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Spinal cord injury (SCI) stimulates activation of astrocytes and infiltration of immune cells

at the lesion site; however, the mechanism that promotes the birth of new neurons is

still under debate. Neuronal regeneration is restricted after spinal cord injury, but can

be stimulated by experimental intervention. Previously we demonstrated that treatment

co-ultramicronized palmitoylethanolamide and luteolin, namely co-ultraPEALut, reduced

inflammation. The present study was designed to explore the neuroregenerative

properties of co-ultraPEALut in an estabished murine model of SCI. A vascular

clip was applied to the spinal cord dura at T5–T8 to provoke injury. Mice were

treated with co-ultraPEALut (1mg/kg, intraperitoneally) daily for 72 h after SCI.

Co-ultraPEALut increased the numbers of both bromodeoxyuridine-positive nuclei and

doublecortin-immunoreactive cells in the spinal cord of injured mice. To correlate

neuronal development with synaptic plasticity a Golgi method was employed to analyze

dendritic spine density. Co-ultraPEALut administration stimulated expression of the

neurotrophic factors brain-derived neurotrophic factor, glial cell-derived neurotrophic

factor, nerve growth factor, and neurotrophin-3. These findings show a prominent effect

of co-ultraPEALut administration in the management of survival and differentiation of new

neurons and spine maturation, and may represent a therapeutic treatment for spinal cord

and other traumatic diseases.

Keywords: luteolin, neurogenesis, palmitoylethanolamide, regeneration, spinal cord injury

INTRODUCTION

Spinal cord injury (SCI) results in long-term disability, and presents enormous social and health
costs to the patient and family (Chiu et al., 2010). The annual incidence of SCI is 15–40 cases
per million and is particularly prevalent in young males, the most frequent cause being vehicular
accidents (Iijima et al., 2009). SCI is frequently associated with permanent modifications in
strength, sensation, and other body functions below the site of injury (Coleman and Geisler, 2004).
Furthermore, SCI induces tissue damage characterized by local cellular and biochemical reactions
that in turn contribute to neurological dysfunction (Yuan et al., 2013). At the same time, SCI is
characterized by a natural neuroplasticity which can occur some weeks or months after the original
insult, stimulating some functional recovery (Darian-Smith, 2009; Kernie and Parent, 2010). This
endogenous repair mechanism remains unclear, but may comprise dendritic remodeling, axonal
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sprouting, as well as local neuronal circuit reorganization and
remyelination (Darian-Smith, 2009). In this context, one possible
regenerative mechanism may be neurogenesis (Kazanis, 2009).
Neural stem and progenitor cells stimulate a dynamic process
known as adult neurogenesis. These cells are located in two
specific “neurogenic” brain regions, the subventricular zone
(SVZ) along the margin of the lateral ventricle (Alvarez-Buylla
and Garcia-Verdugo, 2002) and the subgranular zone (SGZ) of
the hippocampal dentate gyrus (Seaberg and Van Der Kooy,
2002). Several physiological, pathological, and pharmacological
stimuli are able to modulate adult neurogenesis. In other adult
central nervous system (CNS) regions, neurogenesis is believed to
be limited under physiological conditions, but could be induced
after injury (Gould, 2007).

In addition to these two brain regions, other niches rich
in markers of morpho-functional neuroplasticity contain adult
neural stem cells, but with lower levels compared to the SVZ and
SGZ. One of these, namely, the hindbrain dorsal vagal complex
(Bauer et al., 2005; Moyse et al., 2006) is responsive to injury
since vagotomy induces both microgliosis and astrogliosis in
this area (Bauer et al., 2005). In physiological conditions the
adult mammalian spinal cord is believed to lack neurogenic
areas. Despite containing multipotent neural stem cells that
in vitro could generate functional neurons (Meletis et al.,
2008), their potential is mainly restricted to the glial lineage.
Following SCI, astrocytes become reactive and immune cells
infiltrate the area adjacent to the lesion (Uchida et al., 2012).
Neurogenesis after SCI is related to the localization and severity
of injury (Nishimura and Isa, 2009). In this context another
important question concerns the distal consequences of SCI
in the forebrain. A topographic and neuronal reorganization
reportedly occurs after SCI, implying that neuronal responses
can take place in the brain in response to a distal SCI (Freund
et al., 2011). Indeed, cervical dorsal rhizotomy, which provokes
cortical reorganization analogous to that seen after SCI, is able
to stimulate neurogenesis in the primary sensorimotor cortex of
adult monkeys (Vessal and Darian-Smith, 2010).

Traumatic injury of the spinal cord is also characterized by a
neuroinflammatory pathway that is associated with decreased of
functional recovery because of the development of cicatrix tissue,
as well as necrosis or apoptosis of neurons and oligodendrocytes
for at least 2 weeks post-injury; cell loss occurs quickly at
the injury site (Cuzzocrea et al., 2001). The complexity of
SCI has hampered the identification of pharmacological agents
able to ameliorate outcome after spinal cord lesion. Even
small anatomical gains can generate disproportionate functional
benefits (Blight, 1983), which encourages the possibility that
early pharmacological treatments which reduce SCI-associated
damage could facilitate clinical outcome. Unfortunately, the
current management of SCI is limited to treatment with
corticosteroids, supportive care, and spine stabilization.

Our earlier studies focused on a murine spinal
cord compression model and the neuroprotective and
neuroregenerative properties of a formulation composed
of co-ultramicronized palmitoylethanolamide (PEA), an
endogenous fatty acid amide signaling molecule together with
the flavonoid luteolin (Lut) (co-ultraPEALut; Paterniti et al.,

2013b). PEA inhibits peripheral inflammation and degranulation
of mast cells (Berdyshev et al., 1998) and displays antinociceptive
effects in rodents (Lambert et al., 2002). We previously reported
that administration of PEA (10mg/kg) diminished inflammatory
processes in a mouse model of SCI (Genovese et al., 2008)
and traumatic brain injury in mice (Ahmad et al., 2012). PEA
lacks natural antioxidant activity to arrest the formation of free
radicals responsible for the damage to DNA, lipids, and proteins
occurring after SCI. Lut, a common flavonoid found in fruits,
vegetables, and medicinal herbs has many pharmacological
activities (Xu et al., 2010), in particular radical scavenging and
cytoprotective properties (Lin et al., 2007). Taking the above as
a starting point, we investigated the neuroregenerative effect of
co-ultraPEALut in modulating neurogenesis and neuroplasticity
in an experimental model of SCI.

MATERIALS AND METHODS

Animals
Male CD1 mice weighing 25–30 g (Harlan, Milan, Italy) were
housed in a controlled environment, and provided with standard
rodent chow and water. Animal care was in compliance
with Italian regulations on protection of animals used for
experimental and other scientific purposes (DM 116192), as well
as with the European Economic Community regulations (OJ of
EC L 358/1 12/18/1986). All experimental studies on animals
followed internationally recognized guidelines.

Spinal Cord Injury
Mice were anesthetized with intraperitoneal (i.p.) administration
of ketamine and xylazine (2.6 and 0.16mg/kg body weight,
respectively). A longitudinal incision was made along the midline
of the back, exposing the paravertebral muscles, as previously
described (Paterniti et al., 2011). These muscles were dissected
away, the spinal cord was exposed via a four-level T5–T8
laminectomy and SCI was produced by extradural compression
at T6–T7 level, using an aneurysm clip with a closing force of 24 g.
In all injured groups, the spinal cord was compressed for 1min.
Sham animals were only subjected to laminectomy. Following
surgery, 1.0 cm3 of saline was administered subcutaneously
in order to replace the blood volume lost during surgery.
During recovery from anesthesia, mice were placed on a warm
heating pad and covered with a warm towel. The mice were
individually housed in a temperature-controlled room at 27◦C.
Food and water were provided to the mice ad libitum. During
this time period, the animals’ bladders were manually voided
twice a day until the mice were able to regain normal bladder
function.

Experimental Groups and Treatments
Mice were randomly allocated to the following groups:

(1) Sham + vehicle (carboxymethylcellulose): mice were
subjected to laminectomy but the aneurysm clip was not
applied and treated i.p. with vehicle (n = 45; n = 15 for
each experiment).
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(2) SCI + vehicle: mice were subjected to laminectomy and the
aneurysm clip was applied (n = 45; n = 15 for each
experiment).

(3) Sham + co-ultraPEALut: mice were subjected to
laminectomy but the aneurysm clip was not applied
and treated with co-ultraPEALut at a dose of 1mg/kg i.p.
(n = 45; n = 15 for each experiment).

(4) SCI + co-ultraPEALut: mice were subjected to SCI and
administered co-ultraPEALut at a dose of 1mg/kg i.p. daily
for 72 h after SCI (n = 45; n = 15 for each experiment).

Animals were sacrified at 72 h after SCI (Ceruti et al., 2009).
In a separate set of experiments, another 10 animals for each

group were observed until 21 days after SCI to evaluate motor
score. The co-ultraPEALut group received 1mg/kg i.p. 30min
after SCI and daily until day 21.

Behavioral Testing
Performance was evaluated before and after SCI with the
horizontal grid walking test (Goldshmit et al., 2011). After 2min
of free walking, missteps (normalized to total number of steps
taken by the left hind limb) were quantified. Motor function was
evaluated 21 days after SCI by the open-field test using the Basso
Mouse Scale (BMS) score, as described by Basso et al. (2006).

Bromodeoxyuridine (BrdU) Treatment
In both sham-operated and SCI mice cell proliferation was
evaluated by multiple i.p. injections of the thymidine analog
BrdU (70mg/kg), 1 h before SCI, and twice a day (morning and
afternoon) up to 72 h after SCI. BrdU incorporation into cell
nuclei was assessed by immunohistochemistry.

Immunohistochemistry
Excised spinal cord were fixed in 10% formaldehyde (w/v)e
in phosphate buffered saline (PBS), embedded in Paraplast
(Sigma-Aldrich, Milan, Italy). After deparaffinization, sections
were incubated for 45min in PBS containing 10% normal goat
serum (Sigma-Aldrich) and 0.1% Triton X-100 (Sigma-Aldrich).
Thereafter, 7-µm longitudinal sections were deparaffinized with
xylene and rehydrated. BrdU, doublecortin (DCX) and glial
fibrillary acidic protein (GFAP) analysis was carried out after
boiling in 0.01M citrate buffer for 4min. Endogenous peroxidase
was quenched with 0.3% (v/v) hydrogen peroxide in 60% (v/v)
methanol for 30min. Non-specific adsorption was minimized by
incubating the section in 2% (v/v) normal goat serum in PBS for
20min. Endogenous biotin or avidin binding sites were blocked
by sequential incubation for 15min with biotin and avidin (DBA,
Milan, Italy), respectively. Sections were incubated overnight
with: mouse monoclonal anti-BrdU antibody (1:100 in PBS;
Santa Cruz, California, USA); goat polyclonal anti-DCX antibody
(Santa Cruz, California, USA); mouse anti-MAP2 (microtubule-
associated protein 2; 1:1000, Promega, Milan, Italy); mouse
anti-GFAP (1:500, Cell Signaling, Danvers, MA, USA). Sections
were washed with PBS and incubated with secondary antibody.
Specific labeling was detected with a biotinconjugated goat
anti-rabbit IgG and avidin-biotin peroxidase complex. Sections
were counterstained with nuclear fast red (red background).
All sections were observed using light microscopy at 20X
magnification (Axostar Plus equipped with Axio-Cam MRc,

Zeiss) and analyzed via an imaging computer program (Axio-
Vision, Zeiss).

To quantify BrdU-positive nuclei and DCX-positive cells,
for each tissue section at least 10 optical fields in the area
at the boundary between the necrotic core and the penumbra
(peri-lesioned area) and 10 optical fields distal to the damaged
area were counted (for a total of about 1.5mm2, with the five
field distance corresponding to about 1.4mm from the lesion
border) as indicated in the Scheme 1 below. Replicates for each
experimental condition and histochemical staining were from
three different animals. In sham-operated mice, the central area
of the corresponding tissue sections were taken as reference
point and a comparable number of optical fields counted. Data
are expressed as a percentage of total tissue area, as described
previously (Shea, 1994).

Immunofluorescence Staining
After deparaffinization and rehydration, detection of NeuN and
GFAP was carried out after boiling in 0.1M citrate buffer for
1min. Non-specific adsorption was minimized by incubating
the section in 2% (v/v) normal goat serum in PBS for 20min.
Sections were incubated with one of the following primary
antibodies: mouse monoclonal anti-BrdU (1:100, Millipore),
polyclonal rabbit anti-NeuN (1:100, Santa Cruz Biotechnology),
rabbit anti-GFAP (1:100, Santa Cruz Biotechnology), or rabbit
anti-DCX (1:100, Santa Cruz Biotechnology) in a humidified
chamber at 37◦C overnight. Sections were washed with PBS and
then incubated with either FITC-conjugated anti-mouse Alexa
Fluor-488 antibody (1:2000, Molecular Probes, UK) or Texas
Red-conjugated anti-rabbit Alexa Fluor-594 antibody (1:1000,
Molecular Probes) for 1 h at 37◦C. Sections were next washed and
nuclei stained with 4′,6′-diamidino-2-phenylindole (2µg/ml in
PBS; Hoechst, Frankfurt; Germany). The perilesional area of each
section was observed and photographed using a Leica DM2000
microscope at 20X magnification.

All images were digitalized at a resolution of eight bits into
an array of 2560 × 1920 pixels. Optical sections of fluorescence
specimens were obtained using a HeNe laser (543 nm), a laser
UV (361–365 nm) and an argon laser (458 nm) at a 1-min, 2-s
scanning speed with up to eight averages; 1.5-µm sections were
obtained using a pinhole of 250. Contrast and brightness were
established by examining the most brightly labeled pixels and
applying settings that allowed clear visualization of structural
details while keeping the highest pixel intensities close to 200. The
same settings were used for all images obtained from the other

SCHEME 1 | Design and evaluation of the injured area.
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samples that had been processed in parallel. Digital images were
cropped and figure montages prepared using Adobe Photoshop
CS5 (Adobe Systems; Palo Alto, CA).

Golgi Impregnation
Golgi impregnation was performed according to the directions
supplied by FDNeuroTechnologies, FD (FDNeuroTechnologies,
Ellicott City, MD, USA). Blocks of spinal cord tissue were placed
directly into solutions A and B, without rinsing for 2 weeks in
the dark at room temperature. Forty-eight hours after placing
the blocks in solution C (4◦C), they were frozen on dry ice
and stored at −70◦C until sectioned. Cryostat sections (100µm)
were cut at−25◦C and mounted onto gelatinized slides. Slides
were allowed to dry in the dark, and the rest of the staining
process performed as previously described (Wallace et al.,
2006). Neurons chosen for tracing met the following criteria:
(1) completely impregnated with Golgi stain, (2) unobscured
by other impregnated neurons or precipitant, (3) 70% of the
dendritic tree was visible within the plane of focus, and (4)
neurons must have been located in the outer one-half of the
granule cell layer in the dentate gyrus. Cells chosen for analyses
had to be well-impregnated, clearly distinguishable from adjacent
cells and have continuous unbroken dendrites. Spines were
counted under oil (X100), using light microscopy (Axostar Plus
equipped with Axio-Cam MRc, Zeiss), and the entire visible
dendritic length measured by an imaging computer program
(Axio-Vision, Zeiss). Spine density was calculated referring to the
length of the dendrite.

Western Blot Analysis for Brain-Derived
Neurotrophic Factor (BDNF), Nerve Growth
Factor (NGF), Glialcellline-Derived
Neurotrophic Factor (GDNF), and
Neurotrophin-3 (NT-3)
Cytosolic and nuclear extracts were prepared as follows: Briefly,
spinal cord tissues from eachmouse were suspended in extraction
Buffer A containing 0.2mM phenylmethylsulfonyl fluoride,
0.15µM pepstatin A, 20µM leupeptin and 1mM sodium
orthovanadate, homogenized at the highest setting for 2min,
and centrifuged at 1000 × g for 10min at 4◦C. Supernatants
represented the cytosolic fraction. The pellets containing
enriched nuclei were re-suspended in Buffer B containing 1%
Triton X-100, 150mM NaCl, 10mM TRIS-HCl pH 7.4, 1mM
EGTA, 1mM EDTA, 0.2mM phenylmethylsulfonyl fluoride,
20µM leupeptin, and 0.2mM sodium orthovanadate. After
centrifugation 30min at 15,000 × g at 4◦C, the supernatants
containing the nuclear protein were stored at −80◦C for further
analysis. The levels of BDNF, NGF, GDNF, and NT-3, were
quantified in the cytosolic fraction from spinal cord tissue
collected after 72 h after SCI. The filters were blocked with 1x
PBS, 5% (w/v) non-fat driedmilk for 40min at room temperature
and subsequently probed with specific antibodies for BDNF
(1:1000), NGF (1:1000), GDNF (1:1000) in 1x PBS, 5% w/v non-
fat driedmilk, 0.1%Tween-20 at 4◦C overnight.Membranes were
incubated with peroxidase-conjugated bovine anti-mouse IgG
secondary antibody or peroxidase-conjugated goat anti-rabbit
IgG (1:2000, Jackson ImmunoResearch, West Grove, PA, USA)

for 1 h at room temperature. To ascertain that blots were
loaded with equal amounts of proteic lysates, they were also
incubated in the presence of α-tubulin antibody (1:10,000, Sigma-
Aldrich). Relative expression of protein bands was quantified by
densitometric scanning of the X-ray films with a GS-700 Imaging
Densitometer (GS-700, Bio-Rad Laboratories, Milan, Italy) and a
computer program (Molecular Analyst, IBM), and standardized
for densitometric analysis to α-tubulin levels.

Statistical Evaluation
All values in the figures and text are expressed as mean
± standard error of the mean (SEM) of ‘N’ observations.
For in vivo studies, N represents the number of animals.
In experiments involving immunohistochemistry, the figures
shown are representative of at least three experiments performed
on different days. The results of immunohistochemistry and
Western blot were analyzed by one-way analysis of variance
followed by a Bonferroni post-hoc test for multiple comparisons.
BMS data were analyzed by the Mann-Whitney test. A P-value of
less than 0.05 was considered significant (Paterniti et al., 2013a).

RESULTS

Co-ultraPEALut Treatment Promotes
Functional Recovery
Co-ultraPEALut treatment, in an earlier study, improved motor
activity in SCI compared to other treatments 10 days after
injury (Paterniti et al., 2013b). In confirmation of this result,
treatment with co-ultraPEALut significantly ameliorated motor
performance10 days post-injury, as evidenced in a horizontal grid
walking test in which fewer missteps of the left hind limb during
grid walking were detected (Figure 1A). Furthermore, in order
to evaluate loss of motor function associated with spinal cord
damage, a BMS score was employed to assess daily the functional
recovery until 21 days after injury. SCI mice showed a significant
deficit in movement which improved following co-ultraPEALut
administration (Figure 1B).

Effect of Co-ultraPEALut Administration on
Cell Proliferation
Diffuse cellular proliferation throughout the gray and white
matter has been observed in different models of SCI (Kozlova,
2003; Zai and Wrathall, 2005). In order to identify the cell
type(s) undergoing proliferation and to evaluate whether they
migrate as a result of injury, animals were injected with BrdU
to label dividing cells in the S phase of the cell cycle. Cellular
alterations in the peri-lesioned zone (boundary between the core
necrotic area and penumbra) and in regions distal to the lesion
(identified by counting five optical fields on both sides from
the core lesion) were assessed by counting the cell populations
labeled with antibodies against BrdU, DCX, NeuN, GFAP, and
MAP2. Proliferation and numbers of immature neurons were
determined using BrdU and DCX immunolabelling, respectively
(Malberg et al., 2000). Figures 2A,B revealed a notable difference
in the number of BrdU+ nuclei and DCX+ cells between sham,
SCI-operated mice and SCI mice treated with co-ultraPEALut.
Numbers of both BrdU+ nuclei and DCX+ cells increased 72 h
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FIGURE 1 | Evaluation of co-ultraPEALut on motor function after SCI.

(A) Grid walking improved significantly 72 h after co-ultraPEALut

administration; (B) The functional recovery was assessed every day until 21

days after SCI by Basso Mouse Scale (BMS) open-field score. Administration

of co-ultraPEALut reduced the motor disturbance after SCI. Values are mean

± SEM (N =10 per group). (#p < 0.05 vs. SCI group; ###p < 0.001 vs. SCI

group).

after SCI to a greater extent with co-ultraPEALut administration
(Figures 2C–H). Moreover, there was an increased expression
of immunofluorescence staining of DCX+ cells after treatment
with co-ultraPEALut in SCI mice (Figure 3) and comparable to
control levels of sham mice (Figure 3).

To explore further the nature of these proliferating cells, we
co-stained sections with the anti-BrdU antibody and antibodies
against either NeuN or GFAP, and calculated the number
of double-positive cells near the lesion borders. Seventy-two
hours after SCI, a significant percentage of NeuN+ and GFAP+

cells showed BrdU incorporation Figures 4A,B. Representative
images showing the increase of proliferating NeuN+ and GFAP+

cells compared to sham animals are shown in Figures 4, 5.
Qualitative analysis of spinal cord sections showed

pronounced astrogliosis (GFAP+ cells) in the peri-lesional
area after SCI (Figure 6A), which was significantly diminished
in the spinal cord from co-ultraPEALut-treated SCI mice
(Figure 6A). In terms of MAP2-expressing (neuronal) cells,
there was a significant reduction after 72 h; in contrast, treatment
with co-ultraPEALut at 72 h largely prevented this decrease
(Figure 6B). Representative images showing the increase in
proliferating GFAP+ and decrease in MAP2+ cells compared to
sham animals is shown in Figures 6C–H.

FIGURE 2 | Effect of co-ultraPEALut on cell proliferation in spinal cord

of SCI mice. (A) BrdU (70mg/kg, i.p.) was given 2 h before sacrifice to

examine the effects of 72 h co-ultraPEALut administration. In SCI-operated

mice the number of proliferating cells increased at 72 h. Moreover,

co-ultraPEALut treatment further increased this number. Values are mean ±

SEM (N =10 per group). (*p < 0.05 vs. sham group; #p < 0.05 vs. SCI

group). (C) BrdU+ nuclei in sham group (D), BrdU+ nuclei in SCI-operated

mice (E), BrdU+ nuclei in co-ultraPEALut treatment. (B) In SCI-operated mice

the number of DCX+ cells increased at 72 h; the number of DCX+ cells is

increased after co-ultraPEALut treatment. Values are mean ± SEM (N =10 per

group; *p < 0.05 vs. sham group; #p < 0.05 vs. SCI group). (F) DCX+ cells in

sham group at 20X magnification, (G) DCX+ cells in SCI-operated mice (H)

DCX+ cells in co-ultraPEALut treatment group. All images are at 20X

magnification.

Effect of Co-ultraPEALut on Neurotrophic
Factor Levels
To correlate the neurogenic effect of co-ultraPEALut treatment
on dendritic remodeling and reorganization, a Golgi staining
method was employed. Our findings showed a significant
disruption in dendritic organization with a loss of synaptic
bottoms in tissue collected 72 h after SCI. Co-ultraPEALut
administration stimulated the remodeling of dendritic arbors in
the injured area (Figure 7). To assay whether co-ultraPEALut
modulates the neuroregenerative process through regulation of
neutrophic factors, we analyzed BDNF, GDNF, NGF, and NT-3
protein levels in the peri-lesioned zone by Western blot. Spinal
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FIGURE 3 | Effect of co-ultraPEALut on co-localization of BrdU/DCX labeling after SCI. Results are shown for (A–C) sham-operated mice, (D–F) mice with

SCI, and (G–I) mice with SCI treated with co-ultraPEALut. Spinal cord lesions sections, obtained from perilesioned area, were double-stained with antibodies against

BrdU and DCX. The staining revealed that the increased proliferation of new neurons (DCX+ cells) started in mice subject to SCI (D–F, see yellow arrows that indicate

the overlay) but treatment with co-ultraPEALut significantly increased the proliferartion after 72 h (G–I, see yellow arrows), see densitometric analysis. All images were

digitalized at a resolution of 8 bits into an array of 2048× 2048 pixels. (##p < 0.01 vs. SCI; ***p < 0.001 vs. sham).

FIGURE 4 | Effect of co-ultraPEALut on co-localization of BrdU/NeuN after SCI. Results are shown for (A–C) sham-operated mice, (D–F) mice with SCI, and

(G–I) mice with SCI treated with co-ultraPEALut. Spinal cord lesion sections, obtained from perilesioned area, were double-stained with antibodies against BrdU and

NeuN. NeuN expressin increased in the group treated with co-ultraPEALut (G–I, see yellow arrows). All images were digitalized at a resolution of 8 bits into an array of

2048× 2048 pixels.

cord tissues harvested 72 h after trauma exhibited significantly
diminished neurotrophic factor expression compared to sham
animals (Figure 8). Co-ultraPEALut administration (Figure 8,

and densitometric analysis) remarkably re-established the
expression of these neurotrophic factors, reaching levels seen in
uninjured mice.
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FIGURE 5 | Effect of co-ultraPEALut on co-localization of BrdU/GFAP after SCI. Results are shown for (A–C) sham-operated mice, (D–F) mice with SCI, and

(G–I) mice with SCI treated with co-ultraPEALut. Spinal cord lesion sections, obtained from perilesioned area, were double-stained with antibodies against BrdU and

GFAP. Spinal cord sections revealed increased astrogliosis (GFAP+ cells) in SCI mice (D–F). All images were digitalized at a resolution of 8 bits into an array of

2048× 2048 pixels.

DISCUSSION

The discovery of neurogenesis in the adult mammalian CNS
represents a potential paradigm shift in regenerative medicine
and a therapeutic weapon for CNS injuries. Numerous studies
have addressed this regenerative process close to the lesion
site in an attempt to understand if newly generated neurons
could replace those dying within the damaged tissue. Regions
considered distal to the lesion have received little attention
until now, although it is conceivable that a focal injury could
alter unaffected CNS areas. Investigating the neuroregenerative
properties of co-ultraPEALut in a murine model of SCI, we
now show that co-ultraPEALut increased both BrdU+ nuclei
and DCX+ cells in the spinal cord of injured mice, stimulated
expression of the neurotrophic factors BDNF, GDNF NGF,
and NT-3, promoted dendritic remodeling and preserved spine
density.

Focal CNS damage leads to acute loss of function and
neurodegeneration, which is followed by a regenerative response
in an attempt to re-establish structure and function. Primary
injury to the spinal cord is classified as an irreversible
event that begins with an unexpected, traumatic blow to
the spine provoking local segmental cord damage, which is
followed by a second phase of tissue degeneration that can
occur over weeks or months. The latter is characterized by
glutamate excitotoxicity, release of pro-inflammatory cytokines,
and oxidative stress. These processes take part in a cascade
culminating in dysfunction and death of neurons (Anderson and

Hall, 1993). This inflammatory process is followed by production
of free radicals and nitric oxide (Genovese et al., 2006b).
Therapies targeting those factors implicated in the secondary
degeneration cascade lead to tissue sparing and improved
neurological outcomes in SCI-lesioned animals (Cuzzocrea et al.,
2006; Genovese et al., 2006a). Spinal immobilization is still
considered the standard prehospital care for SCI patients. Many
pharmacological treatments have been tested in SCI, but none
have met substantial success. High-dose corticosteroids, given
within the first 8 h after injury and over the next 24–48 h remains
part of the current treatment regimen (Bracken et al., 1998),
although recent findings have come to question the effectiveness
of corticosteroids in SCI. Perhaps not surprisingly, the limited
success of these clinical studies reflect the complexity of the
secondary degenerative response in SCI (Leker and Shohami,
2002). Because such therapies address only one aspect of this
response, a successful treatment might require a multimodal
approach (King et al., 2006).

PEA possesses both anti-inflammatory and neuroprotective
effects (Paterniti et al., 2013a), but lacks antioxidant activity.
We thus decided to test the activity of a co-ultramicronized
composite containing PEA and luteolin (“co-ultraPEALut”).
We previously described the neuroprotective and
neuroinflammatory properties of co-ultraPEALut in a mouse
SCI model (Paterniti et al., 2013b), as well as the capacity of
this formulation to promote neurogenesis and neuroplasticity
in a mouse model of a depression-like state (Crupi et al., 2013).
Precursor cells in the main neurogenic areas of adult brain
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FIGURE 6 | Effect of co-ultraPEALut on GFAP and MAP-2 expression in

spinal cord of mice subjected to SCI. (A) In SCI-operated mice the number

of GFAP+ cells increased at 72 h; the number of GFAP+ cells decreased after

co-ultraPEALut treatment. Values are mean ± SEM (N =10 per group; *p <

0.05 vs. sham group; #P < 0.05 vs. SCI group). (C) GFAP+ cells in sham

group, (D) GFAP+ cells in SCI-operated mice, (E) GFAP+ cells in

co-ultraPEALut treated mice. (B) In SCI-operated mice the number of MAP2+

cells decreased at 72 h; co-ultraPEALut treatment increased the number of

MAP2+-expressing cells. Values are mean ± SEM (N =10 per group; *p <

0.05 vs. sham group; #p<0.05 vs. SCI group). (F) MAP2+ cells in sham

group, (G) MAP2+ cells in SCI-operated mice, (H) MAP2+ cells in

co-ultraPEALut treated mice. All images are at 20X magnification. The image

were obtained from perilesioned area.

and local progenitors play a prominent role in recovery after
CNS injury (Butti et al., 2012). The hippocampal SVZ and
SGZ are responsible for most neurogenic activity occurring
in adult mammals (Doetsch, 2003). In these areas, ischemic
damage stimulates neurogenesis, where a pool of progenitors
is produced up to 4 months post-injury (Thored et al., 2006).
In the regenerating tissue, new neurons and neuroblasts
proliferate, and migrate in chains along blood vessels toward
the ischemic area to provide trophic support (Thored et al.,
2007). Neurogenesis and neovascularization in the injured CNS
are considered interdependent processes that share common
mediators and signals (Snapyan et al., 2009). At 72 h post-injury
co-ultraPEALut treatment stimulated the proliferation of mature
neurons, as demonstrated by the number of DCX+ cells. Further,
quantitative analysis of spine density in spinal cord revealed
that both spine and dendritic morphology were sensitive to

FIGURE 7 | Effect of co-ultraPEALut on dendritic remodeling and spine

density in spinal cord of mice subjected to SCI. (A–C) Effects of

co-PEALut administration on spine density; qualitative analysis of spine density

showed an increase in mice treated with co-ultraPEALut.

co-ultraPEALut treatment. MAP2 participates in neuronal
development, structural stability, apophysis formation, and
regulation of synaptic plasticity. In the CNS, MAP2 interacts
with microtubules to promote their assembly and stability and is
associated with axonal transport (Okabe and Hirokawa, 1989).
Because MAP2 is exclusively only in dendrites and neurites
within the CNS, it is considered a molecular marker of neurons
(Rioux et al., 2003; Furutani and Kibayashi, 2012). Interestingly,
MAP2 expression increased in response to co-ultraPEALut
administration, strengthening the view that this agent is capable
of stimulating regeneration and remodeling spinal structure after
damage.

Neurotrophins such as BDNF, NGF, or NT-3 are well-known
to promote regeneration of injured nerves (Nakagawara et al.,
1994; Pezet and Malcangio, 2004; Song et al., 2008). The present
study showed that levels of BDNF, GDNF, NGF, and NT-3
were down-regulated by spinal cord damage, while a sustained
increase in their expression in peri-lesioned tissue was brought
about following administration of co-ultraPEALut. Treatments
which regulate endogenous synthesis of neurotrophins may be
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FIGURE 8 | Effect of co-ultraPEALut on neurotrophin levels in spinal cord of mice subjected to SCI. Significant increases in BDNF, GDNF, NGF, NT-3 levels

were observed in spinal cord of SCI mice treated with co-ultraPEALut treatment. β-actin was used as internal control. A representative blot of lysates obtained from

each group is shown, and densitometric analysis of all animals is reported (N =10 mice from each group; *p < 0.05 vs. sham group; #p < 0.05 vs. SCI group; ##p

< 0.01 vs. SCI group).

superior to their exogenous administration, as these proteins
are unable to cross the blood–brain barrier and, in the case of
BDNF may encounter difficulties in CNS diffusion caused by the
truncated TrkB receptor in astroglia (Biffo et al., 1995; Song et al.,
2008). It is tempting to speculate that the observed increase in
neurotrophic factor expression may account, at least in part, for
the neuroprotective activity of co-ultraPEALut. Moreover, it is
conceivable that the neurogenic effect of co-ultraPEALut is linked
to neurotrophic factor expression.

The endocannabinoid system regulates a broad range
of processes such as axonal growth and guidance during
development (Berghuis et al., 2007), adult neurogenesis
(Goncalves et al., 2008), and numerous behavioral responses

associated with endocannabinoid retrograde signaling at
synapses. The endocannabinoid system is regulated by
neurological insults such as cerebral ischemia, traumatic
and focal brain injury, and it is increasingly considered
a promising therapeutic target in many CNS pathologies
(Velayudhan et al., 2014) including SCI (Adhikary et al.,
2011). Endocannabinoid release differs from that of canonical
neurotransmitters which are synthesized and stored in synaptic
vesicles; rather, they are generated from membrane precursors
and released into the synaptic cleft following neuronal activation
(“on demand”). Different mechanisms have been proposed to for
the mechanism of PEA action (Loverme et al., 2005), including
interaction with uncharacterised cannabinoid receptor 2-like
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receptors, the peroxisome proliferator-activated receptor-α,
and inhibition of FAAH (fatty acid amide hydrolase), thus
increasing local concentrations of anandamide and probably
PEA (the so-called “entourage effect”; Lambert et al., 2002).
The actions of anandamide, 2-arachidonylglycerol and PEA
may be prolonged by FAAH inhibition. Inhibition of FAAH
strengthens the pharmacological effects of anandamide and PEA
in vivo. Flavonoids possess many pharmacological properties,
including anti-inflammatory and cytoprotective. For example,
apigenin, which is stucturally related to luteolin, protects against
endoplasmic stress-induced neuronal cell death (Choi et al.,
2010). Here, we utilized the endocannbinoid congener PEA and
the flavonid luteolin as an ultramicronized composite to protect
from neurodegeneration in a mouse model of SCI. We have
previously demonstrated that PEA administration (10mg/kg)
exerts anti-inflammatory and neuroprotective effects in a mouse
model of SCI (Esposito et al., 2011). Whether or not luteolin
cooperates with PEA in one or more of these mechanisms is a
fascinating question to be explored in future studies.

CONCLUSIONS

Translation of experimental results into clinical practice has been
particularly challenging when dealing with neuroregeneration.
Nevertheless, our studies show that co-ultraPEALut exerts
a spectrum of actions: neuroprotection, neuroregeneration,
anti-inflammation, and anti-apoptosis. The present findings
reinforce recent data demonstrating that co-ultraPEALut can

ameliorate symptomatology of diseases such as SCI in animals.
Therefore, we propose that co-ultraPEALut administration
can be considered as a novel therapeutic approach in the
treatment of neurological outcome after SCI. This composite
was administered after trauma, in an environment that
simulates the clinical condition, and therefore may have clinical
implications.
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