ulatory effects on different nodes of the ECS (even below
detection in vitro) may suffice to exert significant physiologi-
cal effects over time. Such effects are of particular relevance
for dietary interventions. As illustrated by recent genetic asso-
ciation studies with CB receptors (vide infra), dietary selection
pressures might also explain some of the pronounced species
differences observed with ligands targeting cannabinoid re-
ceptors, in particular CB2 receptors (McPartland et al.,
2007). The development of the ECS reflects convergent, di-
vergent and parallel evolution involving duplications and
mutations of EC receptors, resulting in gene extinctions or
new structures/functions (McPartland et al., 2006). Given
the importance of the constant flux of phytochemicals from
vegetable food, some of these later adaptive events may have
been associated with dietary changes, such as the introduc-
tion of agriculture and the differential use of spices rich in
cannabimimetics (vide infra). For instance, a recent study
has shown that the continuous consumption of Ω3 PUFAs
by the Inuit in Greenland causes dietary genetic and
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physiological adaptations reflected by mutations in
desaturase genes (Fumagalli et al., 2015). Therefore, dietary
habits can change physiology within a relatively short time
span (~10 000 years) via both genetic and epigenetic mecha-
nisms. Despite the fact that some ECS genes show evidence
of adaptive evolution, the system is under strong purifying
selection (McPartland et al., 2007), suggesting that diet could
indeed be a major factor in this process.

As reviewed by Leonard et al. (2010), research in human
evolutionary biology has shown that many of the key fea-
tures that distinguish humans from other primates (e.g. our
large brain size) also have implications for our distinctive nu-
tritional needs (Aiello and Wheeler, 1995; Leonard and
Robertson, 1997; Leonard, 2002). To accommodate the meta-
bolic demands of our large brains, humans consume diets
that are very dense in energy and nutrients. For instance,
there are intriguing differences in lipid consumption be-
tween humans and monkeys (vide infra) revealing that
humans strictly prefer lipid-rich foods (Montmayeur and le
Coutre, 2010). CB1 receptor activation is associated with in-
creased energy intake and decrease energy expenditure by
controlling the activity of neural pathways involved in the
sensing and hedonic processing of fatty foods (DiPatrizio
and Piomelli, 2012). Consequently, the ECS is a lipid signal-
ling network that has implications for lipid intake. In the
gut, ECs may promote fat intake by activating CB1 receptors
on vagal fibres and enteric neurons (Izzo and Sharkey,
2010). Kirkham (2009) further emphasized the central role
of the ECS to process lipid food stimuli that exert an influence
over consumption via innate and learned appetites, generat-
ing the complex psychological experiences of hunger, lipid
craving and delight independently of energy status. As
pointed out by Leonard et al. (2010), in contrast to the levels
seen in human populations, monkeys obtain only a small
share of calories from dietary fat. Popovich et al. (1997) esti-
mated that lowland gorillas derive only approximately 3%
of their energy from dietary fats. The need for an energy-rich
diet in Paleolithic and Neolithic times has shaped our ability
to detect and metabolize high-fat foods. Food preferences are
based on lipid sensory inputs (Sclafani, 2001; Gaillard et al.,
2008; Le Coutre and Schmitt, 2008) and that our brains have
the ability to assess the energy content of foods with remark-
able accuracy (Toepel et al., 2009). Additionally, compared
with monkeys, humans have an enhanced capacity to digest
andmetabolize higher fat diets. Our GI tract has an expanded
small intestine and reduced colon, consistent with the con-
sumption of a high-quality diet consisting of large amounts
of animal food (Milton, 1987). Since natural fat intake differs
widely between animal species, the translation from animal
studies to humans needs to be interpreted with care. In con-
trast to most non-carnivorous animals, humans ingest signif-
icant amounts of AA through animal products like meat,
dairy products and eggs (an estimated 0.1–0.6 g·day�1). In
contrast to the fish and algae-derived Ω3 PUFAs
docosahexaenoic acid (DHA) and eicosapentanoic acid
(EPA), which tend to lower EC levels, the intake of AA has
been shown by different studies to be associated with in-
creased EC levels in different tissues (reviewed in McPartland
et al., 2014). The consumption of Ω3 and Ω6 essential fatty
acids in Western diets (USA) has changed markedly with in-
dustrialization, with an increase in γ-linoleic acid (LA)Ta
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availability from an estimated 3% to about 8% of energy sup-
ply (Blasbalg et al., 2011). Higher food plants (Angiosperms),
which constitute most of mammalian vegetable diet, do not
generally synthesize AA but the precursor LA that is essential
for AA biosynthesis in animals. Although high AA intake has
been associated with pro-oxidative and inflammatory sys-
temic responses (Ferretti et al., 1997; Ling et al., 2012) and
some evidence suggests that the consumption of a diet high
in AA is associated with the development of leptin resistance
and obesity (Cheng et al., 2015), the role of this Ω6 PUFA is
pleiotropic and complex (playing distinct positive and nega-
tive roles in different circumstances). Recent data suggest that
there is even a possibility of chronic AA administration hav-
ing a reducing anti-inflammatory effect on the kidney
(Katakura et al., 2015). Moreover, no evidence is available
from randomized, controlled intervention studies among
healthy, noninfant humans to show that addition of the AA
precursor LA to the diet increases the concentration of in-
flammatory markers (Johnson and Fritsche, 2012). Biochem-
ically, dietary AA is incorporated into membrane
phospholipids from where it is released by a PLA2-mediated
enzymatic hydrolysis or exists as triacylglycerol. Free AA
(arachidonate) can either be tissue and/or inflammation-
dependently metabolized into prostaglandins, leukotrienes,
thromboxanes, prostacyclin or ECs. 2-AG is a significant pre-
cursor (store) of AA in brain that is regulated via 2-AG hydro-
lysis (Nomura et al., 2011). Overall, AA intake is of
fundamental importance for human brain development
where AA and DHA constitute the major PUFAs in the CNS.
The vital importance of AA was shown by a FADS1 KO study
in which AA supplementation prevented the lethal pheno-
type (Fan et al., 2012). To assure there are sufficient amounts
of AA in the brain, rather than generating AA de novo from LA,
our organs seem to preferentially take it from diet. Dietary AA
seems to be efficiently taken up and transported into different
organ tissues, including the liver and brain by poorly under-
stood mechanisms. It has been shown that orally ingested la-
belled arachidonate is directly incorporated into
phospholipids of the brain and other organs (Likhodii and
Cunnane, 1999). A recent LC–MS/MS study revealed that
plasma concentrations of AA in human, young healthy indi-
viduals are in the range of 2.5–8 μM and inversely correlate
with cortisol levels (Gachet et al., 2015; Gachet and Gertsch,
2016). In streptozotocin-induced diabetes animal models,
AA was found to be depleted and Δ5-desaturation inhibition
described as a fundamental feature of diabetes (Holman
et al., 1983). A more recent study showed that a lower
AA/dihomo-γ-linolenic acid ratio is associated withmetabolic
abnormalities in obese individuals (Zhao et al., 2016). The
current literature on human studies with Ω3 PUFA enriched
diets (e.g. krill, Euphausia superba Dana oil) on the effects of
the ECS is somewhat unclear and may reflect differences be-
tween human populations. In obese individuals, the Ω6/Ω3
PUFA ratio in plasma generally correlates with a decrease in
EC levels (Banni et al., 2011). It has been suggested that early
dietary interventions based onΩ3 PUFAsmay represent an al-
ternative strategy to drugs for reducing endocannabinoid
tone and improving metabolic parameters in the metabolic
syndrome (Demizieux et al., 2016). For example, krill diet let
to a concomitant reduction of triglyceridaemia and EC levels
and was associated with a decreased waist/hip and visceral

fat/skeletal muscle mass ratio (Berge et al., 2013). In this
study, it was suggested that treatments with krill formulations
may produce different effects on plasma EC levels
depending on different cohorts of subjects, duration of treat-
ments (4 vs. 24 weeks) and dosage (2 vs. 4 g·day�1). Most
likely, the effects of PUFAs on the human ECS strictly depend
on the lifestyle. Accordingly, hunter-gatherers and pastoralist
societies such as the ones in the Sub-Saharan region do not
show increased obesity or T2DM, despite their constant high
intake of Ω6 PUFA (AA). Generally, a lower ratio of Ω6/Ω3
PUFAs is desirable in reducing the risk of many of the chronic
diseases of high prevalence in industrialized societies or
societies with high-carbohydrate intake (Simopoulos, 2002;
Wang and Chan, 2015).

Finch and Stanford (2004) have shown that the evolution
of key ‘meat-adaptive’ genes in hominid evolution, such as
apolipoprotein E (apoE), are critical for the promotion of
the enhanced lipid metabolism necessary for subsisting on
diets with greater levels of animal material. A beneficial inter-
play between apoE and CB1 receptor activation has been
proposed (Zhao et al., 2010; Bartelt et al., 2011). In agreement
with the concept of genetic adaptation to diet, the
CB1 (CNR1) single nucleotide polymorphism (SNP)
1359 G/A (p.Thr453Thr; rs1049353), a common polymor-
phism in Caucasians, has been reported to be associated with
less fat intake (fatty acids and cholesterol) but more carbohy-
drate intake in obese females (de Luis et al., 2016). The latter
association is interesting as it could suggest that CB1 recep-
tors originally served to motivate lipid intake from meat are
under dietary pressure in Western societies. Moreover, car-
riers of this SNP have a better lipid profile and a lower body
mass index (Storr et al., 2010; de Luis et al., 2015). In contrast,
in a small group of 60 diabetic individuals a lack of associa-
tion of G1359A polymorphism with obesity, cardiovascular
risk factors was reported (de Luis et al., 2010). However, sub-
jects with C385C genotype of FAAH1 showed an improve-
ment in insulin and homeostatic model assessment-R
levels with a high PUFA hypocaloric diet after losing weight
for 3 months (de Luis et al., 2013). In women with obesity,
an overall association of the mutant-type group G1359A
and A1359A with a better cardiovascular profile (triglyceride,
high-density lipoprotein cholesterol, insulin and homeosta-
sis model assessment levels) than the SNP lacking group was
reported (de Luis et al., 2011). These emerging human genetic
datamay suggest a possible purifying selection of genes in the
ECS with respect to dietary habits.

If chronic CB1 receptor activation in humans would cause
consistent hyperphagia independently of lifestyle, beyond
the well-documented acute appetite-stimulating effects,
and/or foster insulin resistance or T2DM, then this should
be clearly observed in the human populations that regularly
smoke high THC cannabis for recreational purposes. THC is
a potent partial human CB1 receptor agonist but only a very
inefficient human CB2 receptor agonist, at least in vitro. In-
deed, acute cannabis use is classically associated with
snacking behaviour (munchies). Studies generally suggest
that acute cannabis use stimulates appetite, also in the thera-
peutic context of hypohagia in AIDS and cancer patients
(Whiting et al., 2015). Nevertheless, as for large epidemiolog-
ical studies in the general population, findings consistently
indicate that cannabis users tend to have rather lower body
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mass indices than nonusers (Hayatbakhsh et al., 2010). The
reason for this discrepancy between animal studies and
humans and the overall unclear picture could be that canna-
bis consumers have a differential stress response from the rest
of the population, and above all, they are not generally obese.
Perceived stress, emotional eating, anhedonia, depression, di-
etary restraint and disinhibition are risk factors for obesity.
Consequently, neuropsychological effects counteracting
stress through cannabis consumption may mask the molecu-
lar mechanisms studied in mice. Although in one human
study chronic cannabis smoking was associated with visceral
adiposity and adipose tissue insulin resistance (Muniyappa
et al., 2013), there is no explicit evidence that cannabis
smoking causes insulin resistance or T2DM (Alshaarawy and
Anthony, 2015). Nevertheless, a recent study has shown that
increased years of cannabis or cigarette smoking are impor-
tant factors in metabolic health (Yankey et al., 2016), con-
cluding that each year increase in marijuana use was
significantly associated (maybe not causative) with increased
odds of metabolic syndrome and hypertension. From a mecha-
nistic point of view, the best evidence for the negativemetabolic
effects mediated via CB1 receptors stems from animal experi-
ments. Chronic CB1 receptor activation in mice clearly causes
obesity-related insulin resistance; this is probably mediated by
hepatic CB1 receptor-induced inhibition of insulin signalling
and clearance (Liu et al., 2012; Picone and Kendall, 2015).More-
over, peripherally restricted CB1 receptor antagonists retain effi-
cacy in reducingweight and improvingmetabolic abnormalities
in mouse models of obesity (Kunos and Tam, 2011).

The function of CB1 receptors may make sense in the con-
text of hunter-gatherer nutrition where fat is the primary nu-
trient and physical activity is high, but might have led to a
conflict with high-carbohydrate intake in professional agri-
culturist nutrition. An emerging question is whether different
lifestyles determine the role of the ECS in allostasis. Diets of
hunter-gatherers show substantial variation in their carbohy-
drate content. However, the range of energy intake from car-
bohydrates in the diets of most hunter-gatherer societies is
markedly lower from the amounts currently recommended
for healthy Western humans (Ströhle and Hahn, 2011). In
line with the extreme carbohydrate craving in humans, who
have more copies of the salivary amylase genes than primates
and thus more efficiently digest starch (Perry et al., 2007), the
onset of agriculture was probably one of the most dramatic
and important developments in human history (Diamond,
2002). Carbohydrate farming incited the most important die-
tary transition, which is still ongoing to the present day of
post-agriculturist nutrition (i.e. based on refined sugars).
The generation and excess use of sugars could be seen in anal-
ogy to the detrimental impact of the first distilled alcohol on
humans. The sudden availability of excess sugars in combina-
tion with fats in diet may have led to a collision of genes that
evolved to cope with high energy demands due to constant
physical activity (Neel, 1962). Excessive consumption of
high-energy, palatable food without physical activity contrib-
utes to obesity, which results in the metabolic syndrome,
heart disease and T2DM (Mazier et al., 2015). In obese individ-
uals, increased EC levels are also found in the liver, adipose
tissue, pancreas and skeletal muscle, where they contribute
to hepatic steatosis and insulin resistance, adipocyte hyper-
trophy and inflammation, reduced glucose uptake and

oxygen consumption in the muscle and reduced beta cell
function (Silvestri et al., 2011; Cristino et al., 2014a,b).
Thus, CB1 receptors may have evolved as pro-homeostatic
(i.e. allostatic) receptors in the context of survival challenges
(food restriction, fight or flight response, hunting, physical
and psychological traumata) not entirely compatible with
the lifestyles of contemporary post-agriculturists.

The introduction of cannabimimetic
spices during agriculture
In 1997, Eaton et al. revisited their seminal paper on the die-
tary origin of chronic metabolic disorders as the result of a
mismatch between ancient genes and high-calorie diets
(Eaton and Konner, 1985; Eaton et al., 1997). The multimil-
lion year evolutionary process during nearly all of which ge-
netic change reflected the life circumstances of our
ancestors was suddenly disturbed by the introduction of agri-
culture about 12 000 years ago. Dietary carbohydrates once
essential for the cognitive and social development of Paleo-
lithic humans gradually turned into a metabolic stress factor
as a function of their glycaemic indices. Epidemiological evi-
dence points towards a pandemic diet-induced glucotoxicity
due to excess sugar intake (Hite et al., 2011). Likewise, exces-
sive intake of fat can lead to lipotoxic pathophysiological ef-
fects, yet there is a more direct strong link between
glucotoxicity and the metabolic syndrome and T2DM in
humans (Guldbrand et al., 2014). The independent Swedish
Council on Health Technology Assessment has concluded
that dietary fat is not associated with obesity (Hansen,
2013) and, consequently, T2DM and cardiometabolic risk.
The committee reviewed 16 000 studies published through
until 2013 and recommended that a low-carbohydrate,
high-fat diet should be the most effective measure against
obesity. Yet the reality of post-agriculturist societies is a con-
comitant high-carbohydrate and high-fat intake. Most of
the rodent studies on the pathophysiological role of the ECS
in energy homeostasis stem from high-fat diets and not from
high-carbohydrate diets, with few exceptions. Interestingly,
CB1 receptor inverse agonist/antagonist-treated rats fed with
either high fat or high-carbohydrate diet showed differential
responses (Rivera et al., 2013), indicating that the dietary con-
text for the role of the ECS is important.

With the onset of agriculture, the cultivation and con-
sumption of green leafy vegetables and spices was also initi-
ated. The regular use of green leafy vegetables and spices
can be seen as an innovation of agriculturists as both an
adaptive process to environment and taste (Heinrich et al.,
2006; Krebs, 2009; Leonti, 2012). Spices are typically rich in
essential oils and terpenes, thus providing a source of poten-
tial lipid modulators of the endogenous lipid systems, includ-
ing the ECS, TRP channels (TRPV1 and TRPA1), the PPARs
and the overall eicosanoid system (see also Russo, 2016). Just
like salt increases the palatability of food, certain hot or
flavoured spices can do the same. However, there are many
spices in agriculturist diets that exert pharmacological effects.
For instance, phenylpropanoids from ginger (Zingiber
officinale L.) have been shown to pleiotropically interfere
with the arachidonate signalling system by targeting COX-2
(van Breemen et al., 2011) and PLA2 (Nievergelt et al., 2011),

BJP J Gertsch

1472 British Journal of Pharmacology (2017) 174 1464–1483



leading to potent anti-inflammatory effects by disrupting IL-
1β expression (Nievergelt et al., 2011). Numerous plant vola-
tiles among spices modulate ion channels (Maffei et al.,
2011), such as TRPV1 that signals to the ECS. NAEs like
palmitoylethanolamide (PEA) are very abundant in flowering
plants (Gachet et al., 2017), which constitute a major source
of food. Given the emerging pharmacology of PEA (Petrosino
and DiMarzo, 2017), it will be interesting to assess the biolog-
ical contribution and significance of NAEs from diet. Overall,
this dietary adaptation to eating green leafy vegetables and
spices rich in essential oils and NAEs may not be a coinci-
dence but a biological function to counteract metabolic stress
induced by the excessive carbohydrate intake. However, the
epidemiological evidence does not portray a clear picture.
As shown by a recent big epidemiological study from China,
‘spicy food’ was, quite unexpectedly, positively associated
with body weight (Sun et al., 2014). In Chinese cuisine, spicy
food is more meat-based rather than vegetable-based with
heavy salt and/or oil use for flavour and palatability, the pri-
mary spice being hot pepper (Capsicum spp.). This contrasts
with the findings of other herbal spices that have been shown
to reduce body weight and improve glucose tolerance (Grant
et al., 2009; Bower et al., 2016; Sikand et al., 2015). While the
roles of vitamins, minerals and Ω3 PUFAs for human health
have been studied in detail, the role of secondary plant me-
tabolites that directly or indirectly interact with our physiol-
ogy beyond flavonoids remains largely unknown. One
reason for this is the enormous difficulties in studying
mixtures of poorly bioavailable natural products in vivo
(Gertsch, 2011). Nevertheless, the introduction of numerous
spices during agriculture is intriguing and might reflect an
adaptive process to high-calorie diets.

Diet-induced shifting of the CB1/CB2
receptor activation ratio?
Research from animal models but also humans (i.e. RIO stud-
ies with rimonabant) impressively shows that in high-calorie
diets, CB1 receptor activation is causally associated with obe-
sity and the metabolic syndrome and thus directly modulates
energy balance (Mazier et al., 2015; Gatta-Cherifi and Cota,
2016). In metabolically healthy obese individuals, overactive
CB1 receptors in adipocytes, pancreas and liver may foster the
onset of a metabolic syndrome, but probably not in non-
obese individuals (Cable et al., 2014). Therefore, a dietary
CB1 receptor antagonist in combination with high-calorie di-
ets could potentially reduce the risk of CB1 receptor-mediated
metabolic pathologies in the context of high-calorie diets.
The only dietary antagonist/inverse agonist of CB1 receptors
reported so far is the acetylenic oxylipin falcarinol, which
predominantly occurs in carrots (Daucus carota L.), but also
in many other Apiaceae vegetables such as parsley
(Petroselinum crispum L.), celery (Apium graveolens L.), parsnips
(Pastinaca sativa L.), fennel (Foeniculum vulgare Mill.) and in
ginseng (Panax ginseng C.A. Meyer). This natural product
was introduced into the human diet upon the transition from
hunter-gatherers to agriculturists. In addition to apparently
irreversibly inhibiting CB1 receptors in vitro (Leonti et al.,
2010), falcarinol also covalently blocks the aldehyde dehy-
drogenase 2 family by alkylation of the active site (ALDH2;

Heydenreuter et al., 2015), activates nuclear factor
erythroid-2 related factor 2 (Nrf2; Qu et al., 2015) and weakly
interacts with PPARγ (El-Houri et al., 2015) and GABAA recep-
tor subtypes (Czyzewska et al., 2014). It was recently shown
that falcarinol inhibits adipocyte differentiation and
andipogenesis and improves glucose uptake (El-Houri et al.,
2015), but shows opposite effects on lipolysis to the CB1 in-
verse agonist/antagonist rimonabant. Overall, the effect of
falcarinol on adipogenesis would be in agreement with its in-
hibitory effects on CB1 receptors. Purple carrot juice and β-
carotene have been compared for their effects in a rat model
of metabolic syndrome based on a high-carbohydrate, high-
fat diet in which carrot juice improved glucose tolerance, as
well as cardiovascular and hepatic structure and function in-
dependent of β-carotene (Poudyal et al., 2010). Interestingly,
significantly lower glucose, insulin and C-peptide responses
and higher satiety scores were elicited with raw carrots than
with microwaved ones in humans (Gustafsson et al., 1995),
which is in agreement with the loss of falcarinol content
upon cooking. In a study addressing the effect of dosage on
the metabolic response to vegetables added to a mixed lunch
meal, it was found that the larger the carrot portion, the lower
the glucose and insulin/C-peptide responses and the higher
the satiety scores (Gustafsson et al., 1994), whichmay suggest
that the large carrot meals could provide sufficient falcarinol
to exert this effect. A benefit of ginseng supplementation in
improving glucose control and insulin sensitivity in patients
with T2DM or impaired glucose intolerance has been con-
cluded from a recent meta-analysis (Gui et al., 2016). Al-
though these data are promising, there is not yet any
mechanistic in vivo evidence that this negative dietary mech-
anism on CB1 receptor signalling exists.

More recent evidence points towards a protective action of
CB2 receptors in energy metabolism and diabetes (vide infra).
Since many of the beneficial (i.e. therapeutic) effects medi-
ated via CB1 receptors can also be obtained with CB2

receptor-selective agonists, which do not show any central
side effects (Buckley, 2008; Pacher and Mechoulam, 2011),
the emerging role of this cannabinoid receptor in the context
of diet is remarkable. Although CB2 receptors can enhance
obesity and insulin resistance in high-fat diets in certain
mouse strains (Deveaux et al., 2009; Agudo et al., 2010), CB2

receptor activation seems, generally, to cause the opposite ef-
fects to those of CB1 receptors in rodents (Rossi et al., 2016;
Verty et al., 2015; Onaivi et al., 2008). Unlike with the studies
using CB1 knockout mice, global CB2 knockout mice, due to
developmental adaptive processes, may not be suitable
models to study the role of this receptor in energy balance
and metabolism. Another problem could be the pronounced
species differences in CB2 receptors and the lack of knowledge
of CB2 receptors in humans, in particular in the context of
high-fat diet. In light of the evolutionary discussion related
to hunter-gatherer and pastoralist diet (vide supra), the possi-
bility that in humans, high-fat diet more strongly activates
CB2 receptors than in mice cannot be excluded, thus com-
pensating for CB1 receptor activation. Therefore, data from
rodents could be misleading. It would certainly be interesting
to assess CB2 receptor density and signalling in pastoralists.
Nevertheless, CB2 receptors play a role in inhibiting food in-
take in the satiated state in rats, whereas the CB1 receptor pro-
moted food intake in the fasted condition (Ting et al., 2015).
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A possible role for central cannabinoid CB2 receptors in body
weight control and glucose homeostasis was deduced from a
study artificially triggering CB2 expression in mouse brain
(Romero-Zerbo et al., 2012). In humans, the minor allele of
rs3123554 in the CB2 receptor was associated cross-
sectionally with lower body weight, whereas during interven-
tion, the same allele led to a smaller reduction in body weight
(Ketterer et al., 2014). In this study, it was proposed that re-
duced cerebral insulin sensitivity in carriers of this allele
might contribute to these disadvantageous effects during life-
style intervention. Moreover, an association between the CB2

receptor Q63R functional variant and the age at menarche in
a cohort of Italian obese girls was reported (Bellini et al.,
2015). These studies clearly provide a rationale to consider a
possible protective role for CB2 receptors in diet-inducedmet-
abolic malignancies (Figure 1). CB2 receptor activation could
for example be protective in high-carbohydrate diets
(Bermudez-Silva et al., 2007) in obese individuals. Obesity is
associated with a low-grade inflammatory state and adipocyte
hyperplasia/hypertrophy. This suggests that CB2 receptor
activity, possibly via modulation of immune cells like
macrophages, could potentially modulate food intake and
could have significant effects on energy metabolism and
pro-inflammatory obesity (Schmitz et al., 2016). Moreover,
CB2 receptors could be protective in atherosclerosis, resteno-
sis, stroke, myocardial infarction and heart failure (Steffens
and Pacher, 2012). At present, few dietary phytochemicals
have been shown to activate CB2 receptors in vivo. The best

studied phytochemical is β-caryophyllene (BCP), which has
been independently shown to exert numerous CB2 receptor-
mediated cannabimimetic effects in rodents (e.g. Gertsch
et al., 2008; Horváth et al., 2012; Bahi et al., 2014; Klauke
et al., 2014). As outlined in a previous commentary, BCP is a
common phytochemical widely present in vegetables and
spices (Gertsch, 2008). It is one of the most widespread plant
volatiles and can be synthesized by virtually all plants.
Although the exact molecular mechanism of action of this
virtually water insoluble sesquiterpene remains unclear and
CB2 receptor interaction/activation data in vitro can vary
(unpublished observations), in vivo data from rodent
experiments are convincing and point towards broad CB2

receptor-mediated protective effects in various animal
models (Gertsch et al., 2008; Bento et al., 2011a; Horváth
et al., 2012; Cheng et al., 2014; Klauke et al., 2014). Oral ad-
ministration of high doses of BCP has beneficial effects on
glucose homeostasis in diabetic rats similar to glibenclamide,
a standard antidiabetic drug (Basha and Sankaranarayanan,
2014 and 2016). Glucose-stimulated insulin secretion is es-
sential for the control of metabolic fuel homeostasis, and its
impairment is a key element in the failure of beta cells in
T2DM. BCP has been shown to dose-dependently stimulate
insulin secretion in MIN6 cells in a CB2 receptor-dependent
manner (Suijun et al., 2014). BCP potently inhibits solid tu-
mour growth and lymph node metastasis of B16F10 mela-
noma cells in high-fat diet-induced obese C57BL/6N mice
(Jung et al., 2015). BCP can be found in cows milk where it

Figure 1
Hypothetical evolutionary model of the differential roles of CB1 and CB2 receptors in human (patho)physiology. The ECS integrates dietary stimuli
from different lifestyles leading to a potential mismatch in agriculturist societies where high-calorie food (sugars and fats) predominates. To com-
pensate for the detrimental effects of chronic CB1 receptor activation in peripheral organs, CB2 receptors may have evolved as a protective mech-
anism. While both CB1 and CB2 receptors are protective in the GI tract (1), in the liver (2), kidney (3) and adipocytes (4), CB2 receptor activation
could counteract the pro-obesity and pro-fibrotic action of CB1 receptor activation. In addition, CB2 receptor activation may ameliorate chronic
inflammation [e.g. via macrophage polarization (5)] and metabolic disease. Some phytochemicals introduced during agriculture (spices, leafy
vegetables, etc.) may modulate the CB1/CB2 receptor activation ratio, thus linking diet with physiology.
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accumulates with a BCP rich diet (Borge et al., 2016). At-
tempts to establish structure–activity relationships with BCP
at the CB2 receptor have failed (Chicca et al., 2014) as this
simple bicyclic hydrocarbon scaffold offers limited possibili-
ties. Another interesting natural CB2 receptor agonist is 3,30-
diindolylmethane (DIM), which is an anticarcinogenic
metabolite generated upon ingestion and hydrolysis of gluco-
brassicin commonly found in vegetables of the Brassicaceae
family. It has been shown to be a partial CB2 agonist (Yin
et al., 2009). The intake of BCP and potentially DIM could,
at least in theory, directly shift the CB1/CB2 receptor activa-
tion ratio away from CB1 receptor activation.

Hunting, pastoralism and agriculture –
possible crossroads for the
endocannabinoid system
Many metabolic human genes that evolved in the context of
carnivory and a hunter-gatherer lifestyle may not have neces-
sarily been associated with famine (Pijl, 2011; Berbesque
et al., 2014). However, carnivory demands efficient lipid me-
tabolism. Dietary fat stimulates the intestinal release of the
incretin hormones glucagon-like peptide 1 (GLP-1; Edfalk
et al., 2008; Mandøe et al., 2015) and glucose-dependent
insulinotropic polypeptide (GIP) (Thomsen et al., 1999), met-
abolically connecting animal and plant foods. A hunter-
gatherer diet rich in animal food (about 65% of total energy
intake) does not lead to metabolic problems or cardiometa-
bolic risk (Cordain et al., 2002). Indeed, as already pointed
out, pastoralist societies of the sub-Saharan region, which
have a history more ancient than agriculture, provide strong
evidence that the consumption of milk and meat (proteins
and fat) in a high physical activity context do not correlate
with increased cardiovascular disease. For instance, despite a
diet high in saturated fat, Fulani adults in Nigeria have a lipid
profile indicative of a low risk of cardiovascular disease (Glew
et al., 2001). This is in agreement with findings that high-fat
diets may not cause obesity and cardiometabolic pathologies
in the context of sufficient physical activity (Hansen, 2013).
While hunter–hunter gatherers have limited carbohydrate in-
take (Ströhle and Hahn, 2011), their energy demands are cov-
ered through fat-based diets. This would fit the hypothesis
that the ECS evolved in the context of sympathetic stimuli
(Szabo et al., 2001), linking the CNS to metabolism and po-
tentially also the control of brown adipose tissue (BAT) ther-
mogenesis (Labbé et al., 2015). Interestingly, endogenous
CB1 receptor negative allosteric modulatory peptides
(pepcans; RVD-hemopressin) have been discovered in norad-
renergic neurons and chromaffin cells of adrenal glands in
mice (Bauer et al., 2012, Hofer et al., 2015), thus potentially re-
vealing an endogenous modulatory mechanism that has neg-
ative effects on CB1 receptors. Further research is needed to
understand the physiological role of these peptides in the
context of diet. Hypothalamic CB1 receptor signalling is a
key determinant of energy expenditure under basal condi-
tions and plays a role in conveying the effects of leptin on
food intake (Cardinal et al., 2012). Since CB1 receptors are
strongly expressed in adipocytes, in addition to the hypotha-
lamic regulation of thermogenesis, these receptors may have
additional roles, for example, in the differentiation of white

adipose tissue (WAT) and BAT. Apart from diet, weight control,
exercise and the use of recreational substances like alcohol, to-
bacco and coffee also modulate the ECS (McPartland et al.,
2014). In contemporary post-agricultural societies, sugars and
fats constitute a major source of energy that can be obtained at
basically no physical cost. It would be interesting to compare
the functioning of the ECS between hunter-gatherers, pastoral-
ists and agriculturists in different energetic circumstances, taking
into account possible genetic adaptations. Experimentally more
accessible, the role of the ECS in fast-growing meat-producing
animal strains versus normal growing animals of the same spe-
cies should be studied to better link genetics with food intake.
Along this line, cursorial animals produce AEA upon exercise,
whereasnon-cursorial animals donot (Raichlen et al., 2012), sug-
gesting a physical activity reward (runners high) potentially
interlinked to energy metabolism (Fuss et al., 2015). Upon
moving to urban centres or as income rises, developing nations
typically replace plant-based diets with more refined carbohy-
drates, isolated animal fats, vegetable oils and caloric sweeteners,
a phenomenon known as the ‘nutrition transition’ (Popkin et al.,
2012), which goes along with less physical activity.

Prospects for nutraceutical research?
With the nutrition transition ongoing in industrialized socie-
ties and the interrelated phenomena of glucotoxicity and
lipotoxicity, CB2 receptor-selective cannabimimetic dietary
lipids should be considered as potential novel food supple-
ments. They are generally anti-inflammatory and anti-
fibrogenic and may potentially counteract CB1 receptor
signalling. An interesting candidate is the FDA-approved
nontoxic food additive CB2 receptor agonist BCP (CAS
87–44-5) (Schmitt et al., 2016), which also targets PPARs
(Sharma et al., 2016) and is already an active ingredient of cer-
tain nutraceuticals. However, a clinical assessment of the con-
trolled intake of higher doses of this phytochemical in
diseases related to the metabolic syndrome and T2DM, such
as, for example, hepatorenal inflammation, would be neces-
sary. It was recently suggested that BCP could have potential
in preventing or ameliorating non-alcoholic fatty liver dis-
ease via stimulation of the CB2 receptor-mediated calcium-
triggered activation of AMP-activated protein kinase (AMPK;
Kamikubo et al., 2016). BCP is orally bioavailable and accu-
mulates in adipose tissue (unpublished data) with yet unclear
clearance mechanisms. It is estimated that the daily intake of
BCP from spices and vegetables is less than 10 mg but may
vary with diet. The spices and vegetables of the Mediterra-
nean and Indian cuisines may already contain sufficient
amounts of cannabimimetics like BCP, DIM and ECmodulat-
ing PUFAs. Dietary black pepper, which is a major source of
BCP, also contains the potent AEA reuptake inhibitor
guineensine (Nicolussi et al., 2014), an interesting dietary
natural product, which could exert weak indirect agonistic ef-
fects on CB receptors if orally bioavailable. Clearly, phyto-
chemicals able to inhibit peripheral CB1 receptors could
represent novel therapeutic agents in diet. Since the intake
of falcarinol is limited to few vegetables and spices, such as
carrots and parsley, and the pharmacokinetics of this plant
lipid remains unknown; further research is necessary. There
is compelling evidence that numerous vegetables and spices
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exert beneficial effects in the context of obesity, themetabolic
syndrome and diabetes (Leiherer et al., 2013). There could
even be a diet-mediatedmetabolic plant feedback beyond nu-
trients and vitamins (Gertsch, 2016). Diet is important for the
development of the immune system, stress axis and neurobi-
ological fitness in infants, and the ECS appears to play a crit-
ical role in this process (Harrison and Baune, 2014; Moretti
et al., 2014). It will thus be interesting to assess the possibility
of ‘reprogramming’ energy metabolism in infants of obese
parents, for example, by tuning the Ω3/6 PUFAs in early de-
velopment. Intervention studies have demonstrated an im-
provement in immune function in infants fed diets
supplemented with AA and DHA compared with normal diets
(Richard et al., 2016). Thus, increased EC levels in infants may
be beneficial and result in positive health outcomes, includ-
ing a reduction in the risk of developing allergic and atopic
disease early in life. However, in adults, in addition to abso-
lute amounts of Ω6 and Ω3 fatty acid intake, the Ω6/3 ratio
plays an important role in increasing the development of
obesity via AA-derived eicosanoid metabolites, including
ECs. This can be reversed by increasing the intake of EPA
and DHA (Simopoulos, 2016). In dietary obese mice,
DHA/EPA administered as phospholipids prevented glucose
intolerance and obesity more effectively than the corre-
sponding tracylgylcerols, and only the phospholipid form re-
duced plasma insulin and adipocyte hypertrophy, being also
more effective in modulating 2-AG levels and reducing he-
patic steatosis and low-grade inflammation of WAT
(Rossmeisl et al., 2012). Overall, an age- and food-dependent
balanced Ω6/3 ratio seems to be important for health and in
the prevention andmanagement of obesity in adults; the link
between Ω3 fatty acid intake and ECS function is of great in-
terest in nutrition. Noteworthy, ethanolamide metabolites
of EPA and DHA (i.e. EPEA and DHEA) have been shown to
exist, and interact and activate CB1 and CB2 receptors, al-
though less potently than classical ECs (Brown et al., 2010).
In vivo, EPA and DHA-derived ECs could nonetheless act as CB
receptor ligands or bona fide ECs, although further research is
necessary to determine their physiological role and signalling ef-
fects via CB receptors. Intriguingly, EPEA and DHEA become de-
tectable in vivo after consumption of diets rich in EPA and DHA
(Wood et al., 2010). Quite surprisingly, the fact that low levels of
Ω3 PUFAs in humans are linked to neuropsychiatric diseases
(Hashimoto et al., 2014) might also be due to their fundamen-
tal, yet poorly understood interaction, with CB1 receptors and
modulation of synaptic plasticity (Lafourcade et al., 2011).
Inhibitory long-term depression of inhibitory inputs and
long-term potentiation via NMDA glutamate receptors have
both been shown to be impaired in Ω3 PUFA-deficient mice
(Thomazeu et al., 2016). A translation of the current state
of knowledge into a potential nutraceutical strategy may
involve the formulation of CB2 receptor active dietary
cannabimimetics together with Ω3 PUFAs.

Discussion

‘Little strokes fell the big oaks’
The pro-homeostatic (allostatic) role of the ECS needs to be
seen in the light of the evolutionary pressures, including

dietary habits, but also development and ageing. Recent
human genetic studies show that the ECS system is under
purification pressure, most likely also driven by diet. With-
out an evolutionary perspective, it is difficult to draw gen-
eral conclusions on the functioning of the ECS in energy
metabolism. It is even likely that there is opposite roles of
ECs and CB receptors, depending on diet and age. Thus,
we need to also better understand the role of CB receptors
in energy metabolism in elderly people. Furthermore, spe-
cies differences, in particular for CB2 receptors, are likely
to limit the conclusions from animal studies. The potential
hormetic effects of ECs on their receptors (CB, GPR55,
PPARs, ion channels, etc.) should be studied in more detail
as frequently inverse dose–response effects are observed
in vitro and in animal experiments (mostly inbred strains).
Independent of fatty acid intake, in high-calorie diets and
conditions of obesity, CB2 receptors may mediate protective
effects, thus enabling metabolic stress adaptation to high-
carbohydrate diets in agriculturist societies. Noteworthy,
CB2 receptor activation can potentially prevent or amelio-
rate diabetes-associated nephropathy (Barutta et al., 2011;
Barutta et al., 2014), suggesting that CB2 receptor-selective
cannabimimetics in the diet may have a broad anti-
inflammatory and protective role (Figure 1). However, the
differential activation, by ECs, of CB1 versus CB2 receptors
that are found to be co-expressed in peripheral cells is far
from being understood. By elucidating beneficial
cannabimimetics in the diet (e.g. those that shift the CB1/
CB2 receptor activation ratio), we will be able to change di-
etary patterns and take into account the ECS in nutrition.
Never in the history of human diets have we consumed
more carbohydrates and less phytochemicals than today.
It is highly likely that numerous small modulatory effects
of phytochemicals (the little strokes), such as PUFAs, BCP,
DIM, guineensine, falcarinol, β-amyrin, oleanolic acid and
flavonoids. on the different proteins of the ECS may have
significant physiological effects. The dietary input into the
ECS drives the complex physiological path of appetite stim-
ulation, energy intake and metabolism to craving, modula-
tion of obesity, metabolic stress and cardiometabolic
problems. As with Ω3 fatty acids, nutrition that favours
CB2 receptor activation should be beneficial and could
open up new prospects for nutraceuticals. Ultimately, un-
satisfactory diets augment drift and diminish gene flow,
which reduces genetic variation in local populations and
prevents the spread of genes involved in homeostasis,
thereby disrupting adaptive processes and contributing to
the onset of lifestyle diseases. Clearly, nutrition is funda-
mental in the context of population dynamics and healthy
ageing. In the end, we are what we eat and eat what we are
(our biochemical blueprint).
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