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The involvement of serotonin (5-HT) in chronic pain mechanisms is established. 5-HT inhibits central painful stimuli, but recent
data suggests that 5-HT could also enhance pain stimulus from the periphery, where mast cells play an important role. We aimed in
our study to clarify the influence of selected tricyclic antidepressants (TCAs) on mast cell function: secretion, uptake, and reuptake
of 5-HT, that could interfere with 5-HT levels and in this way contribute to the generation of pain. As an experimental model,
we used isolated rat peritoneal mast cells and incubated them with selected TCAs (clomipramine, amitriptyline, doxepin, and
imipramine) under different experimental conditions. 5-HT release, uptake, and reuptakewere determined spectrofluorometrically.
We showed that TCAs were able to inhibit 5-HT secretion from mast cells, as well as uptake of exogenous 5-HT and reuptake of
secreted 5-HT back intomast cells.The effects of TCAswere concentration dependent; higher concentrations of TCAs inhibited the
secretion of 5-HT induced by compound 48/80, whereas lower concentrations of TCAs inhibited 5-HT uptake. The most effective
TCAwas halogenated clomipramine. As TCAs are well introduced in chronic pain treatment, the insight intomechanisms of action
is important for an understanding of their effect in various pain conditions.

1. Introduction

Chronic pain is a complex neurobiological phenomenon
with a variety of factors contributing to peripheral and
central pain-signaling mechanisms. A common underlying
mechanismof chronic pain is the presence of inflammation at
the site of the damaged or affected tissue which causes release
of several inflammatory mediators such a prostaglandins,
bradykinin, and histamine. These agents increase the sen-
sitivity of primary sensory neurons to painful stimuli [1].
Strong activation by proinflammatory mediators also drives
the opening of voltage-gated sodium channels (VGSCs)
that are crucial for central and peripheral sensitization and
the excitability of neurons in the central and peripheral
nervous systems [2–4]. The release of proinflammatory and
immunoactive substances initiates therefore local actions and
can result in a more generalized response that leads to a
chronic pain condition.

Besides peripheral sensory pathways, there are central
inhibitory or facilitatory pathways where various neurotrans-
mitters and signaling molecules can contribute to the gen-
eration and/or maintenance of central as well as peripheral
painful stimuli [1]. Among them, serotonin (5-HT) plays a
complex role. In the central nervous system, monoaminergic
(noradrenaline and 5-HT) and opioidergic neurons from
descending pathways are inhibitory for pain transmission; in
neuropathic pain, persistent pain is thought to be principally
due to activation of descending pain facilitatory pathways
and deactivation of descending pain inhibitory pathways [5–
9]. In the spinal cord, convergence of peripheral inputs and
descending pathways occurs. Here, the inhibitory molecules
such as gamma-aminobutyric acid (GABA), endogenous opi-
oids, and monoamines control the transmission of noxious
stimuli [10, 11].

On the contrary of the inhibitory effect of 5-HT on
central painful stimuli, recent findings suggest that 5-HT
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might enhance a pain stimulus from the periphery. It has been
found that the association between increased 5-HT levels
and increased number of mast cells in patients with chronic
abdominal pain [12–14]. A possible relationship between the
number of mucosal mast cells and rectal sensitivity has also
been demonstrated in humans [14]. There is also evidence
of a significant increase in mast cell numbers in patients
with intestinal bowel syndrome. Along with increased mast
cell counts, there is support that mast cell numbers directly
correlate with abdominal pain in those patients [15]. On
the other hand, we have only limited data about the role of
mast cells in the central nervous system in the occurrence of
chronic pain. The precise role of the mast cell-derived 5-HT
in the chronic pain mechanisms is therefore still unknown.

To date, selected antidepressants are considered as an
essential component of the therapeutic strategy for treatment
of different types of persistent pain like neuropathic pain,
painful polyneuropathy [16, 17], postherpetic neuralgia [18,
19] as well as rheumatoid arthritis, ankylosing spondylitis
[20], and fibromyalgia [21], although the exact mechanisms
involved in these processes are not fully known (for review
see [1]). The main mechanism of action of antidepressants
involves reinforcement of the descending inhibitory path-
ways by increasing the amount of noradrenaline and 5-HT
in the synaptic cleft at both supraspinal and spinal levels.
Further studies have demonstrated a critical role of VGSCs
in different types of chronic pain syndromes; in this sense,
antidepressants with property of blocking sodium channel
have been shown to be effective in suppression of persistent
pain signal [1]. We found in our previous studies that some
antidepressants are able to influence 5-HT secretion from the
mast cells [22, 23]. Since the impact of the mast-cells derived
5-HT in the persistent pain might be important, we were
interested in present work to clarify the influence of selected
antidepressants on different processes, controlled by mast
cells, like secretion, uptake, and reuptake that could interfere
with 5-HT levels and therefore with the generation and/or
maintenance of pain.

2. Materials and Methods

2.1. Materials. Serotonin, amitriptyline, doxepin, imipram-
ine, and clomipramine were obtained from Sigma, Stein-
heim, Germany. Compound 48/80, concanavalin A, bovine
serum albumin, glucose, Tris-HCl, and phthaldialdehyde
(OPT) were also obtained from Sigma Chemicals, Steinheim,
Germany. HEPES was purchased from Merck, Darmstadt,
Germany, and Percoll was obtained from Amersham Bio-
sciences, Uppsala, Sweden. All other chemicals were of ana-
lytical grade. Spectrofluorometrywas carried out on the spec-
trofluorometer Shimadzu RF-1501.

2.2. Animals. Wistar rats (200–350 g)were obtained fromour
own breeding colony. They were maintained under constant
environmental conditions, with an ambient temperature of
22 ± 1∘C, a relative humidity of 55 ± 10%, and a natural
regimen of light-dark cycle. The animals were kept in cages
Ehret type 4 (Germany); bedding material was Lignocel 3/4.

They received standard rodent diet Altormin (Germany) and
have free access to food and water. We used two animals for
each experiment. All animal procedures have been approved
by the National Animal Ethical Committee of the Republic of
Slovenia and were conducted in accordance with the Euro-
pean Convention for the Protection of Vertebrate Animals
Used for Experimental and Other Scientific Purposes (ETS
123).

2.3. Isolation of Mast Cells. Rat peritoneal mast cells were
isolated from peritoneal cavity as follows: 10mL of buffered
salt solution was injected into the peritoneal cavity, and
then the abdomen was gently massaged for 1.5min. Mixed
rat peritoneal cells were suspended in buffered salt solution
with the following composition (mmol/L): NaCl 134.0, KCl
4.7, MgSO

4
1.2, CaCl

2
1.0, Tris-HCl 12.5, bovine albumin

1mg/mL, and pH 7.4. The cell suspension was then cen-
trifuged at 220 g for 10min, and supernatants discarded. The
collected cells were resuspended in buffered salt solution
and centrifuged at 220 g for 10min. For the preparation of
purified mast cells (>98%), the cells were transferred to a
HEPES-buffered (32mmol/L) Percoll solution. A gradient of
Percoll was created by centrifugation at 21000 g for 30min
at 4∘C. After the centrifugation, Percoll was removed by
washing the mast cell fraction in buffered salt solution, and
additional centrifugation of the fraction, containing mast
cells.

2.4. Treatment of Mast Cells with TCAs. Mast cells were
resuspended in buffered salt solution (pH = 7.2) having the
following composition (mmol/L): Na

2
HPO
4
6.7, KH

2
PO
4
6.7,

NaCl 137, KCl 2.7, CaCl
2
1.0, bovine albumin 0.5mg/mL, and

glucose 1 g/L. Each sample contains between 5.105 and 2.106
mast cells.

(1) In the secretion experiments, mast cells were preincu-
bated with different concentrations (10−8–10−4mol/L)
of selected TCAs (amitriptyline, doxepin, imipram-
ine, and clomipramine) for 10min and then incubated
in the presence of compound 48/80 (0.1𝜇g/mL) for
additional 10min.

(2) In the uptake experiments, mast cells were incu-
bated with 5-HT (250 ng/sample) for 10, 30, or
60min. The experiments were performed at 37∘C
or at 0∘C in the presence of extracellular Ca2+ ions
(10−3mol/L) or in Ca2+-free medium. In the next
group of experiments, mast cells were preincubated
with different concentrations (10−8–10−4mol/L) of
selected TCAs (amitriptyline, doxepin, imipramine,
and clomipramine) for 10min and then incubated
with 5-HT (250 ng/sample) for additional 30min.

(3) In the reuptake experiments, mast cells were incu-
bated with compound 48/80 (0.2𝜇g/mL) for 10, 30,
or 60min. In the next set of experiments, mast
cells were preincubated with different concentrations
(10−8–10−4mol/L) of selected TCAs (amitriptyline,
doxepin, imipramine, and clomipramine) for 10min
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and then incubated in the presence of compound
48/80 (0.2𝜇g/mL) or concanavalin A (100.0 𝜇g/mL)
for additional 60min.

After the incubation, the secretion, uptake, or reuptake of 5-
HT was stopped by cooling the tubes in an ice-cold bath.

2.5. Determination of 5-HT Secretion, Uptake, and Reuptake.
5-HT was determined in the supernatants and in the cell
fraction, using a spectrofluorometric method and omitting
the extraction procedure (for details see [24]). Samples
(1mL) were warmed in the presence of 0.05mL cysteine
(3%), 1.1mLHCl (37%), and 0.07 mLOPT (0.2%) at 75∘C
for 15min. After that they were cooled in an ice-cold bath,
and 5-HTwasmeasured spectrofluorometrically at excitation
wavelength 360 nm and emission wavelength 478 nm. 5-HT
was determined in the supernatants and in the cell fraction. 5-
HT release was expressed as a percentage of the total 5-HT in
the sample. All values were corrected for spontaneous 5-HT
release, which was always <7.0%.

2.6. Statistical Analyses. Determinations of 5-HT content are
shown as means ± standard error of the mean (SEM) of
five independent assays. For each treatment and controls,
four samples were analyzed. Student’s 𝑡-test was used for
statistical analysis. For all tests, 𝑃 < 0.05 was considered to
be statistically significant.

3. Results

3.1. Inhibitory Effect of Antidepressants on 5-HT Release. The
secretagogue, compound 48/80, releases 5-HT from mast
cells. After 10min of incubation of mast cells with compound
48/80 (0.1𝜇g/mL) 5-HT release is approximately 42%. The
results show that TCAs are able to inhibit 5-HT secretion,
induced by compound 48/80 from mast cells. The effect
is dose dependent and occurs at higher concentrations of
TCAs only. The inhibitory effect of TCAs depends on the
polarity of the drug; the halogenated derivative clomipramine
is significantly more potent than other used antidepressants
(Figure 1).

3.2. The Effect of Antidepressants on 5-HT Uptake and Reup-
take intoMast Cells. Theresults show thatmast cells are capa-
ble to remove exogenous 5-HT from incubation medium.
The uptake involves an active process which depends on
temperature and time of incubation of mast cells with
exogenous 5-HT. At 37∘C it increases with time of incubation
of mast cells with exogenous 5-HT, whereas at 0∘C it is
inhibited (Figure 2(a)). The uptake requires the presence of
extracellular Ca2+ ions. In the medium, containing extracel-
lular Ca2+ ions (10−3mol/L), the uptake increases with time of
incubation. In contrast, the uptake is significantly inhibited in
Ca2+-free medium (Figure 2(b)).

In the presence of extracellular Ca2+ ions (10−3mol/L),
TCAs inhibit 5-HT uptake into mast cells in a dose-depend-
ent manner. The most potent compound is halogenated
antidepressant clomipramine, where inhibition of exogenous
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Figure 1:The influence of selected TCAs on 5-HT release frommast
cells after stimulation of the cells with compound 48/80 (0.1 𝜇g/mL).
Mast cells were preincubated with different concentrations (10−8–
10−4mol/L) of antidepressants (amitriptyline, doxepin, imipramine,
and clomipramine) for 10min and then incubated with compound
48/80 for further 10min. Results are expressed as a percentage of
the total 5-HT in the sample. Each point represents mean ± SEM of
5 experiments. ∗𝑃 < 0.05 versus compound 48/80.

5-HT uptake is observed at concentration 10−8mol/L
(Figure 3).

In the next group of experiments, we demonstrated that
mast cells are able to reuptake released 5-HT after stimulation
of mast cells with compound 48/80. The reuptake is time
dependent; after 10min of incubation of mast cells with
compound 48/80 (0.2 𝜇g/mL), it releases an average 60%
of the total 5-HT. After 60min of incubation, the amount
of 5-HT was significantly reduced in comparison to 10min
incubation, which indicates that mast cells are capable to
reuptake released 5-HT from the medium (Figure 4).

In further experiments, we examined the influence of
selected TCAs on reuptake of 5-HT into mast cells after
long-term (60min) incubation of mast cells with different
secretagogues, compound 48/80, and concanavalin A. Our
results show that preincubation of mast cells with selected
TCAs leads to inhibition of 5-HT reuptake intomast cells.The
inhibition is dose dependent and differs between used TCAs;
the most potent is halogenated antidepressant clomipramine.
In Figure 5, we show that 60min after the stimulation of mast
cells by secretagogues (compound 48/80 and concanavalin
A), the released 5-HT in the medium represents 36% and
49%, respectively, in comparison to the total 5-HT of the
sample. The preincubation of mast cells with selected TCAs
in concentration range from 10−8 to 10−5mol/L leads to
inhibition of 5-HT reuptake into mast cells, in a dose-
dependent manner. Therefore, after 60min preincubation
of mast cells with increasing concentrations of TCA, we
observed higher concentrations of released 5-HT in the
medium in comparison to the mast cell which have not been
preincubated with TCA (Figure 5).
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Figure 2:The effect of time of incubation on 5-HTuptake intomast cells.Themast cells were incubatedwith exogenous 5-HT (250 ng/sample)
for 10, 30, or 60min. (a) The effect of temperature of the medium on 5-HT uptake: mast cells were incubated with 5-HT at 37∘C or at 0∘C.
(b) The effect of extracellular Ca2+ ions on 5-HT uptake: mast cells were incubated with 5-HT in the presence of extracellular Ca2+ ions
(10−3mol/L) or in Ca2+-free medium. Each bar represents mean ± SEM of 5 experiments.
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Figure 3: The influence of selected TCAs on the uptake of 5-
HT into mast cells. Mast cells were preincubated with different
concentrations (10−8–10−4mol/L) of antidepressants (amitriptyline,
doxepin, imipramine, and clomipramine) for 10min. After that,
mast cells were incubated with exogenous 5-HT (250 ng/sample) for
the next 30min. Each point represents mean ± SEM of 5 exper-
iments.

4. Discussion

Recent studies have indicated a strong communication
between immune, endocrine, and nervous systems in the
maintenance of chronic pain, where 5-HT plays significant
role [25]. So far, we believed that 5-HT inhibited the genera-
tion of painful stimuli on the central nervous system level, but
recent evidence indicates that 5-HT might be associated also
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Figure 4: The effect of time of incubation on 5-HT content in the
medium after stimulation of mast cells with compound 48/80. Mast
cells were incubated with compound 48/80 (0.2 𝜇g/mL) for 10, 30,
or 60min. Each point represents mean ± SEM of 5 experiments.

by an increase pain transmission from the periphery, where
mast cells play an important role [26, 27].

Using rat mast cells from peritoneal cavity, we show that
TCAs influence mast cell-derived 5-HT levels via at least
three different mechanisms: secretion of 5-HT, uptake of
exogenous 5-HT, and reuptake of secreted 5-HT. At first,
selected TCAs are able to inhibit the secretion of 5-HT from
mast cells.The inhibition is dose dependent, and halogenated
clomipramine has been found to be the most potent in
comparison to imipramine, doxepin, and amitriptyline. The
inhibition of 5-HT secretion from mast cells contributes to
lower concentration of 5-HT at periphery and therefore could
diminish sensitization of sensory nerve endings by 5-HT,
which is important for the generation of peripheral painful
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Figure 5: The influence of selected TCAs on 5-HT content after stimulation of mast cells with different secretagogues. (a) Mast cells were
preincubated with increasing concentrations (10−8–10−4mol/L) of antidepressants (amitriptyline, doxepin, imipramine, and clomipramine)
for 10min and then incubated with compound 48/80 (0.2 𝜇g/mL) for the next 60min. (b) Mast cells were preincubated with increasing
concentrations (10−8–10−4mol/L) of antidepressants (amitriptyline, doxepin, imipramine, and clomipramine) for 10min and then incubated
with concanavalin A (100 𝜇g/mL) for the next 60min. Each point represents mean ± SEM of 5 experiments. ∗𝑃 < 0.05 versus compound
48/80 (a) or concanavalin (b).

stimuli [28, 29]. It is already known that approximately 95%
of 5-HT in the body is produced in the peritoneal cavity,
and inhibition of 5-HT secretion from mast cells might be
beneficial in the treatment of chronic abdominal pain [12].
Our results support recent findings, where the association
between enhanced mast cells number and 5-HT levels has
been suggested in patients with chronic abdominal pain
[14, 15]. With this regard, 5-HT has been proposed as an
important mast cell mediator which could interact with
peripheral nerves leading to increased sensitivity in the gut
and chronic abdominal pain [30–33].

However, the precise role of mast cells in these cases
has not been clarified yet, and several issues remain to be
addressed. Beside 5-HT, mast cells release several medi-
ators like histamine, tryptase, proteoglycans, leukotriene
C4, platelet activating factor, and prostaglandin D2. All
of them can activate sensory nerves, leading to visceral
hyperalgesia/allodynia [29]. On the other hand, mast cells
not only degranulate and release proinflammatory substances
but also may be in closer proximity to the cholinergic
nerves thereby altering GI motility and hypersensitivity (i.e.,
increased abdominal pain). The detection of abnormalities
of 5-HT metabolism in the peritoneal cavity has therefore
generated a particular interest [34–36].

In the central nervous system, 5-HT contributes to the
inhibition of the pain signal transmission. In this process,
serotonergic neurons from descending inhibitory pathways,
and not mast cells, are crucial to derive 5-HT for synaptic
transmission. It is already known that TCAs inhibit 5-HT
uptake into serotonergic neurons and on this way enhance
the concentration of 5-HT in synaptic cleft and inhibition of

central painful stimuli. Moreover, the antidepressants with
a property of blocking sodium channel (i.e., VGSCs) have
been shown to be effective in suppression of persistent pain
signal because these channels play a fundamental role in the
excitability of neurons in the central and peripheral nervous
system, as well [25]. In addition, we show in our study that
TCAs are able to inhibit uptake of 5-HT into mast cells that
could also contribute to higher concentrations of 5-HT in the
central nervous system.

At the periphery, TCAs effects seemmuchmore complex.
They inhibit secretion of 5-HT from mast cells, which leads
to diminished concentrations of 5-HT. In addition, they are
also able to inhibit an uptake of exogenous 5-HT, as well as
reuptake of secreted 5-HT from mast cells back into mast
cells, which causes higher levels of 5-HT in the environment.
In the peritoneal cavity, mast cells represent an important
source of 5-HT, and when the secretion of 5-HT from mast
cells is inhibited, the 5-HT-mediated sensitization of sensory
might be inhibited as well.

5. Conclusions

In summary, we have found that TCAs are able to inhibit 5-
HT secretion from mast cells, as well as uptake of exogenous
5-HT and reuptake of secreted 5-HT back into mast cells. All
of these events influence 5-HT levels and as a consequence
could contribute to a generation and maintenance of painful
stimuli in the body. As TCAs are well established in the
chronic pain treatment, the insight into their mechanisms
of action is crucial for an understanding of their effects
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in various pain conditions. In this respect, our study provides
a simple in vitro approach for the mechanistic studies of
compounds, aimed for themodulation of 5-HT levels bymast
cells.
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