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TRPV1, the sympathetic nervous system,
and arthritis
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Abstract

Chronic inflammation in rheumatoid arthritis (RA) is accompanied by activation of the sympathetic nervous system,
which can support the immune system to perpetuate inflammation. Several animal models of arthritis already
demonstrated a profound influence of adrenergic signaling on the course of RA. Peripheral norepinephrine release
from sympathetic terminals is controlled by cannabinoid receptor type 1 (CB1), which is activated by two major
endocannabinoids (ECs), arachidonylethanolamine (anandamide) and 2-arachidonylglycerol. These ECs also
modulate function of transient receptor potential channels (TRPs) located on sensory nerve fibers, which are
abundant in arthritic synovial tissue. TRPs not only induce the sensation of pain but also support inflammation via
secretion of pro-inflammatory neuropeptides. In addition, many cell types in synovial tissue express CB1 and TRPs.
In this review, we focus on CB1 and transient receptor potential vanilloid 1 (TRPV1)-mediated effects on RA since
most anti-inflammatory mechanisms induced by cannabinoids are attributed to cannabinoid receptor type 2 (CB2)
activation. We demonstrate how CB1 agonism or antagonism can modulate arthritic disease. The concept of
functional antagonism with continuous CB1 activation is discussed. Since fatty acid amide hydrolase (FAAH) is a
major EC-degrading enzyme, the therapeutic possibility of FAAH inhibition is studied. Finally, the therapeutic
potential of ECs is examined since they interact with cannabinoid receptors and TRPs but do not produce central
side effects.
Introduction
Rheumatoid arthritis (RA) is a debilitating disease that
affects around 1.3 million people in the US alone [1].
Important characteristics of RA are inflammation of the
joint with subsequent destruction of cartilage, pannus
formation and infiltrates of immune cells [2–4]. Ongoing
inflammation also leads to systemic changes manifesting
in co-morbidities like dyslipidemia, depression, fatigue,
insulin resistance, activation of the sympathetic nervous
system, and cachexia [5, 6]. Changes in sympathetic
activity lead to a metabolic switch, which is in part
responsible for the perpetuation of inflammation and
the increase in cardiovascular risk in RA patients [7].
Cannabis has been used since 4000 BC for the treat-

ment of spasms and post-operative pain [8]. In the
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1990s, the two main receptors for cannabinoids (cannabin-
oid receptors I and II; CB1 and CB2) were identified [9, 10].
Both receptors are activated by the psychoactive compo-
nent of cannabis, tetrahydrocannabinol (THC), and several
other synthetic and plant-derived cannabinoids [11]. Two
major endogenous cannabinoids (endocannabinoids, ECs),
arachidonylethanolamine (anandamide, AEA) and 2-
arachidonylglycerol (2-AG), were described shortly after
the discovery of CB1 and CB2 [12, 13]. In recent years,
other receptors such as transient receptor potential
vanilloid 1 (TRPV1), GPR55, or GPR18 were found to
bind cannabinoids, and activation of these receptors is res-
ponsible for the off-target effects of several cannabinoids
[14–18]. Transient receptor potential channel (TRP) mo-
dulation by cannabinoids might be explicitly important
since these receptors not only influence sensation of pain,
but also support inflammation [19].
This review describes physiological aspects of CB1

receptors, pharmacological roles of ECs and the EC-
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degrading enzyme fatty acid amid hydrolase (FAAH),
functional crosstalk between ECs and TRPV1, the
interaction between ECs and the sympathetic nervous
system in RA, the influence of ECs on arthritis disease
sequelae in mice and humans, and direct immuno-
modulatory effects of CB1 signaling in the periphery
and in the brain. Considering this knowledge we finally
try to demonstrate an optimum therapeutic EC ap-
proach in RA.

Physiology
CB1 influences cell function by controlling
neurotransmitter levels
The classic function of ECs in the nervous system is the
regulation of neurotransmitter release via CB1, which is
also responsible for the psychotropic effects of cannabis
[20–23]. CB1 is mainly located on presynaptic nerve ter-
minals, and activation of this receptor reduces the re-
lease of neurotransmitter from corresponding neurons
in a heteroreceptor-typical way [24]. Thus, cannabinoids
can increase or decrease neuronal excitability depending
on neurotransmitter and brain region affected. CB1

receptors are also abundant on peripheral sympathetic
nerve terminals, where they modulate adrenergic sig-
naling. This influence on sympathetic nerves can alter
lipolysis, cytokine production, ghrelin production, heart
Fig. 1 Effects of CB1 activation or inhibition on norepinephrine (NE) release
nerve terminals. The red zone depicts the effects of CB1 agonism, which de
modulated by β-adrenergic receptors under CB1 activation. Beyond the dotte
the β-adrenergic area is increased (black dotted line). Under CB1 inhibition, NE
(green dotted line). Beta receptor activation on immune cells decreases produ
rate and bone resorption [20, 25–28]. The effects of CB1

activation or inhibition on neurotransmitter release in a
given peripheral tissue are depicted in Fig. 1. In addition,
CB1 receptors are located on nociceptive nerve fibers.
Here, CB1 agonism increases the threshold for the
generation of action potentials via modulation of ion
channels and TRPs [29, 30].
Direct effects of CB1 activation on immune cells have

only been scarcely described. Our group but also others
demonstrated an influence of cell adhesion in response
to CB1 agonism; this effect might also modulate immune
function by regulating cell trafficking and tissue extra-
vasation [31, 32].

CB2 regulates immune cell function directly
While CB1 functions mainly through modulation of
central and peripheral neurotransmitter release, ac-
tivation of CB2 elicits direct anti-inflammatory effects in
target cells [33]. This includes reduction of cytokine and
matrix metalloproteinase production, modulation of
adhesion and migration but also induction of apoptosis
[33]. The anti-inflammatory potential of CB2 was also
confirmed in mouse models of arthritis [34, 35]. While
the impact of CB2 on immune function has already been
investigated and reviewed elsewhere [33, 36], this review
focuses on CB1.
in tissue. CB1 regulates the amount of NE released from sympathetic
creases NE release. Only cells within the red line boundary can be
d 'β-adrenergic zone', α-adrenergic effects prevail. Under basal conditions,
release is boosted and maximal β-adrenergic effects can be achieved
ction of pro-inflammatory mediators, for example, tumor necrosis factor
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Pharmacology
Role of the ECs anandamide and 2-AG
The action of ECs is limited by rapid degradation in-
volving FAAH, which degrades AEA and related N-
acylethanolamines, and monoacylglycerol-lipase (MAGL),
which degrades 2-AG [37]. In addition, several enzymes
like cyclooxygenase-2, lipoxygenase or cytochrome P450
and others contribute to EC metabolism [38]. Characteris-
tics of AEA, 2-AG, THC and the CB1 antagonist rimona-
bant are given in Table 1. Inhibition of FAAH raises the
levels of the N-acylethanolamines AEA, palmitoylethano-
lamine (PEA) and oleoylethanolamine (OEA) [39]. While
AEA is responsible for maintaining basal EC signaling,
2-AG mediates strong and rapid feedback via CB1 recep-
tors [40]. This is also reflected by the fact that AEA is a
partial agonist at CB1, while 2-AG acts as full agonist [41].
Due to its full agonistic properties, elevation of 2-AG by
inhibition of MAGL leads to functional antagonism (dis-
cussed below) of CB1, although this might be prevented
by reduced dosing [42, 43]. Furthermore, MAGL inhib-
ition might be detrimental in some situations, since 2-AG
is also degraded by cyclooxygenase-2 leading to pro-
inflammatory metabolites [44]. Therefore, this review only
covers the consequences of FAAH inhibition.
The conundrum of functional antagonism at CB1
and TRPV1
Throughout this review, similar effects of CB1 agonists
and CB1 antagonists on features of arthritic inflamma-
tion are described. This conundrum can be explained by
rapid desensitization and downregulation/internalization
of CB1 upon agonist exposure [45–47]. If desensitization
is disturbed due to mutations in crucial CB1 phosphoryl-
ation sites, CB1 agonism leads to enhanced acute effects
and delayed tolerance [48]. Consequently, CB1 signaling
diminishes in response to repeated agonist exposure
[49]. This feature of CB1 explains functional antagonism:
administration of exogenous cannabinoids or elevation
of endogenous levels of the full CB1 agonist 2-AG leads
Table 1 Characteristics of selected cannabinoid receptor ligands

Ligand Target receptors Ki at CB1 in nM Ki

Anandamide CB1, CB2, GPR55, TRPV1,
TRPA1, TRPM8 (antagonist)

239.2 ± 61.77 [158] 43

2-AG CB1, CB2, TRPV1, GABAA 3423.6 ± 3288.24 [158] 11

Delta9-THC CB1, CB2, GPR18 25.1 ± 5.54 [158] 35

Rimonabant CB1, MOR 1.98 ± 0.36 [164] N

Anandamide, 2-arachidonylglycerol (2-AG) and tetrahydrocannabinol (THC) are CB1/CB
and THC are partial CB1/CB2 agonists, 2-AG is a full agonist at both receptors. The main d
domain; CB1/CB2, cannabinoid receptor I/II; COX-2, cyclooxygenase-2; CYP, cytochrome P4
FAAH, fatty acid amide hydrolase; IC50, half maximal inhibitory concentration; Ki, dissociat
receptor; NA, not applicable; NAAA, N-acylethanolamine-hydrolyzing acid amidase; TRPA1, tra
TRPV1, transient receptor potential vanilloid I
to downregulation of CB1. If levels drop low enough,
production of ECs is not sufficient to activate CB1 or
CB1 signaling pathways. This phenomenon was de-
scribed with MAGL inhibitors, which increase levels of
2-AG [42]. Another possibility to achieve antagonistic
effects with agonists is the use of CB1 partial agonists
like AEA, which lack full activation of CB1 signaling
pathways. These partial agonists act as antagonists when
full agonists are also present [50].
TRPs, in particular TRPV1, TRPV2, TRPV3, TRPV4,

TRPA1 and TRPM8, serve as ionotropic cannabinoid
receptors and they also desensitize upon agonist expos-
ure [51–55]. The EC AEA is an agonist at TRPV1 with a
binding affinity similar to that of the hot pepper ingredi-
ent capsaicin, although it does not activate the receptor
like capsaicin [56]. Therefore, although being an agonist
itself, AEA prevents the effects of high efficacy agonists
like capsaicin, thus serving as antagonist in this setting.
Furthermore, AEA rapidly desensitizes TRPV1, which
results in reduced calcium influx [57]. In addition, the
AEA congeners and FAAH substrates PEA and OEA
also desensitize TRPV1 [58, 59]. Although there are no
data available regarding the desensitization of other
TRPs by N-acylethanolamines, it is likely that this also
occurs since there is extensive crosstalk between, for
example, TRPV1 and TRPA1 via intracellular calcium
[60]. Moreover, it has been demonstrated that synthetic
cannabinoid ligands binding TRPA1 also desensitized
target cells to the action of TRPV1 agonists [61].
FAAH inhibition does not produce central side effects and
bridges TRPs and cannabinoid receptors
Central activation of CB1 has psychotropic side effects
and this problem is circumvented by the use of FAAH
inhibitors [62]. In contrast to exogenous cannabinoids,
AEA does not lead to tolerance at CB1 or psychotropic
effects [63]. Therapeutically, reduction of tolerance to CB1
agonists with FAAH inhibitors can be important since
this process leads to a loss of efficacy when repeatedly
at CB2 in nM Emax/IC50 at TRPV1 (nM) Route of degradation

9.5 ± 95.89 [158] 458 (Emax) [159] FAAH, FAAH-2, NAAA,
COX-2, LOX [160]

93.8 ± 327.71 [158] 750 ± 40 (IC50) [161] MAGL, COX-2, LOX,
ABHD6/12 [160,162]

.2 ± 5.86 [158] NA CYP2C [163]

A NA CYP3A [165]

2 agonists, rimonabant is a CB1/MOR antagonist/inverse agonist. Anandamide
egrading enzyme for each compound is highlighted in bold. ABHD, α/β-hydrolase
50; Delta9 THC, delta9 tetrahydrocannabinol; Emax, maximal functional response;
ion constant; LOX, lipoxygenase; MAGL, monoacylglycerol lipase; MOR, μ opoid
nsient receptor potential ankyrin I; TRPM8, transient receptor potential melastatin 8;
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administered [63]. In addition, elevation of OEA and PEA
also provide anti-inflammatory, neuroprotective effects
and they enhance neurogenesis mostly via peroxisome-
proliferator activated receptors [64–66]. FAAH inhibition
has already been demonstrated to be effective in collagen-
induced arthritis in mice, although this was attributed to
CB2 activation [34]. Furthermore, FAAH inhibition not
only combines anti-inflammatory effects of several N-
acylethanolamines but also targets additional receptors
such as TRPV1 and peroxisome proliferator activated recep-
tors [65, 67–69]. One important receptor for AEA and its
congeners OEA and PEA is the TRPV1 cation channel, al-
though other TRPs are similarly activated by AEA [69–71].
Besides CB1 and CB2, ECs as well as synthetic and

phytocannabinoids bind to members of the TRP family
[54, 61, 72–74]. Several of these non-selective cation
channels integrate external and endogenous stimuli and
are sensitized and activated during inflammation [19, 75].
Pharmacological elevation of AEA in the rat leads to
activation but also desensitization of TRPV1, resulting in
increased pain thresholds [69]. In contrast to CB1 activa-
tion, TRP activation increases cell excitability leading to
increased release of neurotransmitters [76–78]. When co-
expressed, CB1 agonism decreases TRPV1 channel activity
by dephosphorylation, which increases the threshold for
agonists [78]. Although mainly located on sensory Aδ and
C-fibers, TRPs are also expressed on peripheral cells such
as synoviocytes, and activation results in increased expres-
sion of inflammatory mediators [75, 79, 80]. The best
described example of subsequent TRPV1 and CB1 activa-
tion is the regulation of blood pressure, where only the
CB1/TRPV1 agonist AEA elicited a triphasic response
involving both receptors [81]. First, AEA activates TRPV1
causing hypotension and bradycardia followed by a
pressor phase with increased heart rate. In the final phase,
prolonged hypotension by AEA is observed and this effect
was inhibited by CB1 antagonism. The sequential activa-
tion of TRPV1 and CB1 in the context of blood pressure
regulation has been reviewed elsewhere [81].

Clinical relevance
The sympathetic nervous system supports chronic
inflammation in arthritis - links to endocannabinoids
Sympathectomy in arthritic patients has already been
performed in the 1920s and follow-up studies showed
reduced joint swelling and pain in sympathectomized
patients [82]. The neuroinflammatory component of arth-
ritis has been revealed in studies by Levine and colleagues
[83, 84]. In the mouse model of collagen-induced arthritis
it was shown that chemical sympathectomy before or
during the time of immunization results in less severe dis-
ease [85]. Late sympathectomy, however, results in exacer-
bation of experimental arthritis, which might be due to
deletion of tyrosine hydroxylase-positive catecholamine-
producing cells that appear in synovial tissue during the
course of the disease [86]. The beneficial effects of
tyrosine hydroxylase-positive cells on the development of
collagen-induced arthritis was demonstrated by our group.
In vitro, tyrosine hydroxylase controls cytokine production
in mixed synovial cells, whereas in vivo introduction of
these cells into arthritic mice reduced arthritic score [87].
During arthritic inflammation in mice and humans, pro-
duction of nerve repulsion factors by macrophages leads
to the retraction of sympathetic but not sensory fibers
from synovial tissue [88]. As a result, synovial concentration
of norepinephrine falls under the threshold for anti-
inflammatory β2 receptor activation and this favors pro-
inflammatory effects via α-adrenergic signaling [89, 90].
However, sympathetic signaling is increased in adipose
tissue surrounding the synovium, which is responsible for
generating energy-rich substrates to support inflammation
[91]. These changes in sympathetic activity during the
course of arthritis might be limited or even reversed by
altering either EC production or CB1 function, since this
receptor controls norepinephrine release. Reduction of EC
production by blocking appropriate synthesizing enzymes
leads to a functional loss of CB1 since low levels of ECs
can no longer activate the receptor. This was already
demonstrated in a mouse model of constipation, where in-
hibition of diacylglycerol lipase α lowered levels of the
CB1 agonist 2-AG with concomitant increases in gut mo-
tility [92]. The same effect is achieved by antagonizing
CB1 directly [93]. The loss of sympathetic nerves, altered
adrenergic signaling and the possible influence of ECs in
the joint is visualized in Fig. 2. In parallel with the dis-
appearance of sympathetic nerve fibers in the joint, hypo-
thalamic norepinephrine, interleukin (IL)-6 and IL-1β
increase during the induction phase of experimental arth-
ritis [94] (Fig. 3). In addition, these changes in cytokine
levels and disruption of adrenergic signaling are not ac-
companied by an adequate response of the hypothalamus-
pituitary-adrenal (HPA) axis, resulting in low cortisol
levels in relation to inflammation in humans and rodents
[94]. A more detailed description of the influence of the
sympathetic nervous system on inflammation has recently
been published by our group [95].

Modulation of adrenergic signaling via CB1 might be
beneficial in arthritis
In adjuvant arthritis, immune cells respond to adrener-
gic β2 receptor stimulation with decreased production
of tumor necrosis factor (TNF), an increase in anti-
inflammatory IL-10, and a shift to a T-helper type 2 and
T-regulatory immune response [96]. Antagonism of CB1

at splenic sympathetic terminals provides strong anti-
inflammatory effects and ameliorates collagen-induced
arthritis in mice via reduction of TNF levels, which was
inhibited by β2 adrenergic antagonism [26] (Fig. 4).



Fig. 2 Possible effects of CB1 antagonism and fatty acid amid hydrolase (FAAH) inhibition on inflammation in the joint. During the course of
arthritis, sympathetic nerve fibers are repelled from synovial tissue (1). Released norepinephrine (NE) (2) stimulates lipolysis, since concentrations
are high enough to activate β-adrenergic receptors on adipocytes. Synovial tissue NE concentrations, however, are below the threshold for
β-activation. Beyond the 'α/β demarcation line' (3), only pro-inflammatory α-adrenergic signaling is expected. Hypothetically, inflammation can
be blocked in the following way. Firstly, CB1 antagonism shifts the α/β demarcation line (indicated by dotted arrow) due to enhanced release of
NE and its co-transmitters. Secondly, concomitant FAAH inhibition increases local endocannabinoid/N-acylethanolamine concentrations, which
enhance sprouting of sympathetic fibers back into synovial tissue. This is followed by a sequence of events: an increase in NE decreases the
production of pro-inflammatory cytokines (4) and increases the production of anti-inflammatory cytokines (5). This would reduce cartilage and
bone destruction (6). Lipolysis is increased under these conditions since CB1 antagonism leads to direct lipolytic effects on adipocytes (7), which
are enhanced by β-adrenergic activation. In addition, TRPV1 activated by FAAH inhibition can also contribute to lipolysis (7). Although blockade
of CB1 enhances TRPV1 sensitization on sensory nerves, this can be counteracted by TRPV1 desensitization through FAAH inhibition but also
by reduction of pro-inflammatory cytokines that sensitize TRPV1 (8). Eventually, this can also lead to a reduction of afferent sensory nerve fiber
signaling to the central nervous system (9). Direct anti-inflammatory effects of FAAH substrates and CB1 antagonists reduce cytokine levels in
the joint (10). The STOP symbol indicates inhibition, the PRIORITY ROAD symbol indicates an enhancement of a given effect. CGRP, calcitonin
gene-related peptide; IFN, interferon
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Furthermore, β2 adrenergic activation on murine B-
lymphocytes increases production of the anti-inflammatory
cytokine IL-10, which inhibits inflammation [97]. The time
window for anti-arthritic β2 adrenergic effects in mice is
crucial since early activation (during the induction phase
of experimental arthritis) of sympathetic signaling in the
spleen increases interferon (IFN)-γ production [98]. Sym-
pathetic innervation of the spleen is reduced during the
course of experimental arthritis, comparable to the situ-
ation in synovial tissue [99]. This has profound effects on
local adrenergic signaling since low concentrations of nor-
epinephrine favor pro-inflammatory α-adrenergic receptor
activation [100, 101] (Fig. 4). Although the beneficial out-
come of CB1 receptor antagonism in collagen-induced
arthritis in mice was attributed to β2-receptor activation
on splenocytes, several other mechanisms might contrib-
ute to the therapeutic effects. CB1 antagonism at sympa-
thetic terminals surrounding the synovium might have
different outcomes depending on the magnitude of re-
covery of norepinephrine levels in the joint. If β2 signaling
is restored in synovial tissue, local concentrations of IFN-γ
and TNF might decline, leading to an overall decrease in
joint destruction, synovial inflammation and pain [102, 103]
(Fig. 2). On the other hand, since we demonstrated an



Fig. 3 Possible effects of fatty acid amid hydrolase (FAAH) inhibition on neuroinflammation. CB1 and TRPV1 are expressed throughout the brain
by several cell types, including microglia. In addition, FAAH-degradable N-acylethanolamines activate several other anti-inflammatory pathways
supporting the role of CB1. Since no data are available regarding the effects of FAAH on sympathetic activity or microglia, the following sequence
is hypothetical in nature. Upon activation, microglia produce pro-inflammatory cytokines and CB1 activation opposes this (1). Since CB1 controls
neurotransmitter release, hypothalamic norepinephrine is decreased by FAAH inhibition, restoring brain-immune system-joint communication (2).
Damaged neuronal tissue generated by the pro-inflammatory milieu is regenerated by CB1 activation (3). FAAH inhibition elevates mood and
depressive symptoms in patients disappear due to decreased brain cytokines levels (4). Rheumatoid arthritis patients often suffer from bad sleep
quality, and this is surpassed by FAAH inhibition (5). In general, CB1 activation decreases neuronal excitability, and this supports the general
anti-inflammatory effect on microglia, which are activated by glutamate (6). The STOP symbol indicates inhibition, the PRIORITY ROAD symbol
indicates an enhancement of a given effect
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increase of sympathetic fibers in human synovial adipose
tissue, increased norepinephrine release might further
increase lipolysis and thereby fuel inflammation [91].
Thus, it is imperative to maintain norepinephrine levels
over a certain 'β2 activation threshold' in the synovium,
which might only be achieved with continuous high doses
of CB1 antagonists. Consequences of enhanced β2 signal-
ing by CB1 antagonism are depicted in Fig. 2.
Although the above mentioned stimulating effects of

CB1 antagonism on adrenergic signaling are evident,
CB1 agonists might also prove useful in modulating
arthritis. As mentioned earlier, sympathectomy in the
early phase ameliorates experimental arthritis in mice
[85]. This indicates a pro-inflammatory influence of
adrenergic signaling at the beginning of the disease,
which might be counteracted by CB1 agonists decreasing
norepinephrine levels [20]. Arthritis is accompanied by a
loss of sympathetic nerve fibers from sites of inflamma-
tion and this might also be counteracted by CB1 activa-
tion, since neurogenesis is disturbed in CB1 knock-out
mice, although we do not know whether this also applies
for sympathetic nerve fibers [104].
The development of comorbidities such as bone resorp-
tion, depression and water retention/volume expansion in
RA is partly driven by changes in sympathetic activity
[19, 105]. Osteoporosis is a major contributor to RA-
associated complications and osteoclasts and osteoblasts
respond to cannabinoid receptor activation [106, 107]. Ac-
tivation of CB1 results in enhanced osteoblast differenti-
ation, which leads to reduced osteoporosis. Blockade of
CB1 disturbs osteoclast function and increases bone mass
in the young, but leads to osteoporosis later on due to
decreased bone formation [108].
One major disability associated with RA is the develop-

ment of depression, which affects around 17 % of patients
and is associated with poorer disease outcome [109].
Depression and CB1 are connected since side effects
of rimonabant, a first generation CB1 inverse agonist/
antagonist, include depression and anxiety while CB1
agonism has anxiolytic-like and antidepressant-like activ-
ities [110, 111]. The effects of CB1 agonism by FAAH
inhibition in the brain are depicted in Fig. 3.
Overactivity of the sympathetic nervous system in RA

also leads to water retention via activation of the renin-



Fig. 4 Possible effects of CB1 antagonism and fatty acid amid hydrolase (FAAH) inhibition on spleen. The healthy spleen is sympathetically innervated
and β-adrenergic signaling prevails. Arthritis leads to a loss of sympathetic fibers and β-adrenergic signaling is decreased in favor of pro-inflammatory
α-adrenergic signaling (1). The different signaling zones are depicted by dotted lines. Hypothetically, CB1 antagonism leads to increased secretion of
norepinephrine and its co-transmitters from sympathetic terminals. While the β-adrenergic zone would be increased (indicated by dotted arrows) (2),
pro-inflammatory cytokine production (3) can be decreased with a concomitant rise in anti-inflammatory cytokines (4). Anti-inflammatory effects of
β-adrenergic signaling are supported by direct effects of CB1 antagonists on immune cells and FAAH substrates engaging TRPV1 and possibly other
anti-inflammatory receptors. The STOP symbol indicates inhibition, the PRIORITY ROAD symbol indicates an enhancement of a given effect. The
involved mechanism (CB1 or FAAH) is given below the symbols
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aldosterone-angiotensin system [19]. Cannabinoids not
only induce diuretic effects but also decrease aldosterone
secretion from the adrenal glands by activation of
CB1 [112, 113].

CB1 antagonism activates the HPA axis and reverses
insulin resistance
Although modulation of immune cell function via β2-
adrenergic receptors is important, CB1 antagonism also
supports beneficial systemic changes. One of the hall-
marks of RA is an inadequate cortisol secretion in rela-
tion to inflammation [114]. Antagonism at CB1 might
counteract this phenomenon, since CB1 knock-out mice
had higher levels of adrenocorticotropic hormone and
corticosterone under basal but also under stressed con-
ditions [115]. ECs control glucocorticoid feedback and,
therefore, CB1 antagonism increases circulating adreno-
corticotropic hormone levels [116]. Interestingly, high
doses of a CB1 agonist also increase the activity of the
HPA axis, although this is due to alteration of serotoner-
gic and adrenergic transmission [117]. The same out-
come using CB1 antagonism or agonism on HPA axis
activation might also depend on the concentration of
CB1 agonists and whether central or peripheral CB1

receptors are targeted. Peripheral agonism at CB1 leads
to subsequent activation of α and β adrenoreceptors,
which are linked to the antinociceptive effects of CB1 in
a rat pain model [118]. Increases in adrenergic signaling
by CB1 agonists might be due to decreased inhibitory
gamma-aminobutyric acid (GABA) signaling since re-
lease of this neurotransmitter is also controlled by CB1

[22]. Thus, enhanced GABA signaling reduces sympa-
thetic activity and vice versa [119]. Central activation of
CB1 mediates the rapid effect of glucocorticoid negative
feedback and this might explain the necessity for high
peripheral doses of the CB1 antagonist rimonabant to
increase cortisol levels [120, 121].
A major problem during the course of RA is the devel-

opment of insulin resistance with systemic metabolic
changes [122, 123]. Insulin resistance is a direct conse-
quence of enhanced pro-inflammatory cytokine signaling
and TNF, IL-6, IL-1β as well as other cytokines are
responsible for these changes [124]. From 2006 to 2008
the CB1 antagonist rimonabant was marketed for use
against obesity but was withdrawn due to central side
effects [125]. However, the drug proved to be effective at
decreasing important parameters associated with meta-
bolic syndrome. Rimonabant reduces leptin expression,
decreases atherosclerosis, and reverses insulin resistance
in rodents and humans [126, 127]. In this respect, CB1

antagonism might also be beneficial in reversing metabolic
changes in RA. Insulin resistance is induced by the
immune system to divert energy to active immune cells,
which are not dependent on insulin for glucose utilization
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[105]. Therefore, CB1 antagonism might normalize energy
distribution throughout the body and this might deprive
the activated immune system of nutrients important for
the perpetuation of inflammation. Interestingly, CB1 acti-
vation by the phytocannabinoid δ9-tetrahydrocannabinol
(THC) corrects hyperlipidemia and hyperglycemia [128].
This effect might be relevant when using CB1 partial ago-
nists like THC that act as antagonists when full agonists
like the EC 2-AG are present. In mice, THC antagonized
the effects of the synthetic CB1 agonist AM2389 on
hypothermia, although it elicited hypothermic effects by
itself [129]. Furthermore, repeated administration of can-
nabinoids leads to desensitization and downregulation of
CB1, resulting in functional antagonism [42, 48].
Systemic leptin levels are decreased by CB1 inhibition,

and this adipokine is associated with higher IL-6 produc-
tion and it also initiates production of TH1 cytokines
[130, 131]. In addition, cardiovascular events are a major
risk in RA and CB1 antagonists might be effective in de-
creasing vascular inflammation [132, 133].

Direct anti-inflammatory effects of CB1 on immune cells
Although most changes associated with CB1 antagonism
are mediated via the sympathetic nervous system, direct
effects on the immune system are also described. In
macrophages from CB1 knock-out mice, TLR4 ex-
pression and concomitant pro-inflammatory cytokine
production were reduced [134]. Anti-inflammatory ef-
fects of CB1 inhibition were also demonstrated in THP-1
macrophages, where rimonabant decreased TNF and
increased IL-10 production [135]. Furthermore, in a
mouse model of sponge-induced angiogenesis, CB1 an-
tagonism reduced leukocyte infiltration and chemokine/
cytokine production [136].
CB1 agonism also has anti-inflammatory effects on im-

mune cells - for example, decreased activation of T lym-
phocytes by downregulating IL-2 [137]. However, direct
effects of CB1 agonists are most prominent when injected
into the brain, where CB1 activation reduces the severity
of intestinal inflammation and decreases the activity of
microglial cells via reduction of pro-inflammatory cyto-
kines in mice [138, 139]. Therefore, CB1 activation might
alleviate arthritis through central nervous pathways, since
neuroinflammation and concomitant increases in brain
cytokine levels contribute to the disease [94, 140].

Central effects of CB1 ligands limit their therapeutic use
Although therapeutically active when administered intra-
thecally, the use of CB1 agonists or antagonists is limited
due to their central adverse events. While CB1 antagonists/
inverse agonists like rimonabant induce depression and
anxiety in some patients, CB1 agonists like THC have psy-
chotropic properties [110, 141]. This might derive from
reduction of glutamatergic neurotransmission in response
to CB1 activation leading to effects similar to NMDA
antagonism [142]. This problem might be circumvented
by using peripherally restricted CB1 ligands, which have
been generated as second generation cannabinoid thera-
peutics with proven effects [143, 144]. Furthermore, neu-
tral antagonists with limited brain penetration and which
lack the adverse effects of the inverse agonist rimonabant
have been developed [145]. Neutral antagonists do not in-
fluence the constitutive activity of CB1 and therefore do
not mediate some of the adverse effects observed with
rimonabant therapy [146]. In contrast to neutral antago-
nists, inverse agonists like rimonabant not only block CB1
but also stabilize the receptor in an inactive conformation.
This diminishes basal signaling and leads to a reciprocal
receptor response. In the case of CB1, cAMP is increased
by inverse but not by neutral antagonists [146, 147].

Crosstalk between CB1 and TRPV1 modulates pain and
inflammation in arthritis
The importance of TRPV1 in arthritis is emphasized in
knock-out animals that show an attenuated disease
[148, 149]. In TRPV1−/− animals, pain thresholds were
increased with a concomitant reduction of joint inflam-
mation [149]. The same protective effect was achieved
by oral administration of the TRPV1 agonist SA13353,
which reduced TNF production and provided anti-
arthritic effects in the rat [150]. Interestingly, this effect
was mediated by TRPV1 located on sensory neurons,
emphasizing the neuronal component of arthritis [150].
This might disrupt a positive feedback loop, since TNF
and other pro-inflammatory cytokines sensitize TRPV1
and enhance its activity [102]. The paradoxical finding
that TRPV1 agonists also act in an anti-inflammatory
fashion is explained by rapid desensitization of TRPV1
in response to agonist treatment, which depends on the
agonist used [151]. Findings in synovial fibroblasts
support this notion, where the TRPV1 agonist capsaicin
increases IL-6 production, while AEA, a low efficacy
TRPV1 agonist, decreased IL-6 levels under TNF stimu-
lation (T Lowin, unpublished data) [80].
Since some peripheral effects of TRPV1 are attributed

to receptors located on sensory nerve terminals which
co-express CB1, crosstalk between both receptors might
define the outcome of inflammation [152]. This can be
important in RA, since elevated synovial levels of nerve
growth factor sensitize TRPV1 to inflammatory stimuli
and CB1 agonism counteracts this response [153, 154].
In this respect, FAAH inhibition might be superior to
selective CB1 agonists since AEA or its metabolites not
only activate CB1 but also desensitize TRPV1, leading to
analgesia [69]. Neuronal TRPV1 increases neurotrans-
mitter and pro-inflammatory neuropeptide release via
elevation of intracellular calcium levels and the same
mechanism often induces the secretion of cytokines
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from immune cells [155–157]. Inhibition of TRPV1 func-
tion by concomitant CB1 activation and AEA-induced
desensitization (FAAH inhibition) might be a promising
strategy to reduce RA disease activity and pain.
Conclusion: is there a perfect cannabinoid-based
therapy for the treatment of RA?
The question arises how to modulate the EC system for
the treatment of RA. The best treatment option might
be a combination of a peripherally restricted CB1 antag-
onist and a FAAH inhibitor raising systemic levels of
N-acylethanolamines. CB1 antagonism has already been
shown to result in anti-arthritic effects in mice and this
treatment might also increase adrenergic signaling in
RA, thereby reducing TNF and IFN-γ and decreasing
joint inflammation and cartilage destruction. Potential
effects of CB1 antagonism (also of FAAH inhibition) in
arthritic synovium and spleen are shown in Figs. 1 and 3,
respectively.
Furthermore, CB1 antagonists might reverse metabolic

alterations associated with RA: for example, insulin re-
sistance, enhanced leptin expression, depression/fatigue
or atherosclerosis. FAAH inhibition on the other hand
can counteract the neuroinflammatory component of
RA by activating neuronal CB1 and TRPV1 (Fig. 3).
Furthermore, the FAAH substrates OEA and PEA can
support anti-inflammatory and neurogenic effects of
central CB1 activation via peroxisome-proliferator acti-
vated receptors. In addition, CB1 activation in the brain
lowers sympathetic activity, which can decrease disease-
related problems like hypertension. In addition, increases
in brain AEA can have antidepressant effects and since
many RA patients suffer from mood disorders, FAAH
inhibition might help to counteract this central nervous
system problem.
In the periphery, FAAH inhibition leads to analgesic and

anti-inflammatory effects via desensitization of TRPV1.
Moreover, FAAH inhibition has been shown to have high
efficacy in arthritic mice through activation of CB2, which
might also be beneficial in patients by downregulating
cytokine production. In summary, therapeutic interven-
tion in RA with a peripherally restricted CB1 antagonist
and a FAAH inhibitor might offer a promising strategy to
ameliorate RA.
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