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Obesity is associated with physical inactivity, which exacerbates the negative health

consequences of obesity. Despite a wide consensus that people with obesity should

exercise more, there are few effective methods for increasing physical activity in people

with obesity. This lack is reflected in our limited understanding of the cellular and

molecular causes of physical inactivity in obesity. We hypothesize that impairments in

dopamine signaling contribute to physical inactivity in people with obesity, as in classic

movement disorders such as Parkinson’s disease. Here, we review two lines of evidence

supporting this hypothesis: (1) chronic exposure to obesogenic diets has been linked

to impairments in dopamine synthesis, release, and receptor function, particularly in the

striatum, and (2) striatal dopamine is necessary for the proper control of movement.

Identifying the biological determinants of physical inactivity may lead to more effective

strategies for increasing physical activity in people with obesity, as well as improve our

understanding of why it is difficult for people with obesity to alter their levels of physical

activity.

Keywords: obesity, dopamine, exercise, physical activity, physical activity promotion, Parkinson’s disease,

movement disorders

INTRODUCTION

Obesity is associated with reductions in motor output, often termed “physical inactivity” (Tudor-
Locke et al., 2010; Bouchard et al., 2015), although whether this relationship is causal remains a
point of debate (Simon et al., 2008; Haskell et al., 2009; Dwyer-Lindgren et al., 2013; Swift et al.,
2014). Despite the importance of physical activity for health, there are few effective methods for
increasing physical activity levels in people with obesity, leading some researchers to conclude that,
“there are presently no evidence-based interventions that can reliably and sustainably increase
the level of physical activity among obese adults” (Ekkekakis et al., 2016). This point is reflected
in our limited understanding of the cellular and molecular determinants of physical inactivity in
people with obesity. We believe that a cellular understanding of why obesity is associated with
physical inactivity is needed to understand, and ultimately alter, the relationship between obesity
and physical inactivity. In this review, we propose that impairments in striatal dopamine contribute
to physical inactivity in obesity, akin to classic movement disorders such as Parkinson’s disease.

The striatum is a forebrain structure that controls movement, as well as learning and emotional
states. There are two main projection cell types in the striatum, the “direct” and the “indirect”
pathway medium spiny neurons (dMSNs and iMSNs), as well as several classes of interneurons.
dMSNs and iMSNs exhibit distinct protein expression patterns, projection targets, and support
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distinct behavioral functions (Alexander and Crutcher, 1990;
DeLong, 1990; Gerfen et al., 1990; Graybiel et al., 1994; Le Moine
and Bloch, 1995; Obeso et al., 2000; Figure 1A). dMSNs express
the excitatory Gs-coupled dopamine D1 receptor (D1R), while
iMSNs express the inhibitory Gi-coupled dopamine D2 receptor
(D2R; Gerfen et al., 1990). Dopamine can facilitate movement by
binding to D1Rs and enhancing the output of dMSNs, or binding
to D2Rs and inhibiting the output of iMSNs (Sano et al., 2003;
Buch et al., 2005; Durieux et al., 2009; Kravitz et al., 2010). In this
way, dopaminergic signaling controls the downstream signaling
of dMSNs and iMSNs, and resulting motor output. We have
simplified this discussion for the purposes of this review, but
striatal function is also influenced by several additional layers of
complexity (Mink, 1996; Calabresi et al., 2014). For example, the
dorsal striatum is commonly linked to motor control, while the
ventral striatum is linked to motivation and effortful movement
(Mogenson et al., 1980; Voorn et al., 2004; Kreitzer and Malenka,
2008).

The importance of dopamine for proper control of movement
is evident in neurological disorders. Hypokinetic states such as
Parkinson’s disease are the result of too little striatal dopamine
(Hornykiewicz, 2010), whereas hyperactive states such as bipolar
mania are associated with too much (Logan and McClung,
2016). Drugs that increase dopamine release (e.g., amphetamine)
increase motor output (Schindler and Carmona, 2002) and
dopamine antagonists (used clinically to reduce manic episodes)
often result in motor impairments as a side effect (Janno et al.,
2004; Parksepp et al., 2016). Genetic manipulations in animals
further support the role of striatal dopamine transmission in
motor control, as mice lacking dopamine receptors have reduced
movement (Drago et al., 1994; Xu et al., 1994; Baik et al.,

FIGURE 1 | Basal ganglia circuitry in lean and obese conditions. (A) Striatal neurons send projections to the midbrain via the direct pathway or indirect pathway.

Schematic is replicated in lean (left) and obese (right) conditions, to show reported dopaminergic alterations in obesity. Inlay: Dopaminergic synapse onto striatal

iMSNs. GPe, globus pallidus; STN, subthalamic nucleus; SNr, substantia nigra; VTA, ventral tegmental area. (B) Hypothetical progression by which diet induced

obesity is associated with impaired striatal dopamine transmission, leading to physical inactivity.

1995; Kelly et al., 1997; Beeler et al., 2016), whereas those that
overexpress dopamine receptors are hyperactive (Ikari et al.,
1995; Ingram et al., 1998; Dracheva et al., 1999; Thanos et al.,
2001; Trifilieff et al., 2013). In particular, cell-type specific
reductions of the D2R in iMSNs reduce open field movement,
demonstrating the sufficiency of the D2R to regulate physical
activity, by controlling the output of iMSNs (Anzalone et al.,
2012; Lemos et al., 2016). In summary, striatal dopamine
promotes movement in animals, due to actions on its striatal
target neurons.

Obesity is associated with impairments in striatal dopamine
function. Reported impairments include deficiencies in
dopamine synthesis and release, as well as alterations in
striatal dopamine receptors. While alterations in striatal DA
transmission are commonly discussed in relation to reward
processing (Kenny et al., 2013; Volkow et al., 2013), we
hypothesize that these impairments may also contribute to the
link between obesity and physical inactivity (Figure 1B).

OBESITY AND PHYSICAL INACTIVITY

An inverse relationship between weight gain and physical activity
has been observed in humans (Hemmingsson and Ekelund, 2007;
Chaput et al., 2012; Hjorth et al., 2014), non-human primates
(Wolden-Hanson et al., 1993), domesticated animals (Morrison
et al., 2013), and rodents (Jürgens et al., 2006; Bjursell et al.,
2008). The cross-species nature of this relationship indicates
that it is a conserved phenomenon that may stem from the
evolutionary benefit of storing energy in times of caloric excess, a
state that is rare in nature. However, in modern environments
physical inactivity exacerbates the negative health effects of
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obesity, increasing the risk of cardiac disease and diabetes (Al
Tunaiji et al., 2014; Bao et al., 2014; Bouchard et al., 2015). It is
possible that physical inactivity precedes, and thereby contributes
to, weight gain (Jürgens et al., 2006; Haskell et al., 2009). Indeed
animals with high levels of spontaneous physical activity are
partially protected against diet-induced obesity (Teske et al.,
2012; Zhang et al., 2012). While pre-existing differences in
activity levels may contribute to the relationship between obesity
and physical inactivity, at a cellular level it remains unclear why
people with obesity are inactive.

Part of the difficulty in understanding this relationship stems
from the multifaceted nature of the two variables. For instance,
the weight of excess adiposity restricts joint and muscle mobility
and increases joint pain, which may make it more difficult for
people to move (Belczak et al., 2014; Muramoto et al., 2014).
However, weight alone does not appear sufficient to explain
physical inactivity in people with obesity. Several researchers
have tracked physical activity levels across periods of weight loss,
to see whether physical activity levels increase as people lose
weight, and experience fewer mobility-restricting effects of excess
adiposity. Surprisingly, weight loss is generally associated with
decreases, and not increases, in physical activity (de Boer et al.,
1986; de Groot et al., 1989; Martin et al., 2007; Redman et al.,
2009). These results have been explained in terms of metabolic
adaptations, as the body seeks to reduce energy expenditure to
compensate for the caloric deficit induced by the diet. However,
when subjects were tracked during maintained periods of weight
loss lasting a year, physical activity levels still did not increase
above pre-diet obese levels (Camps et al., 2013). Similar results
have been reported following gastric bypass surgery. Despite large
amounts of weight loss (>30 kg), objectively measured physical
activity levels did not increase in patients that received gastric
bypass surgery, even up to 12 months after the peak of the
weight loss (Bond et al., 2010; Ramirez-Marrero et al., 2014;
Berglind et al., 2015, 2016). Studies in animals also support
these conclusions, as loss of adiposity is again associated with
decreases, and not increases, in physical activity (Sullivan and
Cameron, 2010; Morrison et al., 2014; Vitger et al., 2016). We
conclude that the weight of excess adiposity does not sufficiently
explain the association between obesity and physical inactivity.
Rather, the evidence suggests that obesity-induced adaptations
continue to contribute to physical inactivity, even after weight
loss. While these adaptations may include chronic mobility issues
in joints or muscles, we hypothesize that motor circuitry in the
brain is also a large contributor. Specifically, we hypothesize
that deficits in striatal dopaminergic signaling contribute to the
persistent reductions in physical activity in obesity.

Further supporting the conclusion that the weight of adiposity
does not adequately explain physical inactivity in obesity, not
all groups of obese animals, or people with obesity, have
low levels of physical activity. Even in studies that report
deficits in striatal dopamine, physical activity levels can remain
unaltered (Davis et al., 2008). Similar findings have been reported
under controlled conditions in humans as well. In an 8-week
study in which subjects were over-fed by 1000 calories per
day, subjects significantly increased their spontaneous physical
activity, despite gaining an average of 4.7 kg. The authors linked

this increase to a mechanism for dissipating excess energy to
preserve body weight (Levine et al., 1999). A similar increase
in physical activity was reported in an 8-week over-eating
study, despite an average weight gain of 5.3 kg (Apolzan et al.,
2014). While physical inactivity is a correlate of obesity in
large populations, there is considerable variability on this point
among individuals. This variability may be another avenue for
unraveling the cellular underpinnings of the relationship between
physical activity and obesity.

OBESITY AND DISRUPTIONS IN
DOPAMINE PRODUCTION AND RELEASE

A wealth of animal research has described alterations in the
dopamine system in obesity. The majority of studies in obese
rodents have focused on dopamine transmission in the nucleus
accumbens (NAc), which resides in the ventral striatum and is
involved in effortful movement (Salamone et al., 2007; Schmidt
et al., 2012). Based on this role, the NAc may be particularly
important for explaining the lack of vigorous physical activity in
obesity (Ekkekakis et al., 2016). Long-term ad libitum high-fat
diet decreased tonic dopamine in the NAc of mice (Carlin et al.,
2013) as well as dopamine turnover in the NAc of rats (Davis
et al., 2008). This specific deficit was distinct from adiposity, as
rats that were fed an iso-caloric amount of high-fat diet also had
decreased dopamine turnover (Davis et al., 2008). Whereas both
chow and high-fat diet increased phasic dopamine in the NAc of
lean rats, obese rats had a blunted response to these diets (Geiger
et al., 2009). Chronic exposure may be necessary for deficits in
phasic dopamine signaling, as they are seen following 6, but not
2, weeks of high-fat diet (Cone et al., 2013). Similar to differences
observed in phasic dopamine release in the NAc of obese animals,
rats that were bred to be prone to weight gain had reduced
dopaminergic responses to both chow (Geiger et al., 2008) and
high-fat diet (Rada et al., 2010).

The above deficits in dopamine release may be explained by
alterations in genes involved in the synthesis and metabolism of
dopamine. Midbrain dopamine regions including the substantia
nigra and the ventral tegmental area (VTA) provide the main
dopaminergic innervation to the striatum (Figure 1). Expression
of tyrosine hydroxylase, the rate-limiting enzyme in dopamine
synthesis, is reduced in the VTA of mice fed a high-fat diet
(Vucetic et al., 2012; Carlin et al., 2013). Again, this did not
depend on fat storage, as similar effects were observed in
mice that were pair-fed a high fat diet (Li et al., 2009). The
effect of high-fat diet on co-acetyl methyl transferase (COMT),
a key enzyme responsible for the degradation of dopamine
is less clear, with studies reporting either decreased (Carlin
et al., 2013) or unchanged (Alsio et al., 2010; Vucetic et al.,
2012) expression following diet-induced obesity. Interestingly, in
humans, polymorphisms that confer low activity of monoamine-
oxidases (the other main enzyme responsible for degrading
dopamine) have been linked to obesity (Camarena et al., 2004;
Ducci et al., 2006; Need et al., 2006). Overall, the evidence
supports two conclusions: (1) exposure to high-fat diets can
impair dopamine synthesis and striatal dopamine release and
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processing, but (2) heterogeneity exists among these reports,
indicating that the impact of high-fat diets on the dopamine
system is complex and may occur differently among different
individuals.

OBESITY AND DYSFUNCTION OF
DOPAMINE RECEPTORS

Multiple researchers have observed alterations in dopamine
receptors in people with obesity. Individuals with at least one
copy of the drd2 Taq1A allele have reduced brain D2R availability
of ∼30–40% (Noble et al., 1991; Thompson et al., 1997) and an
increased prevalence of obesity (Blum et al., 1996; Stice et al.,
2008, 2010; Davis et al., 2009; Carpenter et al., 2013). An inverse
relationship between obesity and D2R availability, assayed via
positron emission tomography (PET), has also been reported in
humans. This was first reported by Wang et al. (2001) and was
initially supported by others (Volkow et al., 2008; deWeijer et al.,
2011; Kessler et al., 2014; van de Giessen et al., 2014). However,
several other groups have failed to replicate this finding (Dunn
et al., 2012; Caravaggio et al., 2015; Cosgrove et al., 2015; Karlsson
et al., 2015, 2016; Tuominen et al., 2015), or found opposing
associations in different regions of the striatum (Guo et al., 2014).
Interestingly, Guo and colleagues noted a negative relationship
between body mass index (BMI) and D2R binding only in the
ventral striatum, which may be linked to effortful movements
(Salamone et al., 2007; Schmidt et al., 2012). Several possibilities
may account for the discrepancy among studies of D2R binding
and BMI. Different D2R radio-ligands were used among these
studies, which may bind differentially to D2R or D3Rs (Gaiser
et al., 2016). Changes in striatal dopamine tone could impact
binding potential (Horstmann et al., 2015). Finally, experimental
factors including the amount of time after meal consumption or
individual variability among subjects may contribute to observed
differences (Small et al., 2003).

Animal studies have more consistently linked impairments in
D2Rs to obesity, via analysis of mRNA (Mathes et al., 2010; Zhang
et al., 2015), protein (Johnson and Kenny, 2010; Adams et al.,
2015), and receptor binding (Huang et al., 2006; Hajnal et al.,
2008; Thanos et al., 2008; Michaelides et al., 2012; van de Giessen
et al., 2012, 2013; Narayanaswami et al., 2013). Interestingly, rats
maintained on an iso-caloric high-fat (but not high-sugar) diet
also had lower levels of D2Rs in ventral (but not dorsal) striatum
(Adams et al., 2015), supporting the conclusion that exposure
to high-fat diet may be a better predictor of dopaminergic
dysfunction than weight gain itself (van de Giessen et al., 2013).
To date, no published work has examined associations between
D1-type dopamine receptors (D1Rs) and obesity in humans, so
an evaluation of potential changes here is limited to a small
number of animal studies. D1R mRNA was decreased in obese
rats relative to lean controls (Vucetic et al., 2012; Zhang et al.,
2015), while another study reported a decrease in D1Rs only
in female rats (Ong et al., 2013). We conclude that reduced
function of D2Rs appears to be a particularly important alteration
in obesity, although there is considerable variability in D2R
alterations among studies and individuals. Unfortunately, studies

of the D1R are too sparse to make strong conclusions about its
relationship to obesity.

DO ALTERATIONS IN DOPAMINE
FUNCTION RECOVER WITH WEIGHT
LOSS?

It is unclear whether changes in dopamine signaling in people
with obesity persist after weight loss. The few studies that exist
on this topic point to dopaminergic alterations being at least
partly resistant to change, and at times even exacerbated by
weight loss. High-fat diet reduced the levels of several enzymes
involved in dopamine production in the VTA and NAc, and
switching these obese mice to low-fat chow caused even further
decreases in these enzymes (Carlin et al., 2013; Sharma et al.,
2013). Two PET imaging studies reported a lack of recovery of
D2R binding following Roux-en-Y gastric bypass surgery (RYGB)
in humans, with one showing an even further decrease in binding
(Dunn et al., 2010; de Weijer et al., 2014). A small study of
five women reported a partial recovery of D2R binding 6-weeks
after RYGB (Steele et al., 2010). An increase in D2R binding
was also reported during food restriction and associated weight
alterations in obese rats (Thanos et al., 2008). Although the data
on this topic are limited, it appears that diet-induced changes in
dopamine function are at least partly persistent following weight
loss. Consistent with this conclusion, physical activity levels
remain low in people with obesity, even months after the peak
of weight loss (Bond et al., 2010; Camps et al., 2013; Ramirez-
Marrero et al., 2014; Berglind et al., 2015, 2016). Again, the small
number of studies of this topic precludes firm conclusions, and
underscores the need for further research on the persistence of
dopaminergic alterations in people with obesity.

OBESITY AND PHYSICAL INACTIVITY:
CONCLUSIONS

Chronic exposure to obesogenic diets is associated with changes
in both physical activity levels and dopaminergic function. Diet-
induced changes in the dopamine system may be sufficient
to explain the development of physical inactivity in people
with obesity. Increased understanding of obesity-related changes
in dopamine and related systems may support evidence-based
approaches for increasing physical activity in people with obesity.
In addition, such an understanding may reveal genetic or
environmental contributions to dopaminergic dysfunction, and
physical inactivity, in obesity.
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