

Resveratrol regulates N-methyl-D-aspartate receptor expression and suppresses neuroinflammation in morphine-tolerant rats.

Tsai RY¹, Chou KY, Shen CH, Chien CC, Tsai WY, Huang YN, Tao PL, Lin YS, Wong CS.

Author information

Abstract

BACKGROUND: In the present study, we examined the effects and mechanisms of the Chinese herb resveratrol on attenuation of morphine tolerance in rats.

METHODS: Male Wistar rats were implanted with 2 intrathecal catheters; one catheter was connected to a mini-osmotic pump, used for either morphine (15 μ g/h) or saline (1 μ L/h) infusion for 5 days. On day 5, resveratrol (7.5, 15, 30, or 60 μ g), dimethyl sulfoxide (5 μ L), or saline (5 μ L) was injected via the other catheter immediately after the discontinued morphine infusion. Three hours later, intrathecal morphine (15 μ g in 5 μ L saline) was given. All rats received the nociceptive tail-flick test every 30 minutes for 120 minutes after the morphine challenge.

RESULTS: Long-term morphine infusion induced antinociceptive tolerance and up-regulated N-methyl-D-aspartate receptor (NMDAR) subunit NR1 and NR2B expression in the synaptosome fraction of the tolerant spinal cord dorsal horn. Resveratrol pretreatment provided a significant antinociceptive effect of morphine in morphine-tolerant rats, and it was associated with reversal of the up-regulated NR1 and NR2B subunits in the synaptosome fraction of morphine-tolerant rat spinal cords. NR1/NR2B-specific antagonist ifenprodil treatment produced a similar effect as that of resveratrol. Furthermore, an increase of postsynaptic density-95/NR1/NR2B complex immunoprecipitation in morphine-tolerant rat spinal cord was also inhibited by resveratrol pretreatment. Moreover, chronic morphine infusion activated glial cells with an increase of proinflammatory cytokine tumor necrosis factor-α, interleukin-1β, and interleukin-6 mRNA expression in morphine-tolerant rat spinal cords and these effects were suppressed by resveratrol pretreatment before the morphine challenge.

CONCLUSIONS: Resveratrol attenuates morphine tolerance by inhibiting neuroinflammation and down-regulating NMDAR NR1 and NR2B subunit expression. Resveratrol regulates the NMDAR expression, which might be involved in a loss of scaffolding postsynaptic density-95 protein.

PMID: 22713680	DOI: <u>10.1213/ANE.0b013e31825da0fb</u>	
[PubMed - indexed for MEDLINE]		
f 🍑 🐰		

Publication Types, MeSH Terms, Substances		
LinkOut - more resources		
PubMed Commons	PubMed Commons home	

0 comments

How to join PubMed Commons

1 of 2 1/1/17 9:24 AM

https://www.ncbi.nlm.nih.gov/pubmed/22713680

2 of 2 1/1/17 9:24 AM