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Abstract: Buprenorphine is a Schedule III opi-
oid analgesic with unique pharmacodynamic
and pharmacokinetic properties that may be
preferable to those of Schedule II full l-opioid
receptor agonists. The structure of buprenor-
phine allows for multimechanistic interactions
with opioid receptors l, d, j, and opioid recep-
tor-like 1. Buprenorphine is considered a partial
agonist with very high binding affinity for the
l-opioid receptor, an antagonist with high

binding affinity for the d- and j-opioid recep-
tors, and an agonist with low binding affinity
for the opioid receptor-like 1 receptor. Partial
agonism at the l-opioid receptor does not pro-
vide partial analgesia, but rather analgesia
equivalent to that of full l-opioid receptor
agonists. In addition, unlike full l-opioid
receptor agonists, buprenorphine may have a
unique role in mediating analgesic signaling at
spinal opioid receptors while having less of an
effect on brain receptors, potentially limiting
classic opioid-related adverse events such as
euphoria, addiction, or respiratory depression.
The pharmacokinetic properties of buprenor-
phine are also advantageous in a clinical setting,
where metabolic and excretory pathways allow
for use in patients requiring concomitant med-
ications, the elderly, and those with renal or
hepatic impairment. The unique pharmacody-
namic and pharmacokinetic properties of
buprenorphine translate to an effective anal-
gesic with a potentially favorable safety profile
compared with that of full l-opioid receptor
agonists for the treatment of chronic pain.

Plain Language Summary: A plain language
summary is available for this article.
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Key Summary Points

Given the current state of the opioid crisis,
treatment options other than Schedule II
full l-opioid receptor agonists are needed
for chronic pain management.

Buprenorphine, a Schedule III opioid, is a
partial agonist with very high binding
affinity for the l-opioid receptor, an
antagonist with high binding affinity for
the d- and j-opioid receptors, and an
agonist with low binding affinity for the
opioid receptor-like 1 receptor, allowing
for potent analgesia with potential
tolerability and safety advantages
compared with full l-opioid receptor
agonists.

Buprenorphine may have more of an
impact at spinal opioid receptors
compared with brain receptors,
potentially limiting classic opioid-related
adverse events such as euphoria,
addiction, or respiratory depression.

The metabolic and excretory pathways
associated with buprenorphine allow for
use in patients requiring concomitant
medications, the elderly, and those with
renal or hepatic impairment.

Buprenorphine has unique
pharmacological properties that may
translate to a more favorable treatment
option for chronic pain.

PLAIN LANGUAGE SUMMARY

The unique pharmacodynamic and pharma-
cokinetic properties of the Schedule III opioid
buprenorphine contribute to its effective pain
relief and a potentially favorable safety profile
for chronic pain management.

INTRODUCTION

The misuse and abuse of opioids is a serious
crisis faced by the United States that is

impacting social and economic welfare and
public health [1, 2]. In recent years in the Uni-
ted States, approximately 11 million people per
year have misused prescription pain relievers,
the most common being products containing
the Schedule II full l-opioid receptor agonists
hydrocodone and oxycodone [3]. Approxi-
mately 2 million of these people were consid-
ered to have an opioid use disorder, with 1.7
million of these people misusing prescription
pain relievers [2, 3]. More than half of all opioid
users took, bought, or were given pain relievers
from a friend or relative [3]. The economic
burden of opioid misuse is immense, with the
Centers for Disease Control and Prevention
estimating that $78.5 billion a year is spent on
lost productivity, healthcare, addiction treat-
ment, and criminal justice involvement [2]. In
2018, it was estimated that more than 130
people were dying each day from prescription
and non-prescription opioid overdoses in the
United States [2].

In response to the opioid crisis, the US
Department of Health and Human Services
established a Pain Management Best Practices
Inter-Agency Task Force to promote better
practices for pain management [1, 2]. One
agreed-upon approach to improving the man-
agement of pain is the preferential use of
potentially safer analgesics. The task force noted
that although buprenorphine is widely used for
treating patients with opioid-use disorder, it is
also effective and approved for the treatment of
pain [4]. The task force also encourages the
primary use of buprenorphine, if clinically
indicated, rather than only implementing the
drug after failure of other opioids such as
hydrocodone or fentanyl [4].

The objective of this review is to elaborate on
how the unique pharmacological properties of
buprenorphine, a Schedule III opioid, may
translate to a more favorable treatment option
for chronic pain with effective analgesia com-
parable to that of full l-opioid receptor agonists,
which have higher abuse potential by Drug
Enforcement Administration (DEA) Schedule
definition.
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METHODS

A PubMed search was performed on March 21,
2019, using the MeSH terms ‘‘buprenorphine’’
AND ‘‘chronic pain.’’ The specific terms ‘‘AND
pharmacodynamics,’’ ‘‘AND pharmacokinetics,’’
and ‘‘AND clinical effects’’ were then used to
identify articles relevant to this review. All
articles that present information regarding the
biological effects of buprenorphine were inclu-
ded. Additional references were added at the
authors’ discretion. Both authors take complete
responsibility for the integrity of the data and
accuracy of the data analysis. This article is
based on previously conducted studies and does
not contain any studies with human partici-
pants or animals performed by either of the
authors.

DISCUSSION

Pharmacodynamics of Buprenorphine

Buprenorphine is considered a partial l-opioid
receptor agonist with pharmacodynamic prop-
erties that result from its unique structure,
receptor binding, and downstream receptor
signaling events. It is a complex lipophilic
molecule derived from the opium alkaloid the-
baine of the poppy Papaver somniferum and is
composed of multiple chiral centers, a mor-
phine skeleton, and a unique cyclopropyl-
methyl group [5–7].

In vitro and preclinical studies have shown
that buprenorphine exhibits receptor-binding
properties that are distinct from those of other
opioids, and these observations have led to
misconceptions regarding its analgesic potency
[8–10]. The unique pharmacological properties
of buprenorphine allow for potent analgesia
while reducing the intensity of several classic
opioid-related adverse events such as respiratory
depression and abuse liability, in contrast to the
full l-opioid receptor agonists oxycodone,
morphine, and fentanyl, among others [11].

The therapeutic effects of buprenorphine are
mediated through interactions with four dif-
ferent opioid receptors (l, d, j, and opioid
receptor-like 1 [ORL1]), which are distributed

throughout many tissues in the body [12].
Binding affinity describes the ability of a drug to
bind to a receptor and is measured by deter-
mining the equilibrium dissociation constant
(Ki) [13]. The structure and unique binding
position of buprenorphine allow for more
molecular interactions between the molecule
and l-opioid receptor, yielding a very high
binding affinity (a low Ki value) compared with
that of other opioids (Fig. 1) [14–17]. Unlike
conventional opioids, buprenorphine is also an
antagonist with a high binding affinity at the d-
and j-opioid receptors (although some studies
have found that buprenorphine is an inverse
agonist at the j-opioid receptor) and an agonist
with lower binding affinity for ORL1, demon-
strating its multimechanistic effects on receptor
activity [19, 20].

Although high binding affinity at the l-opi-
oid receptor may contribute to receptor occu-
pation by buprenorphine, high binding affinity
alone does not correspond to superior receptor
activity [13]. In addition to receptor binding
and dissociation, individual molecule selectiv-
ity, potency, and intrinsic efficacy contribute to
individual opioid pharmacodynamic profiles
[21]. Buprenorphine exhibits slower dissocia-
tion from the l-opioid receptor compared with
other opioids, which may contribute to pro-
longed analgesia and less potential for with-
drawal when used appropriately for chronic
pain [5, 17, 22].

When high doses of buprenorphine are
given, its high binding affinity at the l-opioid
receptor and biphasic distribution may result in
less receptor availability if additional full l-
opioid receptor agonist opioids are adminis-
tered [23]. From a safety standpoint, this may
lessen the risk of an accidental opioid overdose.
As such, concomitant treatment with
buprenorphine prior to an opioid overdose is
associated with substantial reductions in opi-
oid-related mortality [24]. Buprenorphine
occupies a majority but not all l-opioid recep-
tors; many clinicians are surprised to learn that
some receptors remain available for full agonists
to bind to if the need arises to treat acute pain
[16]. When such full l-opioid receptor agonists
are necessary, those with high lipophilicity and
binding affinity may have the best potential for
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competing against buprenorphine for unoccu-
pied receptors [25, 26].

Opioids function pre-synaptically by binding
to opioid receptors on cell membranes. Opioid
receptors are G-protein receptors that are cou-
pled to guanine nucleotide-binding proteins,
known as G-protein subunits (i.e., a, b, and c)
[12]. The binding of an opioid to the l-opioid
receptor causes receptor phosphorylation,
which promotes the release of G-protein sub-
units, inhibition of adenylyl cyclase, reduction
of intracellular cyclic adenosine monophos-
phate (cAMP) levels, and regulation of ion
channels [12, 27]. These signaling events limit
neurotransmitter release and result in hyper-
polarization of the cell membrane, thereby
preventing nociceptor activation and affording
analgesia [12, 27]. Conversely, phosphorylation
at specific amino acid residues on the receptor’s
cytoplasmic domain may lead to b-arrestin (an
adaptor protein that regulates receptor function
and signal transduction activity) recruitment,
endocytosis-mediated receptor internalization,
and downregulation of l-opioid receptor sig-
naling [12, 28–32]. b-arrestin signaling has also
been correlated with respiratory depression,
constipation, and abuse liability [12, 33].
G-protein–coupled receptor (GPCR) ligands
exhibit functional selectivity, meaning that

preferential signaling can occur through differ-
ent pathways [29, 34, 35]. For example, GPCR
ligands can selectively activate different intra-
cellular G-protein signaling pathways, recruit b-
arrestin, or both to varying degrees [29, 34].
Buprenorphine is unique in that it stimulates
sufficient G-protein signaling while limiting b-
arrestin recruitment to the receptor [12, 17, 33].
The balance between G-protein and b-arrestin
signaling may determine the extent of analgesia
versus the adverse effects commonly observed
with opioids (Fig. 2) [12].

In vitro studies have shown that buprenor-
phine-dependent l-opioid receptor activation
results in lower phosphorylation levels com-
pared with full l-opioid receptor agonists
[28, 36]. Buprenorphine exhibits substantial
phosphorylation of the l-opioid receptor at one
amino acid, serine 375, whereas other opioids
such as DAMGO, etorphine, fentanyl, and
sufentanil induce substantial phosphorylation
at additional amino acids, namely threonine
370, 376, and 379 [28, 36, 37]. The lack of
threonine phosphorylation with buprenor-
phine may limit b-arrestin recruitment to the
receptor and subsequent endocytosis, which
could contribute to buprenorphine’s potentially
favorable safety profile [12, 17, 28, 36, 38].
Buprenorphine also demonstrates a ceiling

Fig. 1 Buprenorphine exhibits a higher binding affinity at the l-opioid receptor than full l-opioid receptor agonists. A low
Ki value corresponds to greater binding affinity but does not necessarily translate to greater receptor activity [18]
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effect on serine 375 phosphorylation, whereas
full l-opioid receptor agonists show continu-
ously elevated phosphorylation levels with
increasing doses, consistent with the known
dose ceiling effect of buprenorphine on respi-
ratory depression [36, 37, 39, 40]. This unique l-
opioid receptor activation profile, which results
in its partial agonist activity, is likely due to
buprenorphine’s unique structural binding and
therefore differs from that of full l-opioid
receptor agonists.

Although total G-protein signaling from the
l-opioid receptor is lower when activated by
buprenorphine than by full l-opioid receptor
agonists, this moderate signaling appears suffi-
cient to reach an analgesic threshold while
reducing the likelihood of opioid-related

adverse side effects that may result from high
receptor signaling levels [12, 28, 36, 38].
Therefore, despite buprenorphine’s partial ago-
nism at the l-opioid receptor, analgesic efficacy
is maintained while the likelihood of respira-
tory depression and euphoria is decreased and
abuse potential is limited by preventing the
overstimulation of or excessive signaling from
the l-opioid receptor [6, 11, 13, 14, 23, 39–45].
However, any substance that acts on the l-opi-
oid receptor or depresses the central nervous
system (CNS) could contribute to opioid-related
morbidity and mortality [46, 47].

Unfortunately, the classification of
buprenorphine as a partial l-opioid receptor
agonist has led to the myth that it produces a
weaker analgesic effect than full l-opioid

Fig. 2 Buprenorphine promotes analgesia and limits side
effects through unique downstream signaling events at the
l-opioid receptor. Activation of the l-opioid receptor by
full agonists (e.g., fentanyl) or a partial agonist such as
buprenorphine results in G-protein signaling, which
promotes the dissociation of the Ga and Gbc subunits
[12, 27]. The Gbc subunit inhibits the opening of voltage-
gated calcium channels and activates G-protein–gated
potassium channels, whereas the Ga subunit suppresses
cAMP levels [12, 27]. These signaling events lead to
reduced neurotransmitter release and membrane hyperpo-
larization, thereby resulting in analgesia [12, 27]. Full

agonist opioids cause substantial phosphorylation on
multiple amino acid residues on the receptor’s carboxyl-
terminal cytoplasmic domain, leading to b-arrestin recruit-
ment and the endocytosis-mediated downregulation of
analgesic signaling [28, 36, 37]. In addition, b-arrestin
signaling has been correlated with adverse events [12, 33].
Buprenorphine-mediated activation of the l-opioid recep-
tor is unique in that it limits phosphorylation of the
receptor and b-arrestin recruitment [12, 17, 33]. Ca2?

calcium ion, cAMP cyclic adenosine monophosphate, K?

potassium ion, OR opioid receptor, P phosphorylation
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receptor agonists (e.g., morphine, oxycodone,
fentanyl) [8–10]. It is important to note that
partial agonism refers to receptor activity level
and does not necessarily translate to partial
analgesic efficacy [8, 13, 42, 48]. Classifications
of receptor activity can vary depending on
study conditions, and some in vitro assays have
shown morphine to behave as a partial l-opioid
receptor agonist even though it is clinically
considered a full agonist [8, 48]. Depending on
the formulation, buprenorphine is approxi-
mately 25–115 times more potent as an anal-
gesic than morphine is and should not be
considered less potent [14, 49, 50].

Buprenorphine has shown analgesic efficacy
comparable to that of full l-opioid receptor
agonists in moderate to severe post-operative
pain and cancer pain, with no demonstrated
ceiling effect for analgesia in humans [8]. In
fact, the analgesic efficacy observed in clinical
trials of two different buprenorphine products
FDA approved for the treatment of chronic pain
was similar to that of commonly utilized full l-
opioid receptor agonists [51–53].

Tissue specificity also influences drug-in-
duced efficacy, as buprenorphine exhibits
unique tissue-specific activity compared with
full l-opioid receptor agonists [13, 54, 55]. In
animal studies, spinal injection of naloxone, a
l-opioid receptor antagonist, successfully
blocked analgesia caused by buprenorphine,
morphine, and fentanyl [55]. Interestingly,
supraspinal injection of naloxone blocked the
analgesic effects of morphine and fentanyl, but
not buprenorphine [55]. These data suggest that
buprenorphine exerts its analgesic effects pri-
marily on the lower CNS (spinal cord) rather
than the higher CNS (brain) [54–56]. The pref-
erential activity of buprenorphine at spinal
opioid receptors promotes analgesia, whereas
lack of supraspinal effects may be a contributing
factor in limiting adverse events such as
euphoria and respiratory depression
[27, 55, 57–59] (Fig. 3).

The unique receptor- and tissue-specific
activity of buprenorphine, combined with its
unique activation of opioid receptors, produces
a range of effects that may be beneficial in
chronic pain management. Partial agonism at
the l-opioid receptor, which is specific to

buprenorphine, produces potent analgesia
[6, 23, 41] while allowing for a ceiling effect on
respiratory depression and euphoria
[39, 40, 42–44] and the reduction of other
adverse events commonly observed with opioid
use. Antagonism at the d- and j-opioid recep-
tors limits the potential for adverse effects such
as constipation, respiratory depression, anxiety,
and addiction, while full agonism of ORL1
contributes to spinal analgesia and may limit
the addiction potential and tolerance com-
monly observed with full l-opioid receptor
agonists [5, 6, 20, 62–69]. Taken together, the
unique pharmacodynamics of buprenorphine
allow for tolerable, potent analgesia with less
physical dependence compared with full l-opi-
oid receptor agonists, reinforcing its utility in
the treatment of chronic pain [6, 70–72] (Fig. 4).

Clinical studies examining buprenorphine
have been performed for various chronic pain
types, including chronic low back pain and

Fig. 3 Buprenorphine activity at spinal l-opioid receptors
provides analgesia while limiting euphoria and respiratory
depression. Activation of the l-opioid receptor results in
varying effects depending on the extent of the activation.
Full l-opioid receptor agonists (e.g., fentanyl) promote
analgesia but have a high probability of adverse events. As a
partial l-opioid receptor agonist, buprenorphine has
receptor activity that sufficiently reaches the analgesic
threshold but may demonstrate a ceiling effect on
otherwise common opioid-related adverse events.
Buprenorphine’s partial agonist effects at the l-opioid
receptor and preferential lower CNS activity provide
several clinically desirable pharmacological properties
compared with full agonists, including less potential for
euphoria and respiratory depression in addition to
providing equal or superior analgesia [5, 55, 59–61].
CNS central nervous system
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malignant pain [53, 76–79]. A systematic review
of clinical trials that utilized various buprenor-
phine formulations concluded that 67% of
studies showed buccal buprenorphine film or
the transdermal patch significantly reduced
pain compared with a comparator [80]. Impor-
tantly, no serious adverse events were reported
in any of these studies [80]. Thus, clinical data
support the preferential pharmacodynamic
properties of buprenorphine. However, all opi-
oids, including buprenorphine, can be associ-
ated with sleep-disordered breathing [81]. As
many patients presenting for chronic pain
therapies (and opioid use disorder treatment)
are on concomitant CNS depressants, clinicians
should be vigilant for the symptoms associated

with sleep-disordered breathing and investigate
with polysomnography when appropriate.

Pharmacokinetics of Buprenorphine

The properties of buprenorphine, such as low
molecular weight, high lipophilicity, and high
potency, contribute to the bioavailability of
different formulations (Table 1) [80]. Although
buprenorphine is readily absorbed through
gastrointestinal and mucosal membranes, the
oral absorption of buprenorphine is poor
because of first-pass metabolism [87, 88].
Transdermal absorption is also limited; how-
ever, formulations have been designed to

Fig. 4 The unique pharmacodynamics of buprenorphine
promote analgesia while potentially reducing adverse
effects. The multimechanistic regulation of opioid recep-
tors by buprenorphine results in enhanced analgesia and
decreased side effects [72]. Partial agonism at the l-opioid
receptor may result in moderate signaling activity but
potent analgesia [6, 23, 41]; a ceiling effect on respiratory
depression and euphoria [39, 40, 42–44]; limited impact
on GI motility [69, 73]; limited physical dependence,
abuse potential, and withdrawal symptoms [14, 45, 62];
reduced immunosuppression and impact on the HPA axis
[42, 69]; reduction in suicidal thoughts, anxiety, and
depression [62]; and limited dysphoria [62]. Antagonism
at the d-opioid receptor may result in anti-opioid action

[67, 69]; myocardial protection [63]; a limited impact on
GI motility* [67]; and limited respiratory depression* [67].
Antagonism or inverse agonism [20] at the j-opioid
receptor may result in reduced depression [5, 66], dyspho-
ria [65, 67], suicidal tendencies [62], anxiety [62], and
hostility [62]; a limited potential for addiction* and
tolerance [5, 20]; and reduced immunosuppression [6].
Full agonism at ORL1 may result in reduced supraspinal
analgesia [64, 74]; enhanced spinal analgesia [74]; dimin-
ished opioid-rewarding effects [5, 68, 75]; and a limited
potential for tolerance [9]. *Predicted effect on the basis of
known receptor function. COOH carboxylic acid, GI
gastrointestinal, HPA hypothalamic pituitary adrenal, OR
opioid receptor, ORL1 opioid receptor-like 1
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overcome these obstacles [89]. Administration
by the sublingual route is effective, but the
buccal formulation is currently the most effi-
cient delivery system that results in the highest
observed non-intravenous bioavailability range
[82–84].

Following absorption, buprenorphine is lar-
gely (96%) protein bound, primarily to a- and b-
globulin, and exhibits a large volume of distri-
bution, likely due to its high lipophilicity,
which may also contribute to its analgesic
effects [23, 83, 86–88, 90].

The metabolism of buprenorphine may be
through a bioactivation pathway that further
contributes to its analgesic effects [91]. The
hepatic cytochrome P (CYP) 450 system
metabolizes buprenorphine to norbuprenor-
phine through N-dealkylation of the cyclo-
propylmethyl group [92–94]. This N-
dealkylation step reduces blood–brain barrier
transport, as norbuprenorphine does not readily
cross the blood–brain barrier [88, 95]. In vitro
studies show that norbuprenorphine exhibits
high affinity for the l-, d-, and j-opioid recep-
tors and low affinity for ORL1, and preclinical
studies confirm its slight contribution to anal-
gesia [96, 97]. Further structural modification of
buprenorphine and norbuprenorphine by UDP-
glucuronosyl transferase occurs via glu-
curonidation to create buprenorphine-3-glu-
curonide and norbuprenorphine-3-glucuronide,
respectively [88, 91]. Preclinical evidence sug-
gests that buprenorphine-3-glucuronide pro-
duces low-potency analgesia, whereas
norbuprenorphine-3-glucuronide has a sedative
effect [91].

Although both buprenorphine and nor-
buprenorphine are inhibitors of the metabolic
enzymes CYP2D6 and CYP3A4 of the cyto-
chrome P450 system, they are not predicted to
cause clinically important interactions with
other drugs metabolized by major hepatic P450
enzymes [98, 99]. This translates to fewer
drug–drug interactions with buprenorphine
compared with other opioids, such as oxy-
codone or hydrocodone, potentially diminish-
ing adverse events when combining
buprenorphine with one or more agents affect-
ing CYP metabolism [43].

Buprenorphine and its metabolites are
excreted mainly by the biliary system through
enterohepatic recirculation, although a small
portion can also be eliminated in feces or urine
[100–103]. This mode of excretion makes
buprenorphine suitable for patients with renal
and hepatic impairment [100, 103, 104].
Because elderly patients are more likely to
experience chronic pain and often have renal or
hepatic impairment, buprenorphine may be a
more suitable choice for this population than
full l-opioid receptor agonists [5, 43]. In addi-
tion, the transdermal and buccal formulations
bypass first-pass metabolism, which may be
beneficial in patients with concomitant gas-
trointestinal disease, who are vomiting, or who
have difficulty swallowing [16, 105].

CONCLUSIONS

Buprenorphine has unique, multimechanistic
pharmacological properties that distinguish it
from other opioids. Buprenorphine is consid-
ered a partial agonist at the l-opioid receptor,
which describes receptor activity and not its
effectiveness as an analgesic. The preferential
spinal site of action and partial agonism of
buprenorphine at the l-opioid receptor allow
for potent analgesia with potential tolerability
and safety advantages. In addition, buprenor-
phine, by DEA definition a Schedule III opioid,
is associated with less addiction/abuse risk than
Schedule II full l-opioid receptor agonists. This
is valuable at a time when substance use disor-
ders and drug-related deaths are at an all-time
high in our country. There are currently two

Table 1 Bioavailability of buprenorphine by formulation

Route of administration Bioavailability

Intravenous 100%

Buccal 46–65%

Sublingual 28–51%

Transdermal 15%

Percent bioavailability of the intravenous [82], buccal [83],
sublingual [84, 85], and transdermal [86] formulations of
buprenorphine
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formulations of buprenorphine available for use
in the United States that are indicated for
chronic pain management: buprenorphine
transdermal patch (Butrans�, Purdue Pharma,
LP, Stamford, CT) and buprenorphine buccal
film (Belbuca�, BioDelivery Sciences Interna-
tional, Inc, Raleigh, NC). In summary, the
pharmacodynamic and pharmacokinetic prop-
erties of buprenorphine, combined with its
analgesic properties, potentially favorable safety
profile, and potential for use in multiple patient
populations, support its effective use in chronic
pain management.
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