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Abstract: Gabapentinoids (gabapentin and pregabalin) and antidepressants (tricyclic antidepressants
and serotonin noradrenaline reuptake inhibitors) are often used to treat chronic pain. The descending
noradrenergic inhibitory system from the locus coeruleus (LC) to the dorsal horn of the spinal cord
plays an important role in the analgesic mechanisms of these drugs. Gabapentinoids activate the
LC by inhibiting the release of γ-aminobutyric acid (GABA) and inducing the release of glutamate,
thereby increasing noradrenaline levels in the spinal cord. Antidepressants increase noradrenaline
levels in the spinal cord by inhibiting reuptake, and accumulating noradrenaline inhibits chronic
pain through α2-adrenergic receptors in the spinal cord. Recent animal studies, however, revealed
that the function of the descending noradrenergic inhibitory system is impaired in chronic pain
states. Other recent studies found that histone deacetylase inhibitors and antidepressants restore the
impaired noradrenergic descending inhibitory system acting on noradrenergic neurons in the LC.

Keywords: locus coeruleus; noradrenaline; descending inhibition; spinal cord; α2-adrenergic
receptors; neuropathic pain; hypersensitivity; rats

1. Introduction

Although gabapentinoids (gabapentin and pregabalin, also known as voltage-dependent calcium
channel α2δ subunit ligands) and antidepressants, such as tricyclic antidepressants (TCA) and
serotonin noradrenaline reuptake inhibitors (SNRI), were not originally designed as analgesics, they
have analgesic effects for chronic pain. These drugs have no substantial antinociceptive effects
for acute pain but are considered first-line drugs of choice for treating neuropathic pain [1–4] and
fibromyalgia [5]. Gabapentinoids and antidepressants use a common neuronal pathway to inhibit
chronic pain, which includes the descending noradrenergic system from the locus coeruleus (LC) to
the dorsal horn of the spinal cord. Gabapentinoids activate the LC whereas antidepressants inhibit
the reuptake of noradrenaline in the synaptic cleft, both resulting in increased noradrenaline levels in
the spinal cord. In this review, we discuss drug strategies to reinforce the descending noradrenergic
inhibitory system in a chronic pain state based on experimental findings from animal models of
neuropathic pain.
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2. Descending Noradrenergic Inhibition from the LC

2.1. Physiological Role of the LC

In the central nervous system, all noradrenergic nuclei are located in the brainstem and are
classified from A1 to A7. The largest noradrenergic nucleus, A6, also known as the LC, named over
200 years ago after the Latin word meaning “blue spot”, is located in the dorsal pons and contains
more than 50% of all noradrenergic neurons [6,7]. LC neurons project to almost the entire central
nervous system and are spatially subdivided by their efferent targets to regulate sensory gating and
responses, including cognitive function (attention and memory), sleep and arousal, anxiety, and pain [8].
Although the ascending noradrenergic pathways from the dorsal LC can facilitate nociception, a large
number of basic research studies suggest that the descending noradrenergic pathway from the ventral
LC reduces spinal pain transmission [9,10]. In particular, large multipolar neurons in the ventral LC
projecting to the dorsal horn of the spinal cord play an important role in endogenous analgesia [8,11].

2.2. Normal State

In the normal physiologic state, noradrenaline released from descending noradrenergic axons
produces antinociceptive effects in the spinal dorsal horn via stimulation of the α2-adrenergic receptors,
which are coupled with inhibitory G protein (Gi/o). Activation of presynaptic α2-adrenergic receptors
on the primary afferents inhibits voltage-gated Ca2+ channels to reduce the release of excitatory
neurotransmitters in the spinal cord. Activation of postsynaptic α2-adrenergic receptors on secondary
sensory neurons in the spinal cord results in an opening of inwardly rectifying K+ channels to
hyperpolarize cells, thereby reducing neuronal excitability [12]. Through these mechanisms, activation
of the descending noradrenergic inhibitory pathway reduces spinal pain transmission.

2.3. Early Stage of Neuropathic Pain

In rodents, at a relatively early stage of neuropathic pain following peripheral nerve injury
(>2–3 weeks after injury), descending noradrenergic inhibition becomes profoundly effective
against mechanical and thermal hypersensitivity [13,14]. This is due to the increased brain-derived
neurotrophic factor (BDNF) in the spinal dorsal horn which, after nerve injury, fundamentally
alters the structure and function of the descending noradrenergic pathway via the activation of
tropomyosin receptor kinase B (trkB) [15,16]. On the activation of this pathway, noradrenergic fibers
in the spinal dorsal horn sprout at dermatomes, surrounding the site of primary sensory input,
allow for a more anatomically extensive release of noradrenaline. Furthermore, the function of the
α2-adrenergic receptor in the spinal cholinergic neurons changes from inhibition (Gi/o-coupling) to
facilitation (Gs-coupling); thus, spinally released noradrenaline excites cholinergic interneurons to
induce acetylcholine release, which is critical to the antihypersensitivity effect of spinal noradrenaline
after nerve injury (Figure 1). In addition, many drugs, including gabapentinoids, noradrenaline
reuptake inhibitors, and clonidine, have been approved to treat neuropathic pain, activate, augment,
or mimic the descending noradrenergic pathway to produce analgesia [17–20]. This suggests that
the descending noradrenergic pathway is not only essential to endogenous analgesia but is also an
important target for many drugs that have been approved to treat neuropathic pain.
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Figure 1. Locus coeruleus (LC) and descending noradrenergic inhibition. In a normal physiologic state 
(blue pathway), activation of LC neurons results in spinal noradrenaline (NA) release, which 
stimulates α2-adrenergic receptors (α2-AR) in the spinal cord to produce analgesia. In early-stage 
neuropathic pain following peripheral nerve injury (red pathway), noradrenergic axons sprout in the 
spinal cord, and the function of the α2-AR in the spinal cholinergic neurons changes from inhibition 
(Gi/o-coupling) to facilitation (Gs-coupling). Therefore, activation of LC neurons results not only in 
an increased release of NA but also the excitation of cholinergic interneurons to induce the release of 
acetylcholine (ACh) in the spinal cord, which is critical to the antihypersensitivity effect of spinal 
noradrenaline after nerve injury. 

2.4. Chronic Neuropathic Pain 

When neuropathic pain turns into chronic pain, noradrenergic neurons in the LC become less 
responsive to noxious stimuli, leading to impaired endogenous analgesia. Astroglial glutamate 
dysregulation is critical to this impairment [21]. Among the various neurochemical inputs to the LC, 
glutamate is considered a primary excitatory regulator of noradrenergic neurons, acting through α-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors [7]. Glutamate also inhibits 
its own release from the terminal via group 2 and 3 metabotropic glutamate receptors (mGluRs) [12]. 
In the central nervous system, two types of astroglial glutamate transporters, glutamate transporter-
1 (GLT-1) and glutamate-aspartate transporter, regulate extracellular glutamate [22]. In the LC of 
normal rats, knockdown of GLT-1 alone is sufficient to increase basal extracellular glutamate 
concentrations [23], supporting the primary role of GLT-1 in glutamate regulation of the LC. In rats 
with chronic neuropathic hypersensitivity, peripheral nerve injury decreases the expression of GLT-
1 via activation of histone deacetylase (HDAC) and increases basal extracellular glutamate 
concentrations, which reduces noxious stimulation-evoked glutamate release, via activation of 
presynaptic mGluRs [21]. This reduced glutamate release reduces stimulation-evoked neuronal 
activity in the LC and noradrenaline release in the spinal cord, thereby impairing noxious 
stimulation-induced analgesia [21]. This is consistent with the clinical observations of patients with 
established neuropathic pain having a reduced ability to physiologically recruit descending 
inhibition [24]. Recent laboratory studies in rats, with chronic neuropathic hypersensitivity, 
demonstrated that repeated administration of an HDAC inhibitor restores this impaired noxious 
stimulation-induced analgesia by restoring GLT-1 expression in the LC [21]. 

3. Gabapentinoids 

3.1. LC Is an Important Target of Gabapentin Analgesia 

Figure 1. Locus coeruleus (LC) and descending noradrenergic inhibition. In a normal physiologic
state (blue pathway), activation of LC neurons results in spinal noradrenaline (NA) release, which
stimulates α2-adrenergic receptors (α2-AR) in the spinal cord to produce analgesia. In early-stage
neuropathic pain following peripheral nerve injury (red pathway), noradrenergic axons sprout in the
spinal cord, and the function of the α2-AR in the spinal cholinergic neurons changes from inhibition
(Gi/o-coupling) to facilitation (Gs-coupling). Therefore, activation of LC neurons results not only in
an increased release of NA but also the excitation of cholinergic interneurons to induce the release
of acetylcholine (ACh) in the spinal cord, which is critical to the antihypersensitivity effect of spinal
noradrenaline after nerve injury.

2.4. Chronic Neuropathic Pain

When neuropathic pain turns into chronic pain, noradrenergic neurons in the LC become less
responsive to noxious stimuli, leading to impaired endogenous analgesia. Astroglial glutamate
dysregulation is critical to this impairment [21]. Among the various neurochemical inputs to
the LC, glutamate is considered a primary excitatory regulator of noradrenergic neurons, acting
through α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors [7]. Glutamate
also inhibits its own release from the terminal via group 2 and 3 metabotropic glutamate receptors
(mGluRs) [12]. In the central nervous system, two types of astroglial glutamate transporters, glutamate
transporter-1 (GLT-1) and glutamate-aspartate transporter, regulate extracellular glutamate [22].
In the LC of normal rats, knockdown of GLT-1 alone is sufficient to increase basal extracellular
glutamate concentrations [23], supporting the primary role of GLT-1 in glutamate regulation of the LC.
In rats with chronic neuropathic hypersensitivity, peripheral nerve injury decreases the expression of
GLT-1 via activation of histone deacetylase (HDAC) and increases basal extracellular glutamate
concentrations, which reduces noxious stimulation-evoked glutamate release, via activation of
presynaptic mGluRs [21]. This reduced glutamate release reduces stimulation-evoked neuronal activity
in the LC and noradrenaline release in the spinal cord, thereby impairing noxious stimulation-induced
analgesia [21]. This is consistent with the clinical observations of patients with established neuropathic
pain having a reduced ability to physiologically recruit descending inhibition [24]. Recent laboratory
studies in rats, with chronic neuropathic hypersensitivity, demonstrated that repeated administration
of an HDAC inhibitor restores this impaired noxious stimulation-induced analgesia by restoring GLT-1
expression in the LC [21].

3. Gabapentinoids

3.1. LC Is an Important Target of Gabapentin Analgesia

Gabapentin, originally licensed as an antiepileptic drug in 1993, was rapidly recognized as
an analgesic in patients and animals with neuropathic pain [25–28]. Gabapentin interacts with the
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α2δ subunit of voltage-gated calcium channels that modulates the release of excitatory amino acids
in the spinal dorsal horn [29] and produces analgesia in transgenic mice with up-regulated α2δ-1
subunits, but not in normal mice [30], suggesting that the efficacy of gabapentin relies on the α2δ
subunit. Thus, most laboratory studies have focused on the theory that gabapentin primarily acts
on spinal pain mechanisms. However, the clinical significance of this theory could be disputed as
intrathecal gabapentin at doses from 1 mg/day to 30 mg/day for three weeks failed to show clinical
efficacy in patients with noncancer pain [31], despite the known efficacy of oral gabapentin in this
patient population.

Tanabe et al. first reported the role of descending noradrenergic inhibition in gabapentin analgesia
by demonstrating that depletion or blockade of noradrenergic signaling in the spinal cords of mice,
after peripheral nerve injury, abolishes the antihypersensitivity effect of systemically administered
gabapentin [25]. Similar behavioral results are also reported in various neuropathic pain rodent models,
after systemic, intra-cerebroventricular, or intra-LC administration of gabapentin [26–28]. Gabapentin
likely acts similarly in humans, because its oral administration at a dose that produces postoperative
analgesia increases the noradrenaline concentration in the cerebrospinal fluid of patients with joint pain
scheduled for orthopedic surgery [19]. Together, these laboratory and clinical observations suggest
that descending noradrenergic inhibition plays a key role in the analgesic efficacy of gabapentin.

3.2. Mechanisms of LC Activation by Gabapentin

Despite its name and structural similarity to GABA, gabapentin has no direct effects on GABA
receptors [32] or spinal GABA release [33]. Gabapentin, however, does affect GABA release in the brain,
although its actions are controversial and likely depend on the brain site. Some studies demonstrated
that gabapentin increased GABA release in rat and human brains [34–36], whereas other studies
demonstrated a direct reduction in GABA release upon the exposure of rat cortical synaptosomes
to gabapentin [37]. In the LC, gabapentin and other α2δ ligands reduce presynaptic GABA in
rodents [33,38], indicating that gabapentin reduces the influence of GABA on noradrenergic neurons
by which it activates descending noradrenergic inhibition.

In rodents with relatively early-stage neuropathic pain following peripheral nerve injury
(within 2–3 weeks after injury), gabapentin-induced analgesia and activation of LC neurons are
abolished by blocking AMPA glutamate receptors [26]. In in vivo microdialysis studies, systemic
administration or local perfusion of gabapentin in rats increases extracellular glutamate concentrations
in the LC, but not in the spinal cord [39]. These observations suggest that, other than reducing
the influence of GABA in the LC, gabapentin also induces glutamate release in the LC to activate
descending inhibition. Although GABA inhibits glutamate release via presynaptic GABA-B receptors in
many sites of the brain [40,41], blocking GABA-B receptors in the LC fails to affect basal glutamate levels
and the gabapentin-induced glutamate increase in rats [39], suggesting that the tonic influence of GABA
on glutamatergic terminals and the effect of gabapentin on glutamate levels is either minor or absent
in the LC. In cultured rat astrocytes, gabapentin and its related α2δ ligand pregabalin increase the
co-transport of Na+ ions and glutamate via glutamate transporters and enhance the glutamate-induced
intracellular Ca2+ response via the reverse mode of Na+-Ca2+ exchange, thus facilitating glutamate
release [42]. In rats, 2–3 weeks after peripheral nerve injury, selective blockade or knockdown of
GLT-1 in the LC abolishes the effects of gabapentin on glutamate levels and hypersensitivity [39,43],
suggesting that GLT-1-mediated glutamate release from astrocytes is essential to the analgesic effects
of gabapentin.

Taken together, these observations suggest that gabapentin inhibits presynaptic GABA release
and induces glutamate release from astrocytes in the LC, thereby increasing LC neuronal activity to
activate descending noradrenergic inhibition, at least during the early phase (2–3 weeks after nerve
injury) of neuropathic pain (Figure 2).
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Figure 2. Proposed mechanisms of gabapentin (GBP) action in the locus coeruleus (LC). GBP interacts 
with the α2δ subunit of voltage-gated calcium channels (VGCC) to reduce presynaptic GABA release 
and activates glutamate transferase-1 (GLT-1)-dependent mechanisms to induce glutamate (Glu) 
release from astrocytes in the LC, thus increasing LC neuronal activity to activate descending 
inhibition. 

3.3. Impaired Gabapentin Analgesia in Chronic Neuropathic Pain 

Gabapentin often fails to provide sufficient analgesia in patients with neuropathic pain [1], in 
contrast to its remarkable and uniform efficacy in various neuropathic pain rodent models 
[25,26,28,44]. Although there are many different factors between humans and animals regarding 
neuropathic pain, the discrepancy between the clinical and preclinical efficacy of gabapentin may 
relate in part to the timing of studies in rodents, which are typically examined within 2–3 weeks after 
nerve injury. Given that the analgesic effects of gabapentin rely on the expression of GLT-1 in the LC, 
which is down-regulated during the chronification of neuropathic pain [39,43], the early uniform 
antihypersensitivity effect of gabapentin decreases over time in rats after peripheral nerve injury and 
nearly 80% of its efficacy is lost eight weeks after injury, associated with down-regulation of GLT-1 
in the LC [43]. These findings bring into question the relevance of the timing of previous laboratory 
studies performed within the first 2–3 weeks of surgical injury to the clinical use of gabapentin for 
patients with long-lasting neuropathic pain. There may be a treatment strategy to restore the 
impaired gabapentin-induced analgesia in chronic neuropathic pain. In rats with chronic neuropathic 
hypersensitivity, inhibiting HDAC by the clinically available drug valproate increases down-
regulated GLT-1 expression in the LC, thereby restoring the antihypersensitivity effect of gabapentin 
[43]. Given the clinical availability and established safety profiles of valproate, it should be tested for 
rescuing gabapentin efficacy in the neuropathic pain patients who initially fail to respond to 
gabapentin. 

4. Antidepressants 

4.1. Analgesic Mechanisms of Antidepressants for Neuropathic Pain 

Chronic pain causes anxiety accompanied by a depressive state and enhanced pain sensations. 
The analgesic effects of antidepressants on chronic pain, however, involve a mechanism different 
from the one which produces their antidepressive effects, because antidepressants inhibit 
neuropathic pain in patients without depression [45]. In addition, the effects of antidepressants on 
mediating antidepressive effects are visible in approximately 2–4 weeks from the time the drug is 

Figure 2. Proposed mechanisms of gabapentin (GBP) action in the locus coeruleus (LC). GBP interacts
with the α2δ subunit of voltage-gated calcium channels (VGCC) to reduce presynaptic GABA release
and activates glutamate transferase-1 (GLT-1)-dependent mechanisms to induce glutamate (Glu) release
from astrocytes in the LC, thus increasing LC neuronal activity to activate descending inhibition.

3.3. Impaired Gabapentin Analgesia in Chronic Neuropathic Pain

Gabapentin often fails to provide sufficient analgesia in patients with neuropathic pain [1],
in contrast to its remarkable and uniform efficacy in various neuropathic pain rodent models [25,26,28,
44]. Although there are many different factors between humans and animals regarding neuropathic
pain, the discrepancy between the clinical and preclinical efficacy of gabapentin may relate in part
to the timing of studies in rodents, which are typically examined within 2–3 weeks after nerve
injury. Given that the analgesic effects of gabapentin rely on the expression of GLT-1 in the LC,
which is down-regulated during the chronification of neuropathic pain [39,43], the early uniform
antihypersensitivity effect of gabapentin decreases over time in rats after peripheral nerve injury
and nearly 80% of its efficacy is lost eight weeks after injury, associated with down-regulation of
GLT-1 in the LC [43]. These findings bring into question the relevance of the timing of previous
laboratory studies performed within the first 2–3 weeks of surgical injury to the clinical use of
gabapentin for patients with long-lasting neuropathic pain. There may be a treatment strategy
to restore the impaired gabapentin-induced analgesia in chronic neuropathic pain. In rats with
chronic neuropathic hypersensitivity, inhibiting HDAC by the clinically available drug valproate
increases down-regulated GLT-1 expression in the LC, thereby restoring the antihypersensitivity effect
of gabapentin [43]. Given the clinical availability and established safety profiles of valproate, it should
be tested for rescuing gabapentin efficacy in the neuropathic pain patients who initially fail to respond
to gabapentin.

4. Antidepressants

4.1. Analgesic Mechanisms of Antidepressants for Neuropathic Pain

Chronic pain causes anxiety accompanied by a depressive state and enhanced pain sensations.
The analgesic effects of antidepressants on chronic pain, however, involve a mechanism different from
the one which produces their antidepressive effects, because antidepressants inhibit neuropathic pain in
patients without depression [45]. In addition, the effects of antidepressants on mediating antidepressive
effects are visible in approximately 2–4 weeks from the time the drug is first administered, whereas the
analgesic effect on chronic pain is evident in as early as a few days to one week [46].



Int. J. Mol. Sci. 2019, 20, 822 6 of 11

The main pharmacologic mechanism of antidepressants involves binding with noradrenaline and
serotonin (5-HT) transporters. Reuptake inhibition of these neurotransmitters leads to increased levels
of noradrenaline and 5-HT in the synaptic cleft of the central nervous system [18,47–49]. To compare
the efficacy of analgesic drugs for treating chronic pain, the “number needed to treat” (NNT) is used.
The NNT represents the number of patients in whom the treatment reduced pain by as much as
50%. The lower the NNT, the stronger the efficacy. The NNT is usually obtained from meta-analysis
data [50,51]. For patients with painful polyneuropathy, the NNT for noradrenaline reuptake inhibitors
(e.g., nortriptyline, desipramine) is approximately 2.5 [18,52] and that for SNRIs and selective 5-HT
reuptake inhibitors (SSRIs) is 5.0 and 6.8, respectively [2]. Based on these results, reuptake of
noradrenaline plays a greater role than that of 5-HT in the analgesic action of antidepressants for
neuropathic pain.

Several previous animal studies have demonstrated that increased noradrenaline levels in
the spinal dorsal horn have an important role in the inhibition of neuropathic pain due to
antidepressants [53–55]. Intraperitoneal administration of duloxetine, an SNRI, to rats with nerve
injury inhibits hypersensitivity for at least 4 h, but the effect disappears after 24 h. The hypersensitivity
gradually decreases with repeated administration of duloxetine and returns to normal levels after
treatment for three consecutive days. Three daily injections of duloxetine lead to increase in
noradrenaline levels in the dorsal horn of the spinal cord, and the inhibitory effect of duloxetine
on hypersensitivity is reversed by intrathecal injection of an α2-adrenergic receptor antagonist [53].
Pretreatment with a noradrenergic neurotoxin (DSP-4) before injecting duloxetine attenuates the
effect of duloxetine on antihypersensitivity [54]. Intraperitoneal administration of amitriptyline,
a TCA, over consecutive days gradually suppresses hypersensitivity after nerve injury, but
this antihypersensitivity effect is reversed by intrathecal injection of an α2-adrenergic receptor
antagonist [54]. Another study demonstrated that a single intraperitoneal administration of the SNRI
milnacipran in nerve-injured rats produces antihypersensitivity effects that are reversed by intrathecal
administration of an α2-adrenergic receptor antagonist. Intrathecal injection of several types of selective
5-HT receptor antagonists, however, does not reverse the effect of milnacipran [55]. A single injection
of some antidepressants, such as amitriptyline, duloxetine, milnacipran, and the SSRI fluoxetine,
increases the noradrenaline level in the dorsal horn of the spinal cord [56]. In addition, noradrenaline
is increased in the spinal cord by a single intraperitoneal administration of the SSRI paroxetine,
and this drug produces an antihypersensitivity effect after nerve injury. The antihypersensitivity
effect of paroxetine is inhibited by intrathecal injection of an α2-adrenergic receptor antagonist [55].
The effects of fluoxetine and paroxetine to increase noradrenaline are likely indirect because both drugs
weakly inhibit noradrenaline transporters [57,58]. Intraperitoneal administration of amitriptyline,
duloxetine, milnacipran, and fluoxetine at a dose of 10 mg/kg increases dopamine levels in the spinal
cord and inhibits hyperalgesia in a rat model of neuropathic pain through D2-like receptors [59].
Although it is unclear why antidepressants increase dopamine levels in the spinal cord, reuptake
of dopamine is mediated through noradrenaline transporters in the frontal cortex, where there are
few dopamine transporters [60]. Taken together, the main mechanism of antidepressants that inhibit
neuropathic pain is to increase noradrenaline in the spinal cord. Dopamine and 5-HT are also increased
by antidepressants in the spinal cord and may enhance the inhibitory effects of noradrenaline in an
auxiliary manner.

4.2. Actions of Antidepressants on the LC

The LC is characterized by both tonic and phasic neuronal activity. Phasic activity is excitatory
and is observed shortly after the release of an excitatory amino acid (mainly glutamate) in the LC.
Phasic activity occurring simultaneously with low to medium tonic activity is involved in attention,
movement, and concentration on outside stimuli, such as cognitive functions and endogenous
analgesia [21,61]. Descending noradrenergic neurons underlie endogenous analgesia. Noxious stimuli
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activate LC phasic activity bilaterally, inducing the release of noradrenaline through projections to the
dorsal horn of the spinal cord bilaterally in rats [21,62,63].

An animal model of noxious stimulation-induced analgesia (NSIA) can be used to measure the
intensity of endogenous analgesia. Mechanical stimuli applied to the hind paw after injection of
capsaicin to the forepaw greatly increases the paw withdrawal threshold by activating endogenous
analgesia [64]. Noradrenaline levels in the spinal cord are increased by injection of capsaicin into the
forepaw, which affects NSIA [21,64,65]. This means that capsaicin-induced pain phasically activates the
LC, leading to a release of noradrenaline in the spinal cord, which mediates the antinociceptive effects
through α2-adrenergic receptors. In animal models of neuropathic pain, six weeks after nerve injury,
NSIA is no longer observed, and noradrenaline levels are not increased in the spinal cord [21,53,65].
When the tonic activity of the LC is increased due to nerve injury, phasic reactivity to noxious stimuli
disappears [21,53]. Phasic activity of neuronal cells in the LC gradually declines in the neuropathic
pain model over a long period of time following nerve injury, and the descending noradrenergic
inhibitory system is impaired.

Impaired NSIA after nerve injury in animals is recovered by the administration of duloxetine
and amitriptyline over several consecutive days [53,65]. The induction of antidepressants increase
the noradrenaline levels in the spinal cord, as well as their effects on the LC, contribute to NSIA
recovery [53]. Several brain regions send efferents to the LC, and both noradrenaline and 5-HT mediate
LC activity [7]. Antidepressants increase noradrenaline near the LC [66] and inhibit its activity through
α2-adrenergic receptors [67,68]. One study, however, demonstrated that consecutive administration of
duloxetine and desipramine increase noradrenaline, which desensitizes the α2-adrenergic receptors in
the LC [69]. The reaction of the LC to noxious stimuli differs between animal models of neuropathic
pain and control animals due to sensitization via N-methyl-D-aspartic acid receptors, but the reaction
is normalized by the consecutive administration of duloxetine and desipramine [69].

BDNF and its receptor TrkB may also have important roles in strengthening impaired LC function.
Chronic, but not acute, administration of antidepressants increases BDNF mRNA expression in the rat
hippocampus [70]. Antidepressants increase BDNF levels in astrocyte cultures [71]. A recent study
showed that repeated systemic injections of a TrkB agonist recovers weakened NSIA in rats, six weeks
after nerve injury, by improving LC reactivity to noxious stimuli, and the effect was reversed by
systemic injection of a TrkB antagonist [72]. Moreover, the basal extracellular glutamate concentration
in the LC increases after nerve injury [21], and noxious stimulation-evoked glutamate release is
decreased, thereby reducing AMPA receptor-mediated LC activation, which is important for inducing
NSIA. BDNF triggers the phosphorylation of AMPA receptors and regulates AMPA receptor trafficking
to the cell membrane [73]. Therefore, the impaired LC function after nerve injury may be ameliorated
by antidepressants via increased BDNF levels.

5. Strategies to Manage Neuropathic Pain on the Basis of Animal Studies

Although clinical reviews show that gabapentinoids and antidepressants (TCA and SNRI) are
first-line drugs for treating neuropathic pain [1–4], strategies to select the first drug or to combine
drugs are not well established. Animal studies showed that gabapentinoids stimulate the LC resulting
in activation of the noradrenergic descending inhibitory system, which impairs reactivity to noxious
stimuli, after nerve injury, in a time-dependent manner. Antidepressants increase noradrenaline in the
spinal cord and also act at the LC to restore its reactivity after nerve injury. Therefore, gabapentinoids
should be used for patients who can recruit descending inhibition (mostly early-stage neuropathic
pain). If the effect of gabapentinoids is poor or inadequate, the medication should be changed to
antidepressants or a combination of gabapentinoids and antidepressants. For late-stage neuropathic
pain, the HDAC inhibitor valproate might be added.
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6. Conclusions

Both gabapentinoids and antidepressants use the noradrenergic descending inhibitory system to
inhibit chronic pain, including neuropathic pain. Although several lines of evidence indicate that the
function of the descending noradrenergic inhibitory system is impaired in the chronic neuropathic
pain state, other recent studies report that antidepressants and HDAC inhibitors restore the impaired
noradrenergic descending inhibitory system. These findings suggest new strategies to treat chronic
pain by reinforcing the descending noradrenergic inhibitory system.
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