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Summary

Reprogramming of somatic cells to a pluripotent state was first

accomplished using retroviral vectors for transient expression of

pluripotency-associated transcription factors. This seminal work

was followed by numerous studies reporting alternative (nonin-

sertional) reprogramming methods and various conditions to

improve the efficiency of reprogramming. These studies have con-

tributed little to an understanding of global mechanisms underly-

ing reprogramming efficiency. Here we report that inhibition of

the mammalian target of rapamycin (mTOR) pathway by rapamy-

cin or PP242 enhances the efficiency of reprogramming to induced

pluripotent stem cells (iPSCs). Inhibition of the insulin ⁄ IGF-1

signaling pathway, which like mTOR is involved in control of lon-

gevity, also enhances reprogramming efficiency. In addition,

the small molecules used to inhibit these pathways also signifi-

cantly improved longevity in Drosophila melanogaster. We

further tested the potential effects of six other longevity-promot-

ing compounds on iPSC induction, including two sirtuin activators

(resveratrol and fisetin), an autophagy inducer (spermidine),

a PI3K (phosphoinositide 3-kinase) inhibitor (LY294002), an

antioxidant (curcumin), and an activating adenosine monophos-

phate-activated protein kinase activator (metformin). With the

exception of metformin, all of these chemicals promoted somatic

cell reprogramming, though to different extents. Our results show

that the controllers of somatic cell reprogramming and organismal

lifespan share some common regulatory pathways, which

suggests a new approach for studying aging and longevity based

on the regulation of cellular reprogramming.
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Following the successful generation of induced pluripotent stem cells

(iPSCs) using transiently expressed reprogramming factors in different

combinations (Takahashi & Yamanaka, 2006; Meissner et al., 2007; Wer-

nig et al., 2007; Yu et al., 2007; Nakagawa et al., 2008), a large number

of groups reported studies on reprogramming efficiency as well as some

molecular mechanisms underlying the reprogramming process (Feng

et al., 2009). So far, several chemicals have been shown to enhance the

generation of iPSCs. The majority of reported chemicals modulate gen-

ome-wide chromatin structure and gene activities (Huangfu et al.,

2008a; Mikkelsen et al., 2008; Shi et al., 2008a; Liang et al., 2010). An

antioxidant, vitamin C (Vc), and inhibitors of the TGF-b, MEK, and GSK3

pathways also exhibit positive effects on iPSC generation (Shi et al.,

2008b; Silva et al., 2008; Ichida et al., 2009; Maherali & Hochedlinger,

2009; Esteban et al., 2010; Li et al., 2010), which suggests that manipu-

lation of the signaling pathways that control cell growth and proliferation

may contribute to efficient cell reprogramming.

Rapamycin is a clinically used immunosuppressant that inhibits the

mammalian target of rapamycin (mTOR) pathway, involved in cell prolif-

eration, motility, and survival. Rapamycin restores self-renewal in hema-

topoietic stem cells of aged mice (Chen et al., 2009) and prevents

epidermal stem cell exhaustion induced by Wnt-1 expression in mouse

skin (Castilho et al., 2009). In the current study, we tested the effects of

rapamycin on somatic cell reprogramming. Following the retroviral trans-

duction of four vectors that express Sox2, Klf4, Oct4, and c-Myc (SKOM),

primary mouse embryonic fibroblasts (MEFs) from OG2+ ⁄ ) ⁄ ROSA26+ ⁄ )

(OG2) mice (containing a transgenic Oct4-GFP reporter) were treated

with rapamycin from days 1 to 3 after infection. On day 16 postinfection,

we observed the appearance of morphological ES-like and GFP-positive

colonies (Fig. 1A, left panel). Rapamycin treatment increased the number

of GFP-positive colonies in a dose-dependent manner up to 0.3 nM

(Fig. 1A, right panel). FACS analysis of SKOM-infected OG2 MEFs on day

12 postinfection displayed an over 5-fold increase in GFP-positive cells in

samples treated with 0.3 nM rapamycin (Fig. 1B). Furthermore, we found

that treatment of MEFs with rapamycin on days 1–3 postinfection was

more effective in promoting reprogramming than treatment at later times

after infection (Fig. 1C). These results suggest that rapamycin acts early in

the reprogramming process.

To confirm the pluripotency of iPSCs generated after rapamycin treat-

ment, we randomly picked colonies to establish multiple iPSC lines. All of

these lines were morphologically indistinguishable from mouse ES cells,

and they stained positive for alkaline phosphatase (Fig. 1D). The endoge-

nous expression of Oct4, Sox2 and Nanog as well as the silencing of exog-

enous retroviral factors expression was verified by real-time RT–PCR

(Fig. 1E,F). A randomly chosen clone (iPS-Rapa#4) was then subjected to

further analysis. These cells expressed high levels of the pluripotency
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markers SSEA1 and Nanog (Fig. 1G), and were karyotypically normal

(Fig. 1H). Most importantly, these cells were competent to generate

germline chimeras (Fig. 1I). These results suggest that rapamycin treat-

ment does not compromise iPSC pluripotency.

To test whether the reprogramming-enhancing effect of rapamycin

was because of its inhibition of the mTOR pathway, we used PP242,

another potent mTOR pathway inhibitor (Apsel et al., 2008). PP242

functions as a selective inhibitor that targets the ATP-binding domain of
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Fig. 1 Rapamycin promotes the generation of induced pluripotent stem cells (iPSCs). (A) Left: Representative pictures of GFP+ colonies, which emerged on day 16 in SKOM-
infected mouse embryonic fibroblasts (MEFs). Scale bars represent 100 lm. Right: The number of GFP+ colonies, which were generated from rapamycin-treated SKOM-
infected MEFs. Rapamycin at the indicated concentrations was added to the culture medium of SKOM (Sox2, Klf4, Oct4, and c-Myc)-infected MEFs for 3 days. GFP+ colonies
were counted on day 20 postinfection. Bars represent the number of GFP+ colonies ⁄ 40 000 cells initially plated. (B) The percentages of GFP+ cells induced in SKOM-infected
MEFs treated with rapamycin. The percentage of GFP+ cells was determined by FACS analysis on day 12 postinfection. Left: Representative FACS data demonstrate an
increase in the percentage of GFP+ cells after treatment of 0.3 nM rapamycin. Right: The percentages of GFP+ cells, which were induced in SKOM-infected MEFs that were
treated with different concentrations of rapamycin, were determined. Data are represented as the mean ± SEM. At least 4 independent experiments were performed.
**P < 0.01, *P < 0.05. (C) The GFP+ colonies were generated from SKOM-infected MEFs treated with rapamycin (0.3 nM) at different times after infection. The number of
GFP+ colonies was determined as described in (A). (D) Representative pictures of the iPSCs generated in the presence of rapamycin. Left: phase contrast; middle: Oct4-GFP;
right: alkaline phosphatase (AP) staining. Scale bars = 50 lm. (E) Relative gene expression (compared with ES cells) of endogenous pluripotency markers in iPSCs generated
after rapamycin treatment. Endo = endogenous. (F) The silencing of ectopically expressed reprogramming factors in established iPSC lines generated in the presence of
rapamycin. Exo = exogenous. (G) The immunostaining patterns for Nanog and SSEA-1 in the iPS-Rapa-#4 cells. Scale bars represent 50 lm. (H) Karyotype spread of iPS-Rapa-
#4 cells. (I) The chimeric mouse and its offspring produced by the iPS-Rapa-#4 cells.
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mTOR. Treatment with 0.1 nM PP242 led to a 5-fold increase in the

reprogramming efficiency similar to rapamycin (Fig. 2A). These results

indicate that inhibition of mTOR activity promotes somatic cell repro-

gramming.

Rapamycin extends the lifespan in various model organisms (Fontana

et al., 2010). Therefore, we tested whether inhibition of the mTOR path-

way by PP242 had similar lifespan-extending effects to rapamycin in fruit

flies (Fig. 2B,C). Treatment of PP242 significantly extended the lifespan of

fruit flies similar to rapamycin (Fig. 2B,C). These results suggest that

mTOR might be a common pathway that mediates both longevity and

somatic cell reprogramming efficiency.

Similar to the mTOR pathway, the IIS pathway is ubiquitously

expressed, and its inhibition is associated with increased longevity and the

delayed onset of age-related disorders in diverse species (Fontana et al.,

2010). Therefore, we tested whether inhibition of the IIS pathway by

PQ401, an inhibitor of IGF1 receptor, could also extend the lifespan and

promote somatic cell reprogramming. Indeed, PQ401 treatment led to an

almost 4-fold increase in the reprogramming efficiency of the SKOM-

infected MEFs (Fig. 2D) and extended the lifespan of flies (Fig. 2E,F).

These results further support a correlation between mechanisms regulat-

ing longevity and mechanisms regulating reprogramming efficiency.

We then tested the effects of six other longevity-promoting

compounds on somatic cell reprogramming, including two sirtuin activa-

tors (resveratrol and fisetin), an autophagy inducer (spermidine), a PI3K

inhibitor (LY294002), an antioxidant (curcumin), and an adenosine

monophosphate-activated protein kinase (AMPK) inhibitor (metformin).

We treated SKOM-infected OG2 MEFs with these compounds from day 1

to day 3 postinfection and subjected them to FACS analysis on day 12.

Resveratrol, fisetin, spermidine, LY294002, and curcumin enhanced

reprogramming to different extents (Fig. 2G and Fig. S1), but the AMPK

activator, metformin, did not improve reprogramming efficiency.

Taken together, our results show a functional correlation between the

regulation of cell reprogramming and that of organismal longevity. These

compounds modulate organismal longevity by targeting different signal-

ing pathways (Fig. 2H). Therefore, further investigation to unravel the

molecular mechanisms of their reprogramming-promoting effects would

be of importance to understand the functional correlation between the

regulation of cell reprogramming and that of organismal longevity. Fur-

thermore, many chemicals that enhance mouse somatic cell reprogram-

ming also have similar positive effects on human somatic cell

reprogramming (Huangfu et al., 2008b; Feng et al., 2009; Esteban et al.,

2010; Mali et al., 2010; Zhu et al., 2010). Therefore, our findings in
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Fig. 2 Longevity-promoting compounds enhance the reprogramming of somatic cells. (A and D) Left panel: Percentages of GFP+ cells induced in SKOM-infected mouse
embryonic fibroblasts (MEFs) treated with the indicated compounds. Right panel: Number of GFP+ colonies generated from SKOM-infected MEFs treated with the indicated
compounds. Data are presented as mean ± SEM. At least four independent experiments were performed. **P < 0.01, *P < 0.05. (B, C, E and F) Survival curves of male
w1118 flies fed with PP242 (B and C) or PQ401 (E and F). Data are presented as mean ± SEM. ***P < 0.001, **P < 0.01. Rapa = Rapamycin. (G) Percentages of GFP+ cells
induced in SKOM-infected MEFs treated with the indicated compounds. Data are represented as mean ± SEM. At least four independent experiments were performed.
**P < 0.01, *P < 0.05. (H) A summary of the compounds used in this study.
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mouse cells may also be applicable to human cells, which is under current

investigation. It is reported that the reprogramming process can be divided

into three phases, namely initiation, maturation, and stabilization (Samav-

archi-Tehrani et al., 2010). Studies have shown that TGF-beta inhibitors

function at the initiation stage of reprogramming (Li et al., 2010; Samav-

archi-Tehrani et al., 2010), whereas MEK inhibitors function at the matu-

ration and stabilization phase (Shi et al., 2008b). Our results show that

rapamycin and other longevity-related chemicals function at the initial

stage of reprogramming. These chemicals may facilitate the bypass of cer-

tain reprogramming barriers, e.g., by preventing cell senescence that is

induced by the reprogramming factors (Banito et al., 2009; Li et al., 2009)

or by facilitating the mesenchymal-to-epithelial transition (Li et al., 2010;

Samavarchi-Tehrani et al., 2010), or by other mechanisms.
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