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Abstract

The buprenorphine receptor binding profile is unique in that it binds to all three major opioid 

receptors (mu, kappa, delta), and also binds to the orphan-like receptor, the receptor for orphanin 

FQ/nociceptin, with lower affinity. Within the mu receptor group, buprenorphine analgesia in 

rodents is dependent on the recently discovered arylepoxamide receptor target in brain, which 

involves a truncated 6-transmembrane mu receptor gene protein, distinguishing itself from 

morphine and most other mu opioids. Although originally designed as an analgesic, buprenorphine 

has mainly been used for opioid maintenance therapy and only now is increasingly recognized as 

an effective analgesic with an improved therapeutic index relative to certain potent opioids. Albeit 

a second-, third-, or fourth-line analgesic, buprenorphine is a reasonable choice in certain clinical 

situations. Transdermal patches and buccal film formulations are now commercially available as 

analgesics. This review discusses buprenorphine pharmacodynamics and pharmacokinetics, use in 

certain populations, and provides a synopsis of systematic reviews and randomized analgesic 

trials. We briefly discuss postoperative management in patients receiving buprenorphine 

maintenance therapy, opioid equivalence to buprenorphine, rotations to buprenorphine from other 

opioids, and clinical relevance of buprenorphine-related QTc interval changes.

1 Introduction

Opioid therapy for chronic pain involves, for the most part, potent opioids such as morphine, 

oxycodone, fentanyl, hydrocodone, and hydromorphone. In recent years, these opioids have 

been marketed for chronic non-cancer pain and have been modified into tamper-resistant 

formulations in response to the opioid epidemic. A large part of the efforts and finances 

pharmaceutical companies have invested have been in this direction; however, these 

formulations do not address addiction risk and remain susceptible to illicit route conversion. 

They are not tamper-proof. Other side effects occur with these opioids, including 

hypogonadism, falls risks, infections, sleep-disordered breathing immunosuppression, poor 

wound healing, and mortality [1].
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Buprenorphine was synthesized from thebaine in 1966, and, approximately 12 years later, 

Donald Jasinski issued the following statement: “In conclusion, buprenorphine has a unique 

pharmacology with immediately obvious therapeutic applications as an analgesic of low 

abuse potential” [2]. When first released, buprenorphine was a schedule III analgesic. 

Injectable buprenorphine became commercially available in 1981, with the least restrictions 

for a potent opioid in the US (with the exception of nalbuphine). In the US, low-dose 

transdermal buprenorphine is available in 5, 7.5, 10, 15, and 20 μg/h doses (Butrans™; 

Purdue Pharma LP, Stamford, CT, USA), and in Europe in 35, 52.5 and 70 μg/h doses 

(Transtec™; Napp Pharmaceuticals Ltd, Cambridge, UK). Sublingual buprenorphine is 

available in several formulations. The generic buprenorphine/naloxone combination comes 

in 2/0.5 mg and 8/2 mg doses, and as buprenorphine without naloxone in 2 mg and 8 mg 

doses. The buprenorphine/naloxone brand name Suboxone™ (Reckitt Benckiser, Slough, 

UK) comes in 2/0.5 mg, 4/1 mg, and 8/2 mg tablets, and Subutex™ (Reckitt Benckiser) as 2 

mg and 8 mg. The newer sublingual combination tablets with greater bioavailability come in 

1.4/0.36 mg and 5.7/1.4 mg (Zubsolv™; Orexo, Morristown, NJ, USA). A buccal film 

comes in 2.1/0.3 mg, 4.2/0.7 mg, and 6.3/1 mg doses (Bunavail™; BioDelivery Sciences 

International, Inc., Raleigh, NC, USA), and as a buprenorphine patch (BioDelivery Sciences 

International, Inc.) in 75, 150, 300, 450, 600, 750, and 900 μg doses (Belbuca™).

Transdermal buprenorphine became available when various transdermal delivery systems 

were being developed in the 1990s. It reduced even further the potential risk of misuse in its 

matrix form, and has been noted to have even fewer side effects than sublingual 

buprenorphine with or without naloxone [3]. The advantages of buprenorphine include a 

ceiling on the euphoriant effects and on respiratory depression, but not on analgesia at doses 

up to 32 mg/day [4, 5]. As a result, unlike other potent opioids, a dose-related improved 

therapeutic index has been noted. Buprenorphine has less physical dependence, as seen with 

milder withdrawal with abrupt abstinence. Buprenorphine is not associated with falls risks 

and hypogonadism and is not an immunosuppressant [1].

The pharmacokinetics of buprenorphine are quite stable in renal failure and doses do not 

have to be altered in mild to moderate hepatic impairments (Child-Pugh class A and B). 

Transdermal buprenorphine (5–20 μg/h) is an excellent step II analgesic, and is preferred to 

tramadol since it is not associated with seizures or falls in the elderly. Compliance has 

improved as the patch is only changed once in 7 days. Furthermore, buprenorphine has fewer 

drug-drug interactions than tramadol as the rate-limiting metabolizing enzymes are 

conjugases and not mixed-function oxidases (cytochromes) [1, 3, 6, 7].

2 Pharmacodynamics of Buprenorphine

The buprenorphine receptor binding profile is unique in that it binds with high affinity to all 

three major opioid receptor classes (mu, kappa, delta), and with lower affinity to the orphan-

like receptor (ORL-1), the receptor for orphanin FQ/nociceptin [8–11]. It is a partial agonist 

at traditional mu receptors (potentially contributing to its ceiling effect on respiratory 

depression), an inverse agonist at the kappa receptor, and an antagonist at delta receptors 

[12]. However, its affinity for a recently discovered structurally distinct subtype of mu 

receptor involved in its analgesia that truly distinguishes buprenorphine [12, 13]. Both 
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morphine and methadone act through traditional full-length mu receptors. In contrast, 

buprenorphine analgesia also depends on the arylepoxamide receptor (AEAr) target in brain, 

which includes a truncated 6-transmembrane protein from the mu opioid receptor gene 

(Oprm1). Mice lacking this protein displayed no buprenorphine analgesia, while showing 

normal responses to morphine. This unique receptor selectivity may account for its 

incomplete analgesic cross-tolerance. Similar to buprenorphine, both nalbuphine and 

butorphanol are dependent on the AEAr and have a ceiling effect on respiratory depression.

Although buprenorphine is a partial agonist at traditional mu receptors, it has high affinity 

for mu receptors, which is likely responsible for its slow dissociation [11, 14–16]. 

Buprenorphine is far more potent than either morphine (sevenfold) or fentanyl (fourfold) in 

stimulating [35S]GTPγS binding (Table 1) [17].

The inverse agonist activity at the kappa receptor may explain buprenorphine-associated 

antihyperalgesic activity, as hyperalgesia is likely the result of dynorphin upregulation [12, 

18, 19]. It is also a reason why there is less sedation and dysphoria with buprenorphine. 

Finally, kappa receptor antagonism is associated with antidepressant activity, which may be 

one reason why buprenorphine has been found to reduce depression and suicide ideation 

[20–23].

Biased signaling, in which opioids differentially activate various transduction systems, has 

proven to be important in understanding opioid pharmacology. Analgesia is associated with 

G-protein pathways, while arrestin recruitment is associated with many of the opioid-related 

adverse effects. Unlike traditional opioids such as morphine, fentanyl and methadone, 

buprenorphine does not recruit β-arrestin to the receptor. As a result, buprenorphine does not 

downregulate mu receptors on neuron surfaces, and in fact increases mu receptor expression 

in a chaperone effect [16]. The lack of morphine–β-arrestin interactions results in 

diminished analgesic tolerance, respiratory depression, and constipation in animals [24–27]. 

Administered together with a traditional mu opioid, buprenorphine antagonizes β-arrestin 

activity, which explains why morphine-induced receptor phosphorylation and desensitization 

is blocked when administered with buprenorphine [28, 29]. This may account for the super-

additive effects when combining low-dose buprenorphine with fentanyl, oxycodone, and 

morphine [30–33].

Although it has been mentioned in the literature that buprenorphine has a ceiling effect on 

analgesia due to its partial agonist activity at the ORL-1 receptor, this has recently been 

questioned [10, 16, 34, 35]. The affinity of buprenorphine for ORL-1 is 500-fold less than 

for the mu receptor. Analgesic ceiling effects have only been noted in animal studies, while 

analgesic ceiling doses have not been noted in humans at doses up to 32 mg/day [4, 10, 36, 

37].

Buprenorphine analgesia is largely mediated through mu receptors in the dorsal horn. 

However, there is a second supraspinal site that is not blocked by naloxone, pertussis toxin, 

or ORL-1 blockers, but selectively blocked by naloxonazine [38]. This is different than 

morphine and fentanyl [8]. Another unique feature of buprenorphine antinociception is that 

the Ser/Thr phosphatase inhibitor Okadaic acid blocks buprenorphine antinociception in 
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animals in low doses, but potentiates it at high doses. Okadaic acid does not influence 

morphine or fentanyl antinociception [8].

Buprenorphine in animals at ultra-low doses facilitates thermal and mechanical hyperalgesia 

by activating spinal serotonergic neurotransmission through the serotonin receptor 5HT-2 

[38]. Buprenorphine also blocks voltage-gated sodium channels and has been combined with 

local anesthetics in regional blocks [39, 40].

The synthetic opioids tramadol, tapentadol, methadone and dextromethorphan, as well as the 

lipophilic opioid meperidine, block serotonin and norepinephrine reuptake. These opioids 

are associated with the serotonin syndrome when combined with antidepressants, while 

fentanyl and oxycodone are also associated with the serotonin syndrome, presumably by a 

mechanism independent of monoamine reuptake inhibition. Buprenorphine neither blocks 

monoamine reuptake nor is it associated with the serotonin syndrome [41].

Buprenorphine has a unique receptor interaction, as demonstrated by modeling interactions 

with the mu receptor, which also explains its long dwell-time on mu receptors. The 

cyclopropyl methyl group prevents deep binding within the receptor pocket, which favors a 

high position within the receptor pocket located more toward the extracellular surface. 

However, a greater number of interactions in the pocket occur between the ligand and 

receptor than occurs with other opioids and the metabolite norbuprenorphine, accounting for 

its slower dissociation from the receptor [42]. The cyclopropyl methyl group also provides 

some antagonism toward receptor activation, accounting for the lower intrinsic efficacy of 

buprenorphine. These interactions produce a conformation that prevents receptor 

phosphorylation, β-arrestin interactions, and receptor downmodulation (Table 1) [17, 43]. 

Despite being classified as a partial agonist, buprenorphine produces analgesia with only 5–

10% of receptors occupied [44]; one can add a potent opioid to buprenorphine and anticipate 

analgesia [45–48].

3 Pharmacodynamics of Buprenorphine Metabolites

Norbuprenorphine, derived from the catabolism of buprenorphine through cytochrome P450 

(CYP) 3A4, is a mu receptor agonist with high affinity for kappa and delta receptors. It 

triggers mu receptor G-protein binding to a greater extent than buprenorphine, as measured 

in vitro by [35]S-GTPγS binding (Table 1), and, paradoxically, has only 1/50th the analgesic 

potency of buprenorphine [49]. Norbuprenorphine is a substrate for the efflux pump P-

glycoprotein, whereas buprenorphine is not [50]. The brain-to-plasma norbuprenorphine 

ratio in mice with intact efflux pumps (wild-type MDR-1) and expression of P-glycoprotein 

is 0.1, indicating significant efflux from the central nervous system (CNS). A P-glycoprotein 

blocker such as PSC 833 will markedly increase norbuprenorphine plasma and brain leading 

to respiratory depression. Furthermore, P-glycoprotein influences gut norbuprenorphine 

absorption, which is the reason for increased plasma levels with PSC 833 [51]. 

Norbuprenorphine also has a high affinity and activates β-arrestin; interactions with β-

arrestin are associated with opioid adverse effects, as demonstrated with morphine [52]. In 

part, norbuprenorphine accounts for the constipation and respiratory depression seen with 
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buprenorphine [51, 53–57], and blocking the formation of norbuprenorphine may 

theoretically reduce buprenorphine toxicity [58].

Both buprenorphine and norbuprenorphine are glucuronidated to 3-glucuronides. 

Buprenorphine 3-glucuronide has affinity for mu and delta receptors, while 

norbuprenorphine 3-glucuronide has high affinity for kappa, but not delta, opioid receptors. 

Both glucuronides cause mild respiratory depression and antinociception in animals [54]. 

Little is known about the contribution of glucuronide metabolites to buprenorphine analgesia 

or adverse effects, however the general assumption is that the glucuronide metabolites are 

likely to contribute little to buprenorphine pharmacology. A reason for this assumption is 

that norbuprenorphine 3-glucuronide is also a P-glycoprotein substrate [59].

4 Pharmacokinetics

Buprenorphine oral bioavailability is 10–15%, largely due to high first-pass hepatic 

clearance [60–62]. Sublingual, buccal, and illicit conversion to intranasal buprenorphine 

bypasses first-pass hepatic clearance. On average, sublingual tablet bioavailability is 50%, 

relative to parenteral buprenorphine [61, 63, 64]. Time to analgesia from the time of 

parenteral injection ranges between 10 and 30 min, with an average duration of analgesia 

ranging from 6 to 8 h [65]. Pharmacokinetics are best described in a three-compartment 

model with first-order elimination [66, 67]. Peak plasma concentrations with sublingual 

tablets occur at around 90 min, whereas peak concentrations with parenteral buprenorphine 

occur between 2 and 3 min [68]. The plasma half-life of sublingual buprenorphine is 4–5 h. 

Brain levels exceed plasma levels because buprenorphine is very lipophilic and is not subject 

to P-glycoprotein efflux [44]. Half-life in the CNS is 155 min, and receptor dissociation time 

is 8.8 min, as opposed to seconds with fentanyl [67]. The time from onset to offset of 

analgesia is largely dependent on distribution within the CNS [69–72]. Clearance from the 

CNS is slower than plasma clearance, which accounts for the difference between plasma 

half-life of the drug and the duration of analgesia [73, 74]. Penetration through the blood–

brain barrier occurs more rapidly, with slower migration to opioid receptor sites [49]. The 

duration of receptor occupancy has been measured using radiolabeled carfentanil in heroin-

dependent volunteers administered a single 16 mg dose of sublingual buprenorphine. 

Seventy percent of receptors were occupied at 4 h, 50% at 24 h (the critical percentage 

occupancy necessary to inhibit craving), and 18% at 76 h [75]. Similar to methadone, 

craving can be checked by a single or twice-daily dose, whereas analgesia will likely require 

multiple daily doses.

Buprenorphine is 96% bound to α1-acid glycoprotein. The volume of distribution is quite 

large, at 430 L, reflecting its lipophilic characteristic, extensive penetration into tissues, and 

high protein binding. Cerebrospinal fluid is only 15–25% of the plasma levels, which does 

not reflect buprenorphine CNS levels [76].

There is a recognized slower decline in buprenorphine plasma levels after 6 h that is related 

to enterohepatic recirculation [77–79]. Buprenorphine 3-glucuronide is excreted in bile, 

deconjugated by bacterial glucuronidase in the colon, and subsequently reabsorbed [78, 80].
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The newly developed and commercially available buccal buprenorphine film provides a 

greater bioavailable dose than sublingual buprenorphine tablets or film. The back layer of 

the film directs buprenorphine unidirectionally to the buccal surface, and much less is lost in 

the oral cavity and swallowed [81]. The single-layer sublingual film does not have the 

bioerodible mucoadhesive structure of the buccal film, and bioavailability of the sublingual 

film is the same as sublingual tablets. Conversion from sublingual tablets or film to buccal 

patches approximates 2–1; a buccal patch dose of 4.2/0.7 is the equivalent of 8/2 mg of 

sublingual tablets. The buccal patch is associated with reduced constipation relative to 

sublingual tablets, thought to be due to reduced norbuprenorphine plasma levels with the 

buccal film [82].

Sublingual buprenorphine plasma levels are dose proportional from 1 to 32 mg; sublingual 

absorption is not limiting. Buprenorphine plasma half-life is longer with sublingual 

administration than parenteral administration, related to slow release from buccal fat, which 

may act as a local depot [83, 84]. A new buprenorphine/naloxone tablet with greater 

sublingual buprenorphine bioavailability was approved by the US FDA in July 2013 for 

maintenance therapy. There is 30% greater buprenorphine bioavailability per milligram of 

buprenorphine relative to the generic formulation [85]. The new 5.7/1.4 mg dose 

(buprenorphine/naloxone) tablet produces similar buprenorphine levels as the generic 8/2 mg 

dose, and dissolves at a faster rate [86], while the sublingual film dissolves even faster than 

the newer buprenorphine/naloxone tablets (173 s on average, vs. 242 s) [87].

The buccal patch comes as 75, 150, 300, and 450 μg doses and is administered every 12 h. 

Steady state is reached at 72 h and the mean plasma elimination half-life is 22.6 h. Absolute 

bioavailability ranges between 46 and 65% [88]. The 150 μg twice-daily dose produces 

plasma levels similar to the 10 μg/h transdermal patch, and the 300 μg/h dose is equivalent to 

the 20 μg/h patch [89].

The 35, 52.5, and 70 μg/h transdermal buprenorphine patches are not available in the US but 

are available in multiple European countries. The 3-day transdermal formulation produces 

half maximum plasma concentrations (Cmax) at 12–24 h, with Cmax reached at 60 h. Drug 

release, as measured by plasma concentrations over 72 h, is ‘dome’-shaped, with 

concentrations diminishing after 60 h [90, 91].

The 7-day low-dose transdermal buprenorphine patch has a time to Cmax (Tmax) of 72 h. 

There is a 70% variance in peak to trough plasma concentrations over the 1-week period, 

and there are consistent dose to plasma concentrations with each patch if placed properly. 

Over a 3-week period, the 10 μg/h dose produces a minimum plasma concentration that 

ranges between 108 and 112 pg/mL [92]. The drug half-life after removing the patch is 

reported to be between 12 and 36 h [60, 92]. Absolute bioavailability of the low-dose 

transdermal buprenorphine patch is 15% compared with parenteral injection [76]. If patches 

are placed at the same site with each application, there is an increase in drug absorption, 

therefore patches should be rotated between the subclavicular, upper back, and upper deltoid 

regions. Drug absorption is 26% greater if patches are placed on the upper back as opposed 

to the sides of the chest [93].
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Intranasal buprenorphine is not commercially available but is a route of abuse. The generic 

sublingual buprenorphine and buprenorphine/naloxone tablets are not tamper-resistant and 

can be crushed and intranasal insufflated or ‘snorted’. The intranasal bioavailability of 

buprenorphine is 38–44%, with a Tmax of 35–40 min, which is shorter than if administered 

sublingually. Naloxone is 24–30% bioavailable, which is much higher than when 

administered by mouth or sublingually, i.e. 2–3% [94]. The subjective ‘high’ is modest and 

transient withdrawal symptoms occur when the combination is snorted [95]. Transient 

withdrawal is due to the naloxone which has a short half-life relative to buprenorphine.

5 Metabolism

Buprenorphine is metabolized to the active metabolite norbuprenorphine through CYP3A4 

and CYP2C8 [77, 80, 96]. The rate-limiting step to buprenorphine metabolism is 

glucuronidation; the parent drug is glucuronidated through UGT1A1, UGT1A3, UGT2B7, 

and UGT2B17, while norbuprenorphine is metabolized through UGT1A1 and UGT1A3 

[97]. Analgesia is influenced by certain CYP3A4 and UGT single nucleotide 

polymorphisms [98, 99]. Depending on CYP3A4 activity, norbuprenorphine plasma levels 

may exceed buprenorphine, and conjugated buprenorphine and norbuprenorphine exceed 

unconjugated buprenorphine levels [100]. Glucuronidated metabolites undergo biliary and 

renal excretion, with biliary excretion leading to enterohepatic recirculation [80].

Buprenorphine has fewer drug–drug interactions than observed with other opioids 

metabolized through CYP3A4. If CYP3A4 is blocked, norbuprenorphine is not formed but 

buprenorphine is metabolized through glucuronidation. Ketoconazole, a strong inhibitor of 

CYP3A4, does not influence buprenorphine plasma clearance, as measured by the area 

under the curve of timed plasma levels [76, 101, 102]. Drugs such as atazanavir, which block 

both CYP3A4 and UGT1A1, increase buprenorphine levels [76], while drugs that induce 

CYP3A4, such as the classical antiseizure medications carbamazepine and rifampin, 

increase clearance and can lead to poor pain control [103, 104].

6 Issues Related to Special Populations

6.1 Children

Transdermal buprenorphine is not approved for children, while the parenteral form is used 

frequently in the perioperative setting. Premature infants and neonates experience significant 

delays in clearing buprenorphine due to delays in expression of CYP3A4 [68, 105, 106]. In 

addition, glucuronidation is also delayed in premature and low-birthweight babies, 

contributing to delayed clearance [107–110]. By age 4–7 years, clearance rates are threefold 

greater than in adults [111, 112].

6.2 Elderly

A consensus group reported buprenorphine is an important opioid to be used in the elderly 

for safety and efficacy reasons [113]. Buprenorphine clearance does not change with age 

[114]; individuals over the age of 70 years, compared with younger individuals (average age 

of 32 years) receiving transdermal buprenorphine 10 μg/h, had the same clearance rate after 

the patch was removed [115].
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6.3 Renal Impairment

The pharmacokinetics of transdermal buprenorphine in patients with severe renal failure 

receiving hemodialysis have demonstrated that plasma clearance is not altered by renal 

failure, and is unchanged by dialysis. Buprenorphine is not associated with post-dialysis 

pain [116]. Norbuprenorphine does not accumulate in renal failure, even though, in part, 

clearance is dependent on renal function. Moreover, uremia is associated with reduced 

CYP3A4 activity and hence less norbuprenorphine formation [117, 118]. Dialysis improves 

CYP3A4 activity, therefore levels may vary depending on the effectiveness of dialysis [119]. 

Accumulation of glucuronidated metabolites is possible, and drug elimination is unchanged 

with parenteral injection [120, 121]. Buprenorphine is one of the safer opioids to use in renal 

failure.

6.4 Liver Impairment

Mild to moderate liver impairment (Child-Pugh A and B) does not impair clearance and 

dose adjustments are not necessary. However, naloxone bioavailability may markedly 

increase in hepatic failure, such that the combination formulations should not be used in 

moderate to severe hepatic failure [122]. Patients with severe liver failure and portal 

hypertension will have increased buprenorphine bioavailability [123]; however, 

glucuronidation is better preserved than mixed-function oxidases, which may modulate 

bioavailability [123–125]. On the other hand, certain glucuronidases can be reduced in 

severe liver disease. Overall preservation is related to upregulation of multiple UGTs in the 

remaining hepatocytes and significant extrahepatic glucuronidation [125, 126]. 

Buprenorphine is bound to α1-acid glycoprotein, which is not as reduced by liver disease 

[125]. It also has more predictable pharmacokinetics than fentanyl or methadone in liver 

failure, which are subject to mixed-function oxidases; morphine and hydromorphone will 

have the same relative pharmacokinetics [96]. At the onset of hepatorenal syndrome, 

buprenorphine may be preferred because of its stable pharmacokinetics in renal failure and 

ceiling effect on respiratory failure [127]. More studies are needed in this important area.

7 Systematic Reviews of Clinical Studies

We conducted an informal systematic review of buprenorphine analgesic studies using the 

PubMed electronic database to select representative trials and articles on various important 

topics regarding buprenorphine use as an analgesic. We initially focused on systematic 

reviews, then on randomized and non-randomized trials of transdermal buprenorphine and 

buccal buprenorphine (summarized in Tables 2, 3, and 4). We then briefly reviewed 

representative studies of buprenorphine as a postoperative analgesic, and comparisons of 

analgesia between sublingual buprenorphine and buprenorphine/naloxone. We also reviewed 

equivalence and methods of rotating from potent opioids to buprenorphine. Finally, we 

reviewed barriers to using sublingual buprenorphine as an analgesic when it is not licensed 

as such.

Several studies have compared fentanyl, morphine, and buprenorphine analgesia and adverse 

effects as primary outcomes, with one review encompassing 14 randomized and quasi-

randomized comparisons [128]. Buprenorphine in this limited comparison reduced pain 
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intensity to a greater extent than morphine (mean difference − 16.2 on a 0–100 visual analog 

scale [VAS]; 95% confidence interval [CI] − 28.9 to − 3.5). Morphine was associated with 

higher rates of constipation (odds ratio [OR] 7.5, 95% CI 1.4–38.8, and patients 

discontinued morphine more often (OR 5.8, 95% CI 1.17–20.1). Transdermal fentanyl 

caused more nausea than transdermal buprenorphine (OR 4.7, 95% CI 1.07–20.4) and had a 

higher discontinuation rate (OR 5.9, 95% CI 1.8–19.9). There was a non-significant 

difference in pain control between the two transdermal opioids. The authors concluded that 

buprenorphine has a better therapeutic index than morphine and fentanyl; however, the wide 

CIs for effect sizes in this review suggest a great deal of variability between studies, which 

weakens the conclusions.

Two years later, the same authors published a systematic review of the adverse effects of 

transdermal fentanyl and transdermal buprenorphine [129]. Randomized and non-

randomized trials, and direct and indirect comparisons were included. A total of 49 unique 

studies found that fentanyl caused higher rates of constipation and had a greater number of 

serious adverse events. There were no differences in the frequency of dizziness, somnolence, 

nausea, or treatment discontinuation (which differed from the first review). The authors felt 

that transdermal buprenorphine should be favored over transdermal fentanyl in patients with 

renal impairment, the elderly, and those immunosuppressed; however, there were no direct 

comparisons in these populations, therefore the conclusions require validation in randomized 

trials.

A more recent comparison of transdermal buprenorphine with transdermal fentanyl involved 

18 prospective, retrospective comparisons and systematic reviews [130]. In prospective 

comparisons at the landmark time of 90 days on therapy, there were no differences in the 

opioid dose escalation index that had been observed in retrospective studies. In retrospective 

studies, dose escalation was less with buprenorphine. By indirect comparison, the sum of the 

pain intensity differences (SPID) and response defined by a 30% reduction in pain intensity 

were similar between the two opioids; however, fewer patients were rotated off 

buprenorphine. The authors concluded that analgesia produced by these two opioids was 

similar and that patients developed less analgesic tolerance, although this was only observed 

in retrospective comparisons.

A systematic review of sublingual buprenorphine for cancer pain included studies published 

from 1979 through 2013 [131]. Of the 10 trials, all but one was observational and low 

quality, with a high risk of bias. The average pain reduction was 2.3 points on a 0- to 10-

point numerical rating scale (NRS).

A second systematic review of sublingual buprenorphine included trials published between 

1979 and 2012 [132]. All studies were observational and hence at significant risk for bias. In 

one study, 0.2–0.4 mg of sublingual buprenorphine produced similar analgesia as 5–20 μg/h 

of transdermal buprenorphine. Pain intensity decreased from a baseline severity of 5.9 (0–10 

NRS) to 3.1. The average reduction in pain was between 2.1 and 2.3 points on a 0–10 NRS. 

Adverse effects, including nausea, vomiting, and dizziness, were worse with sublingual than 

transdermal buprenorphine.
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A systematic review of buprenorphine for cancer pain included eight studies of transdermal 

buprenorphine; five studies involved sublingual tablets, two studies involved intramuscular 

buprenorphine, and one study involved subcutaneous buprenorphine [133]. Ten of 16 studies 

were small, with < 100 individuals. In the eight transdermal trials, comparisons were with 

placebo or morphine. The relative risk (RR) for pain reduction favored buprenorphine (1.35, 

95% CI 1.14–1.59), which was equivalent to a number needed to treat (NNT) to produce a 

pain response better than the comparator of 4.9. Insufficient data were available for 

sublingual and parenteral buprenorphine. Adverse effects were less with buprenorphine (RR 

0.38, 95% CI 0.2–0.71), while CNS adverse effects were similar to placebo in one study and 

hydromorphone in a second study. Similar to the previously reviewed study, sublingual 

buprenorphine had greater adverse effects than transdermal buprenorphine. Sublingual 

buprenorphine related to nausea and vomiting was similar to pentazocine, while CNS 

adverse effects were similar to both tramadol and pentazocine. Withdrawal because of 

adverse effects was similar to placebo and tramadol.

A Cochrane Database systematic review focused on buprenorphine for neuropathic pain 

[134]. Of the 10 trials, none met the criteria of a randomized trial of 2 weeks’ duration, 

which the authors felt was the minimal criteria needed to gauge clinical efficacy. The authors 

felt that randomized trials are needed to assess the benefits of buprenorphine in neuropathic 

pain.

On 16 January 2017, the Canadian Agency for Drugs and Technologies in Health published 

a summary of all studies to date that involved buprenorphine in the management of chronic 

pain [135]. This summary included four systematic reviews, two Cochrane Database 

systematic reviews, and two systematic reviews with meta-analysis. The number of trials in 

systematic reviews was low, which subsequently biased the results. There were six 

randomized, double-blind trials, four randomized, open-label trials, and four enriched 

enrollment randomized withdrawal studies. Comparators to buprenorphine were placebo, 

tramadol, transdermal fentanyl, codeine and oxycodone. All but two randomized trials were 

sponsored by pharmaceutical companies. Patients in these studies had pain from 

osteoarthritis, low back pain, neuropathic pain, musculoskeletal pain, and AIDs. The review 

found that tramadol, codeine, and buprenorphine produced similar analgesia in 

osteoarthritis, while fentanyl and buprenorphine produced similar analgesia in those with 

neuropathic pain and pain from AIDs. Transdermal buprenorphine 20 μg/h was equivalent to 

oxycodone 40 mg daily when treating low back pain. A network meta-analysis concluded 

that morphine was better for chronic low back pain. Buprenorphine was superior to placebo 

in all comparison trials, with similar adverse effects to placebo, but fewer dropouts.

A review of transdermal buprenorphine trials, both randomized and non-randomized, and 

buccal buprenorphine are available in Tables 2, 3, and 4, respectively [136–155].

8 Miscellaneous but Important Topics

8.1 Postoperative Pain Management in Buprenorphine-Tolerant Patients

In an early study involving patients with postoperative pain, 0.2 mg of parenteral 

buprenorphine was administered every 3–15 min until pain control was achieved. Doses 

Davis et al. Page 10

Drugs. Author manuscript; available in PMC 2019 October 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



required for analgesia ranged widely, from 0.2 to 7 mg. The cohort of young women in this 

study had few comorbidities and, predictably, better tolerated this dosing strategy than those 

with multiple comorbidities. The duration of analgesia post-titration averaged 14.2 h with 

loading, and was directly related to dose. Despite doses as high as 7 mg, respiratory 

depression did not occur [156].

Transdermal buprenorphine has been used for postoperative pain. Doses between 5 and 20 

μg/h produce similar analgesia as tramadol 150–300 mg/day for single-level spinal surgery 

[157].

Parenteral buprenorphine by patient-controlled analgesia (PCA) has been compared with 

morphine analgesia by PCA for lung surgery [158]. Buprenorphine 25μg/h with PCA 

demand dosing was compared with morphine 0.83 mg/h. The time to activation of PCA was 

longer for buprenorphine and there was less hyperalgesia around the incision site with 

buprenorphine. In a second PCA study involving patients undergoing spinal surgery, the 

demand doses were actually more frequent with buprenorphine in the first 6 h after surgery, 

which differed from the first study; however, after 6 h, the number of rescue doses was the 

same as with PCA morphine [159].

There are a multitude of other studies in the postoperative setting that have been published 

but are not reviewed here as this could be a separate review. However, one unique feature of 

buprenorphine is that it is a voltage-gated sodium channel blocker and has been combined 

with local anesthetics in perineural blocks for regional postoperative analgesia [40, 160–

162].

8.2 Is Sublingual Buprenorphine/Naloxone Objectively and Subjectively Equivalent to 
Sublingual Buprenorphine Alone? Buprenorphine Equivalents

Buprenorphine bioavailability is slightly greater with generic buprenorphine/naloxone 

compared with sublingual buprenorphine without naloxone [163]. Technically, the 

differences are small and not clinically significant, and clinicians should consider them 

equivalent, milligram for milligram. The addition of naloxone does not influence 

buprenorphine bioavailability. In fact, some authors have claimed that perhaps naloxone 

attenuates some of the buprenorphine adverse effects [164]. However, patients subjectively 

experience a difference when switching from buprenorphine to the combination. In one 

study, 50% of patients who switched to the combination experienced adverse effects that 

they did not experience while receiving generic sublingual buprenorphine tablets [165]. This 

was more evident in those who were opioid-dependent. Eighty percent of patients who 

switched to the combination described it as a bad experience, however there may be an 

explanation for this. Both naloxone and buprenorphine are glucuronidated and compete for 

metabolism by the same conjugases. Buprenorphine causes substrate inhibition at UGT2B7, 

which also metabolizes naloxone. At the enzyme site, buprenorphine concentrations of 0.3 

nM will prevent naloxone metabolism through UGT2B7, which may make naloxone more 

systemically bioavailable [166]. Although buprenorphine bioavailability remains the same, 

naloxone bioavailability may increase with doses, such that, particularly in opioid-dependent 

patients, subjective adverse effects may be experienced.
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Table 5 lists the equivalence between sublingual, parenteral, and transdermal buprenorphine, 

as published in the palliativedrugs.com newsletter dated November/December 2006.

8.3 Buprenorphine Equivalents to Other Opioids

Some direct comparisons of analgesic equivalents have been published, but equivalent 

studies are sparse. Many equianalgesic estimates are indirect through a third opioid, which is 

likely to have inaccuracies. Equivalents compared across select populations (chronic low 

back pain, neuropathic pain, postoperative pain, and cancer pain) may not be generalizable. 

With this in mind, the buprenorphine to morphine equianalgesic ratio ranges between 1:60 

and 1:100 [167–172]. Sublingual buprenorphine 0.4 mg is equivalent to 30 mg of 

immediate-release morphine, while parenteral buprenorphine is 30–40 times more potent 

than parenteral morphine, such that 0.3 mg of buprenorphine is equivalent to 10 mg of 

morphine [173]. Table 6 lists the equivalents of oral morphine to transdermal buprenorphine. 

In two studies involving patients with chronic cancer pain, buprenorphine 0.8 mg was 

equivalent to 60 mg of oral morphine and 35 μg/h of transdermal buprenorphine [171, 172].

In another study, transdermal buprenorphine 20 μg/h produced the same degree of analgesia 

as 40 mg of oxycodone in patients with chronic low back pain [139]. In the postoperative 

setting, 5–20 μg/h of transdermal buprenorphine produced similar analgesia as tramadol 

150–300 mg/day [157]. In a small series of patients with cancer, the equivalence between 

parenteral fentanyl and buprenorphine is reported to be 6:8, such that fentanyl 25 μg/h is 

equivalent to 35 μg/h of buprenorphine, which in turn is equivalent to 1 mg/h of parenteral 

morphine [172, 174].

8.4 Can Buprenorphine be Combined with Other Potent Opioids?

Because buprenorphine has a high affinity and long dwell time on mu receptors, it would 

seem rational that it would produce subadditive analgesia when combined with other 

opioids, and vice versa, such that potent opioids combined with around-the-clock 

buprenorphine would also be subadditive. In the postoperative setting, at usual analgesic 

doses, buprenorphine did not impair morphine analgesia. Buprenorphine 0.4 μg/kg as an 

infusion, and 0.15 μg/kg as the demand dose, did not prevent morphine analgesia [175]. 

Cancer patients with breakthrough pain receiving transdermal buprenorphine doses ranging 

from 35 to 70 μg/h responded well to morphine. The investigators used an oral morphine to 

transdermal buprenorphine ratio of 75:1 and converted the equivalent parenteral morphine 

dose using a ratio of 1:3 (parenteral to morphine) [176].

The most controversial area is in the perioperative setting when patients are receiving high-

dose buprenorphine for maintenance therapy. Some recommend keeping buprenorphine in 

the perioperative period if the risk of pain from the procedure is low, but recommend 

switching to methadone prior to surgery when the risk of pain in the perioperative setting is 

high. Once the surgical pain has resolved, patients are switched back to buprenorphine [177, 

178]. This is undertaken because mu receptor affinity is about the same between methadone 

and morphine, therefore one would anticipate an analgesic response to morphine. This 

approach is based on a theoretical understanding of buprenorphine pharmacology that is 

rational. However, clinical retrospective studies of patients receiving buprenorphine 

Davis et al. Page 12

Drugs. Author manuscript; available in PMC 2019 October 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://palliativedrugs.com


maintenance therapy found that morphine responses were not different compared with 

methadone-maintained individuals [47, 179]. These authors felt that buprenorphine-

maintained individuals do not need to be switched off their maintenance opioid, an approach 

that has also been advocated by others [180].

8.5 Rotating to Buprenorphine from Other Opioids and the Risk of Withdrawal

Buprenorphine causes withdrawal in a ‘stop/start’ strategy when used in opioid rotation for 

patients receiving high doses of potent opioids. There are several factors that predict this 

occurrence: [1] the dose of buprenorphine; [2] the time interval between stopping the potent 

opioid and starting buprenorphine; [3] the patients’ accumulated physical dependence [181]; 

and [4] the dose of potent opioid prior to rotation. Withdrawal is unlikely if individuals 

receive ≤ 60 mg/day of morphine or methadone ≤ 30 mg. Several approaches use a gap 

between stopping the potent opioid and initiating buprenorphine. In one study, the potent 

opioid was stopped for 12 h (excluding methadone, which required a longer gap) and 

sublingual buprenorphine 1 mg was initially administered, followed by 2 mg 45 and 90 min 

later for persistent pain. Titration thereafter was based on analgesia. Buprenorphine was also 

titrated if patients experienced withdrawal off their potent opioid [182]. This approach 

illustrates a common strategy when rotating off high-dose opioids to buprenorphine 

(exclusive on methadone); a 12- to 24-h gap and relatively small but frequent sublingual 

doses were initiated at the first sign of withdrawal.

A second study involved patients receiving 60–200 mg/day of oral morphine equivalents 

(excluding methadone at > 80 mg/day). Patients stopped their opioid and sublingual 

buprenorphine 2 mg was initiated at the onset of withdrawal, and 2–4 mg was administered 

as needed thereafter for pain or if withdrawal symptoms from abstinence occurred. The next 

day, 2 mg was administered every 4 h as needed for pain, and 4 mg was administered at 

night. On the second day, buprenorphine was administered as 4 mg every 8 h, and 2–4 mg 

every 4 h as needed [183].

A third approach involved stopping all opioids and starting sublingual buprenorphine 8 mg 

24 h later (48 h later if receiving methadone) at the onset of withdrawal. An 8 mg dose was 

repeated 1 h later for pain or persistent withdrawal symptoms. Clonidine was also provided 

to blunt abstinence. Total daily doses were limited to 32 mg. Doses were adjusted to 

analgesia 1 week later [184, 185].

An overlap approach has been previously published in a randomized trial. Patients receiving 

80–220 mg of oral morphine equivalents had their opioid dose reduced by half, while 

buprenorphine was added at half the equivalent doses using an equianalgesic ratio of 

buprenorphine (buccal) to oral morphine of 1:100. For example, if a patient was receiving 

160 mg/day of sustained-release morphine, the dose was reduced to 40 mg twice daily and 

buccal buprenorphine 300 μg was added twice daily. Of 35 participants, only two 

experienced mild withdrawal [186]. Presumably, a completed rotation could be 

accomplished through further reductions in the potent opioid and simultaneous 

buprenorphine titration, although this was not part of the study.
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8.6 Can Sublingual Buprenorphine Be Used as an Analgesic Without the Training and 
Registration Required for Addiction?

Suboxone™ (Actavis Elizabeth, LLC, Elizabeth, NJ, USA) and Subutex™ (Roxane 

Laboratories, Columbus, OH, USA) are licensed by the FDA for opioid maintenance 

therapy, but not as analgesics. Sublingual buprenorphine tablets were approved for office-

based addiction therapy established by the Drug Addiction Treatment Act of 2000. 

Prescribers who explicitly use buprenorphine for detoxification and maintenance therapy 

must register with the Center for Substance Abuse Treatment of the Substance Abuse and 

Mental Health Services Administration and undergo special training for certification. 

However, the FDA permits the use of Suboxone™ and Subutex™ as an off-label analgesic. 

The requirements involve registering with the Drug Enforcement Administration as a 

prescriber of schedule III medications. Registration as a prescriber for maintenance therapy 

and training are otherwise not required. It is important that prescribers using sublingual 

buprenorphine as an analgesic note on their prescriptions that it is explicitly being used for 

pain, otherwise pharmacies will not fill the prescription if the prescriber is not registered as a 

maintenance prescriber. Some insurance companies attempt to limit sublingual 

buprenorphine to addiction and maintenance only. We refer to Heit and Covington’s open 

letter to the FDA as a reference in an appeal for covering the medication for analgesia [187].

8.7 Buprenorphine and QTc Intervals

Buprenorphine mildly inhibits cardiac repolarization and prolongs QTc intervals. Its affinity 

for the potassium repolarization channel is 100-fold less than methadone. Clinically, patients 

have been rotated from methadone to buprenorphine as a result of a prolonged QTc interval, 

with resolution of the prolonged QTc interval [188–194]. However, due to the prolonged 

QTc intervals noted at doses > 20 ug/h, the transdermal buprenorphine ceiling dose in the 

US is 20 μg/h. Transdermal doses of 10 μg/h had no effect on QTc intervals, whereas the 40 

and 80 μg/h doses increased QTc by 12–14 ms. Interestingly, naltrexone eliminated the 

prolonged QTc interval [195]. Despite this finding, this has not been a concern in the 

maintenance literature, nor has there been a need to monitor buprenorphine with serial ECGs 

on maintenance therapy, as has been suggested with methadone [196, 197]. Buprenorphine 

has not been associated with arrhythmias or Torsades de pointe [195].

On the other hand, when buprenorphine is combined with medications that prolong the QTc 

interval, there may be concern. QTc intervals are prolonged when buprenorphine is 

combined with certain antiretroviral medications (delavirdine and ritonavir), but 

prolongation does not occur if these drugs are not combined, and, although the clinical 

significance is uncertain, physicians should be cautious [198]. Some clinicians suggest 

avoiding buprenorphine in patients who already have a prolonged QTc interval and a 

genetically related prolonged QT syndrome, or who are receiving antiarrhythmic medication 

that prolongs the QTc interval, such as amiodarone [199].

9 Status of Buprenorphine as an Analgesic

There is increased interest in using buprenorphine as an analgesic, with a growing number of 

formulations. Buprenorphine formulations for maintenance therapy can be used off-label for 
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analgesia but it must be clearly marked on the prescription that the intent is analgesia. 

Buprenorphine may be preferred in patients who have renal failure or mild to moderate liver 

failure, those in whom standard opioids have not worked or those who have difficulty 

swallowing, the elderly, or those who wish to remain sexually active while receiving opioid 

therapy [1]. The generic formulations are less expensive than most sustained-released and 

transdermal potent opioid commercial products. Buprenorphine is an important opioid in the 

‘tool box’ of analgesics, for which clinicians should be knowledgeable.
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Buprenorphine Analgesia: Key Points

The buprenorphine receptor binding profile is unique in that it binds to all three 

major opioid receptors (mu, kappa, delta), with much less affinity to the orphan-

like receptor (ORL-1).

There is high first-pass clearance requiring administration by routes other than 

oral administration.

Buprenorphine is metabolized to the active metabolite norbuprenorphine through 

cytochrome 450 (CYP) 3A4 and CYP3C8, but its rate-limiting metabolism is 

through multiple conjugases.

Clearance is independent of renal function and is not removed by dialysis, making 

it a preferred analgesic in renal failure.

Clearance is also not influenced by mild to moderate liver failure.

Analgesia is equivalent to other opioids, but with a dose-related ceiling effect on 

respiratory depression, less constipation, and less hypogonadism, thus having a 

better therapeutic index than other potent opioids.

The evidence for buprenorphine analgesia is moderate and more direct 

comparisons between buprenorphine and other opioids are needed.
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Table 1

Dose at which 50% G-protein activation occurs, as measured by [35S]GTPγS, and β-arrestin recruitment 

occurs in HEK293 cells [17]

Opioid [35S]GTPγS binding EC50 (nM) β-arrestin recruitment (nM)

Morphine 97.5 ± 28.5 322 ± 44

Methadone 87.2 ± 42.2 2110 ± 999

Fentanyl 56.6 ± 31.2 210 ± 42

Buprenorphine 14.5 ± 5.1 Not active

Norbuprenorphine   1.7 ± 0.7 84.6 ± 12

EC50 half maximal effective concentration
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Table 5

Buprenorphine equivalents, sublingual, parenteral and transdermal
a

Sublingual buprenorphine (μg) Subcutaneous buprenorphine (μg) Transdermal buprenorphine (μg/h)

240   120 5

480   240 10

960   480 20

1680   840 35

2520 1260 52.5

3360 1680 70

a
From the palliativedrugs.com newsletter, November/December 2006
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Table 6

Oral morphine to transdermal buprenorphine equivalents
a

Oral morphine (mg/day) Transdermal buprenorphine (μg/h)

12 5

24 10

48 20

84 35

126 52.5

168 70

a
From the palliativedrugs.com newsletter, November/December 2006
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