
Mast cells: versatile gatekeepers of pain

Devavani Chatterjea and Tijana Martinov
Department of Biology, Macalester College, St. Paul, MN

Abstract

Mast cells are important first responders in protective pain responses that provoke withdrawal

from intense, noxious environmental stimuli, in part because of their sentinel location in tissue-

environment interfaces. In chronic pain disorders, the proximity of mast cells to nerves potentiates

critical molecular cross-talk between these two cell types that results in their synergistic

contribution to the initiation and propagation of long-term changes in pain responses via intricate

signal networks of neurotransmitters, cytokines and adhesion molecules. Both in rodent models of

inflammatory pain and chronic pain disorders, as well as in increasing evidence from the clinic, it

is abundantly clear that understanding the mast cell-mediated mechanisms underlying protective

and maladaptive pain cascades will lead to improved understanding of mast cell biology as well as

the development of novel, targeted therapies for the treatment and management of debilitating

pain conditions.
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1. Introduction

Mast cells are important cellular regulators of physiological and pathological pain pathways.

Pain can be either protective or maladaptive. Protective pain can be further categorized as

nociceptive pain that signals for the removal of an intense stimulus, or inflammatory pain

associated with tissue damage that promotes immune cell infiltration and hypersensitivity

until tissue repair is achieved[1]. Pathological, maladaptive pain is chronic in nature, and is

associated with prolonged disease states [1]. The interaction between the nervous system

and the immune system plays a pivotal role in pain processing[ 2]. Mast cells are

particularly important in this regard as they are frequently found in close proximity to

nociceptive neurons[ 3]and therefore can participate in juxtacrine signaling in neuro-

immune synapses [3]. Mast cells induce nociceptor activation through the release of
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chemical mediators during degranulation and can be activated by mediators released from

nociceptors upon injury[ 2, 3].

2. Mast cell abundance and activity are reported in various clinical pain

disorders

Several associations have been reported between mast cell activation and abundance and

clinical pain disorders (Box 1). Migraine attacks were reported to occur with higher

frequency in asthma and allergy patients [4] and plasma histamine levels were found to be

elevated in a 20-patient sample of migraine patients vs. controls both during headache

attacks and symptom-free periods [5], likely suggesting a role for mast cell activation in

migraine onset. Bladder mast cell activation was confirmed by electron microscopy in 26 of

52 interstitial cystitis patients [6] while mast cell-derived tryptase levels were increased in

expressed prostatic secretions in men (6–7 patients vs. 5 controls) with chronic pelvic pain

syndrome [7]. Tryptase levels were also increased in the skin of the affected extremities of

patients with complex regional pain syndrome (CRPS); 43 patients undergoing elective hand

surgery followed by cast immobilization had upregulated mast cell tryptase levels in the skin

of hands ipsi-lateral to surgery [8]. Patients with CRPS also showed dysregulated substance

P release [9]. Substance P (SP) activates mast cells through the neurokinin-1 (NK-1)

receptor [3]. Mast cells themselves can release SP; immuno-co-localization of SP has been

reported in cutaneous mast cell granules of 18 atopic dermatitis patients compared to 10

controls [10].

Box 1

Clinical pain disorders associated with mast cells

Migraine [4,5]

Pelvic and bladder pain [6,7]

Atopic dermatitis [10]

Inflammatory bowel pain [19, 20]

Fibromyalgia [15]

Vulvodynia [11–14]

Complex regional pain syndrome [8, 9]

Self-injurious behavior associated pain [16]

Vulvodynia, a chronic vulvar pain disorder, has been epidemiologically associated with a

self-reported history of allergies [11]. An increased number of mast cells overall, and more

degranulated mast cells, as well as greater epithelial innervation were detected in vestibular

biopsies of 40 women with vulvodynia [12] compared to biopsies from 7 controls. A follow-

up study showed that tissue samples from 7 vulvodynia patients showed higher levels of

heparanase activity compared to 7 controls [13]. These studies were corroborated by

independent findings of increased mast cell numbers and innervation in tender vs. non-
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tender vestibular sites in 10 patients with primary, provoked vulvodynia [14]. Significant

increases in numbers of skin mast cells at tender sites have been reported in a cohort of 63

patients suffering from fibromyalgia, a syndrome characterized by skeletal muscle pain and

headache along with fatigue and sleep disorders, vs. an age-matched cohort of 49 controls

[15]. Similarly, skin biopsies from 16 non-verbal, cognitively disabled adults with chronic

self-injurious behavior showed significantly more degranulated mast cells and innervation at

body-matched non-injury sites when compared to 9 disability-matched controls without self-

injurious behavior [16]. In addition, individuals with self-injurious behavior displayed

increased sensitivity to thermal and mechanical stimuli applied 15 cm below the skin biopsy

site, compared to disability-matched controls without self-injurious behavior [16].

Responses to painful stimuli were assessed via the Facial Action Coding System; blinded

coders identified the absence or presence, intensity and temporal features of facial muscle

movements [16].

There is emerging evidence that gastro-intestinal inflammatory diseases, frequently

associated with abdominal pain and distress, are associated with histories of atopy [17] and

accompanied by mast cell infiltration [18]. Barbara and colleagues reviewed multiple studies

(with patient cohorts ranging from 4 to 77) that showed increased intestinal mucosal mast

cell infiltration into the ileum, colon and rectum in patients with inflammatory bowel

syndrome; these mast cells were observed to be in close contact with neurons, and their

abundance correlated with the severity of perceived abdominal pain symptoms [19].

Gastrointestinal biopsies from a cohort of 48 children with inflammatory and non-

inflammatory chronic abdominal pain found an inverse relationship between mast cell

counts and levels of IL-6 and SP; mast cell numbers were elevated in the colon mucosa of

patients with non-inflammatory pain [20]. In a cohort of 69 women undergoing laparoscopic

excision of endometriosis for pain vs. 37 controls, significantly higher numbers of active and

degranulating mast cells were reported in deep infiltrating lesions, and to a lesser extent in

peritoneal and ovarian lesions, with mast cells localized <25μm from nerves [21], suggesting

that direct nerve-mast cell interactions could contribute to the painful pathology of this

condition.

Taken together, multiple lines of evidence indicate that mast cells may be important

regulators of pain pathologies, and these findings have inspired investigators to build mast

cell-focused pre-clinical models of pain disorders to help elucidate the relevant underlying

mechanisms.

3. Mast cell activation provokes experimental thermal and mechanical

hyperalgesia in rodents

Changes in rodent behavioral responses to acute, noxious environmental stimuli are

measured in classic assays of hypersensitivity – hyperalgesia (response to a painful

stimulus) or allodynia (painful response to a previously tolerated stimulus) [22]. While these

are imperfect assessments of psychologically and physiologically complex human pain

states, they provide tractable models for interrogating cellular and molecular mechanisms

underlying altered sensitivities to temperature and pressure stimuli [22, 23]. These
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approaches can be used to elucidate the mechanistic contributions of mast cells to the

pathophysiology of acute and chronic pain conditions (Box 2).

Box 2

Mast cell-focused rodent models of pain

Chemically induced heat and pressure sensitivity [66, 67]

Passive cutaneous anaphylaxis pain [30, 32]

Compound 48/80-induced migraine [38–40]

Experimental cystitis and prostatitis [7, 42–44]

Venom-induced hyperalgesia [27, 51, 52]

Oxazolone-induced vulvar pain [54]

Post-operative pain [46, 47, 48]

Neuropathic pain and Complex Regional Pain [61–64]

Sickle cell disease-associated pain [65]

We have recently shown that genetically mast cell-deficient C57BL/6-KitW-sh/W-sh mice

have significantly reduced thermal and mechanical plantar hyperalgesia after intra-plantar

injection with mast cell secretagogue compound 48/80 (c48/80) compared to wild-type

(WT) mice; these responses were restored following tissue-specific reconstitution of the

hind paw with bone marrow cultured mast cells [24]. Deficiencies in c-kit cause defects

other than reduced mast cell numbers that may have differential effects on various

pathophysiological outcomes [25]; it has been reported that C57BL/6-KitW-sh/W-sh mice are

hypo-responsive to vertically applied punctate heat stimuli [26]. However, we found that

baseline responses to both a thermal stimulus applied (via a 50°C hotplate) across all four

paws, and vertically applied punctate mechanical pressure using an electronic pressure meter

[24, 27], were indistinguishable between C57BL/6-KitW-sh/W-sh, mast cell-reconstituted and

WT littermates. These mast cell-dependent acute nociceptive responses were dependent on

histamine signaling and neutrophil influx into the inflamed tissue [24]. Compound 48/80-

induced mast cell degranulation provokes similar nociceptive pain responses in ND4 Swiss

mice [24]; interestingly, when these mice were systemically pre-treated with TNF-α-

neutralizing antibodies, these acute early nociceptive responses were rapidly blocked even

though infiltrating neutrophils were present [28]. It is possible that TNF-α released from

mast cell granules have rapid effect on nociceptors that contribute to immediate protective

nociceptive responses. These findings support an earlier observation that injection of c48/80

into the forearms of young male volunteers caused significant changes in pain sensitivity in

the skin surrounding the sites of administration [29].

In a model of passive cutaneous anaphylaxis(PCA) in the rat hind paw, Lavich and

colleagues[ 30] demonstrated a state of transient increased sensitivity to vertically applied

punctate heat (lasting 1–3 hours)following plantar anti-dinitrophenyl (DNP)-IgE

sensitization and DNP challenge. While the authors did not characterize mast cell

Chatterjea and Martinov Page 4

Mol Immunol. Author manuscript; available in PMC 2016 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



contributions per se, mast cell degranulation is the primary orchestrator of downstream

effects of IgE-DNP crosslinking [31]. These thermal hyperalgesic responses were regulated

by the synergistic interaction of histamine, br adykinin, and serotonin – all likely products of

mast cell degranulation[ 30]. Our unpublished data indicate that pronounced thermal and

mechanical hind paw hyperalgesia caused by PCA reactions in the footpad last up to 6 hours

in mice and are accompanied by moderate to extensive mast cell degranulation (manuscript

in preparation). In a subsequent study, Lavich and colleagues, without specifically assessing

mast cell activity, showed that rats challenged with ovalbumin (OVA) after sensitization

with OVA and Al3OH (alum) showed thermal pain responses that lasted for 6 hours, and

were mediated by infiltrating neutrophils [32]. Earlier, Piovezan and colleagues also

demonstrated a reduction of OVA/alum-induced hyperalgesia by prior chemical depletion of

mast cells (using repeated c48/80 administrations) in the hind paws of sensitized mice[ 33],

demonstrating that mast cell degranulation can contribute to pain resulting from active

sensitization and antigen challenge. Mast cell depletion by c48/80 pre-treatment as well as

serotonin antagonist administration separately reduced formalin-induced secondary

allodynia and hyperalgesia in rats implicating mast cell-derived serotonin signaling in the

maintenance of pain behaviors [34]. Pre-administration of histamine receptor antagonists as

well as sodium cromoglycate (SCG) – a compound widely used as a mast cell granule

stabilizer – also reduced later phases of formalin pain [35]. It is important to remember that

SCG can have direct effects on nerves [36] and can also have differential effects on mast

cell degranulation depending on the experimental system [37]. Therefore, all experimental

evidence that uses SCG as a mast cell-tropic reagent should be interpreted with caution

unless accompanied by suitable controls or follow-up experiments conducted in mast cell-

deficient conditions.

4. Mast cells in pre-clinical models of inflammatory and chronic pain

disorders

4.1. Migraine

Levy and colleagues demonstrated electrophysiological activation of meningeal nociceptors

following dural mast cell degranulation in rats, suggesting dural mast cell activation as an

underlying mechanism of migraine pathology [38]. Systemic c48/80 administration was

used to activate dural mast cells, while pERK and c-fos activation in the dura were used to

measure prolonged activation of the trigeminal pain pathway [38]. Compound 48/80-

provoked nociceptive signaling was blocked by pre-administration of SCG. Further studies

from these investigators showed tactile pain at different locations in the body indicating the

activation of central sensitization mechanisms; the authors demonstrated this by showing c-

fos expression at different levels in the spinal cord following systemic mast cell activation

[39] and identified relevant roles for mediators including TNF-α, IL-1β and IL-6 that can be

released by degranulating mast cells [40]. Different N-truncated fragments of known

migraine inducer pituitary adenylate cyclase activating peptide-38 (PACAP-38) have been

shown to cause differential levels of peritoneal and dural mast cell degranulation in rats, thus

pointing to mast cell degranulation as a critical component of PACAP-38 induced migraine

headaches [41].
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4.2. Interstitial cystitis and pelvic pain

Mast cells contribute to mechanical cystitis pain via histamine receptor 1 and 2 signaling in

a murine model of pseudorabies virus (PRV)-induced pelvic pain [42]. In this study, cystitis

pain was abrogated in C57BL/6-KitW-sh/W-sh mice and restored with whole bone marrow

transplantation. However, these experiments did not specifically reconstitute mast cells in

the bladder and therefore did not isolate mast cells as the relevant cellular players; it is

possible that repair of other c-Kit-related defects may have played unspecified roles in the

restoration of pain [42]. NK-1 and histamine receptor 2 antagonists mitigated bladder-

associated pelvic pain in this model, suggesting that blockade of potentially mast cell-

mediated regulatory mechanisms i.e. histamine and SP signal pathways, may have

therapeutic potential in the treatment of cystitis-related pain [43]. Chemotactic cytokines,

chemokine ligands 2 and 3 (CCL2 and CCL3), have been identified as important mediators

in pelvic pain associated with a murine model of experimental prostatitis [44]. CCL2 can

also induce histamine release that is subsequently associated with the development of

cystitis-related pain in rats [45].

4.3. Post-operative pain

Oliveira and colleagues observed massive plantar degranulation following incision injury in

mice accompanied by significant mechanical sensitivity; mast cell depletion via c48/80 pre-

treatment, pre-treatment with mast cell stabilizer SCG, and combined blockade of histamine

and serotonin signal pathways each separately reversed post-operative pain in these mice

[46]. In a follow-up study, the release of mast cell tryptase following degranulation, and

subsequent activation of proteinase-activated-receptor 2 (PAR-2) were shown to contribute

to the changes in pain sensitivity [47]. Yasuda and colleagues corroborated these findings

and observed that post-incision allodynia and guarding pain, but not heat sensitivity, were

reduced by pre-treatment with SCG [48].

4.4. Venom-induced hyperalgesia

Mast cells are key neutralizers of various insect, scorpion and reptile venoms as well as

structurally related mammalian peptides [49, 50, 51]. Bothrops jararaca venom

administration caused marked mast cell degranulation and acute mechanical sensitivity in

the hind paws of mice [27]; Bonavita and colleagues demonstrated that mast cell stabilizer

SCG inhibited Bothrops jararaca venom-induced release of histamine and leukotriene C4 in

vitro and abrogated venom-induced hyperalgesia in vivo in rats [51]. Buthus martensi Karch

scorpion venom induced mast cell degranulation and nociceptive behaviors in rats; these

behaviors were reduced following mast cell depletion via chronic administration of c48/80

[52].

4.5. Vulvodynia

We adapted an established model of mast cell-dependent contact hypersensitivity to

topically applied hapten oxazolone [53], and found increased vulvar tactile sensitivity in

oxazolone (Ox)-sensitized female mice after single and repeated labiar skin challenges with

Ox [54]. Female ND4 Swiss mice were sensitized with topical oxazolone on their flanks and

challenged 1–3 times on the labia on day 5 or day 5–7, respectively. After a single
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challenge, heightened mechanical sensitivity of the ano-genital ridge lasted 24 hours and

accompanied hyperinnervation, neutrophil influx, and increased expression of inflammatory

cytokine genes in the labiar tissue [54]. Three daily oxazolone challenges produced vulvar

mechanical hyperalgesic responses and increases in nerve density that were detectable up to

5 days post-challenge even after overt inflammation (neutrophil influx and upregulation of

inflammatory cytokine transcripts) had resolved. Both the sensitization phase of Ox-CHS

[53, 55] and changes in cutaneous nerves during the elicitation phase [56] have been

previously shown to be mast cell-dependent.

The persistent hyperalgesia and sustained hyper-innervation seen in our experimental

animals mirror the clinical hallmarks of provoked vulvodynia [12, 13, 14] and provide a

tractable model to experimentally dissect the epidemiological evidence that correlates a

history of allergic reactions, most notably hives and exaggerated reactions to insect bites

with an increased risk of developing vulvodynia [11] through potentially mast cell-

dependent mechanisms. We are currently studying the effects of long-term re-exposures to

allergen to assess the effects of mast cell accumulation in hyper-innervated tissues to the

overall increase in peripheral and central pain cascades that contribute to chronic vulvar

pain. In the clinic, contact dermatitis and other skin disorders (modeled in rodents with

contact hypersensitivity reactions) include both itch and pain sensations [57]. Until recently,

itch and pain have been difficult to distinguish on a behavioral basis in rodents. In our

studies, we defined pain (nociceptive) responses as licking or jumping following mechanical

stimulation [54]. Licking of the affected region or wiping it with forepaws has been shown

to correlate with pain sensation, while biting correlated more with itch [58, 59]. Our

unpublished data suggest that Mas-related G-protein coupled receptor A3 (MrgprA3)+

expression is not significantly enhanced in painful sites multiply challenged with oxazolone

in mice exhibiting vulvar tactile sensitivity. MrgprA3 was recently shown to be a marker of

itch-sensing (pruritoceptive) neurons, as depletion of Mrgpr3A+ neurons abrogated

responses to well-characterized pruritogenic agents, but not heat, pressure, or cold stimuli

(that normally elicit pain) [60].

4.6. Neuropathic pain

Beyond individual disease models, investigators are also using rodents to model complex

and co-morbid pain conditions such as neuropathic pain, complex regional pain syndrome

(CRPS) and sickle cell disease. Pre-treatment with SCG inhibited mast cell degranulation,

neutrophil and macrophage infiltration as well as thermal and mechanical hyperalgesia

caused by the ligation of the sciatic nerve in rats; furthermore, neuropathic hyperalgesia was

reduced after treatment with histamine 1 and 2 receptor antagonists [61]. Taiwo and

colleagues observed that following the ligation of the 5th lumbar spinal nerve, neuropathic

hyperalgesia and thalamic mast cell abundance in the side contra-lateral to ligation increased

in female but not in male mice suggesting a role for mast cell-dependent nociceptive

signaling in the CNS [62]. In a model of paclitaxel-induced neuropathy in mice, repeated

chemotherapy administration caused an increase in mast cell tryptase activity in the spinal

cord and increased thermal and mechanical sensitivity that was abrogated by blockade of

signal pathways downstream of PAR2, or by treatment with antagonists of transient

vanilloid receptor potential (TRP)V1, TRPV4 or TRP ankyrin (TRPA)1 [63].
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Li and colleagues have developed a rat model of Type 1 CRPS in which tibia fracture

induced in the right hind limb caused post-fracture mechanical nociception accompanied by

SP-induced mast cell accumulation, activation and degranulation. These effects were

inhibited by NK-1 receptor antagonist treatment suggesting a role for peptidergic neuron-

mast cell signaling in this chronic pain syndrome [64]. Mast cells were recently found to be

important contributors to the development of cutaneous and deep hyperalgesia as well as

hypoxia-reperfusion-induced pain in transgenic sickle mice (expressing >99% human sickle

hemoglobin) primarily through a tryptase-PAR2 pathway of amplified neuropeptide release

[65].

5. Mast cell-neuron synapse in tissue contribute to pain responses

Taken together, the aforementioned clinical and pre-clinical evidence point to mast cell-

regulated pathways as important mediators of pain pathologies. Elucidation of the

underlying molecular mechanisms from the analysis of nerve-mast cell interactions in

steady-state and painful tissues (summarized in Figure 1) are essential next steps in the

identification of biomarkers and therapeutic targets that can be used to classify, manage and

treat acute and chronic pain conditions.

Mast cells release a variety of mediators such as histamine, serotonin, IL-1β, TNF-α, and

IL-6, all of which have the ability to independently induce [66, 67] or mediate chemical-

[67], infection- [42, 43], or allergen-evoked hyperalgesia [30, 32] either via direct effects on

nociceptors or by stimulating the production of final mediators such as leukotrienes and

prostanoids [66]. Furthermore, mast cells residing in close proximity to unmyelinated nerve

fibers, such as the nociceptive C-fibers, can undergo ultrastructural alterations that allow

differential or selective “piecemeal degranulation” [3]. Co-cultures of bone marrow cultured

mast cells and superior cervical ganglia reveal that association with neurites increases IgE/

antigen (Ag) crosslinking-induced calcium signaling in mast cells associated with increased

surface expression of FcεR1α [68]. Cutaneous nerve depletion in vivo abrogates PCA-

induced tissue edema and endothelial permeability [69]. The observed reduction in PCA

responses is not due to altered numbers of mast cells, but rather impaired mast cell

activation by IgE/Ag cross-linking in the absence of cutaneous nerves [69]. Taken together,

these studies suggest that allergy-induced mast cell activation depends on neuronal cues.

This is particularly important for understanding pain conditions where anatomical mast cell-

nerve associations have been documented in addition to atopic history, such as inflammatory

bowel syndrome [17] and vulvodynia [12, 13, 14].

Adhesion molecules such as N-cadherin and cell adhesion molecule-1 (CADM-1) facilitate

mast cell-nerve junctions [70, 71, 72]. N-cadherin mediated-mast cell-nerve interaction is

regulated by matrix metallo-proteinase MMP24; Mmp-24 deficiency abrogates acute

thermal hyperalgesia by altering neuron-mast cell synapses [73]. Mast cell mediators NGF

and TNF-α influence neuronal growth, and both can lower the threshold of nociceptor firing

through binding to TRK1-transforming tyrosine kinase protein (trkA) and TNF receptor,

respectively [56,74, 75, 76]. Another important signal at the mast cell-nerve synapse is

substance P. Released by both neurons and mast cells, substance Pleads to production of

histamine, prostaglandins and leukotrienes, as well as TNF-α and IL-6 by mast cells [10, 77,
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78, 79]. Substance P receptor NK-1 is not constitutively expressed on all mast cell subtypes,

but its expression can be induced by IgE/Ag crosslinking, suggesting a mechanistic

association between allergies and pain [80].

As mentioned above, antagonism of substance P receptor NK-1 abrogates cystitis pain in

mice [43]. Interestingly, substance P-NK-1 binding primes mast cells to degranulate upon

repeated application of lower doses of substance P [78]. In addition, tryptase released by

mast cells can cause hyperalgesia in rats upon binding to PAR2 on nociceptors [81] as

shown in several rodent models of pain discussed above [63, 65]. PAR2-mediated

hyperalgesia depends on TRPV4 in a model of colorectal distension [82]. Moreover,

tryptase-induced PAR2 activation triggers TRPV1 and TRPV4 sensitization via

phospholipase C (PLC), phosphokinase A (PKA) and phosphokinase Cε(PKCε) [81, 82].

PAR2 activation can induce CGRP release [83], which in turn stimulates histamine release

from dural mast cells [84]. This pathway has been proposed as the underlying mechanism of

migraine [79], further supported by the efficacy of CGRP antagonists in migraine treatment

[85].

6. Conclusion

Mast cells reside in sentinel locations in the tissue and release a versatile repertoire of

mediators [86] including those that interact structurally and functionally with pain-sensing

nociceptors [3]. There is ample evidence that mast cell contributions to pain pathologies is

an active area of biomedical investigation in discovery research as well as in the clinic.

Currently, much of the evidence points to strong associations rather than specific

mechanisms of action that implicate mast cells as necessary for the induction of certain

kinds of pain. Many excellent mast cell-focused models of acute, inflammatory, chronic and

neuropathic pain have been established. Now these approaches must be validated in the

context of mast cell-deficiency and reconstitution. Several newly described conditional mast

cell knockout strains of mice [25] are potentially useful tools to screen for truly mast cell-

dependent pain disorders where mast cell-targeted therapies may be most effective and

beneficial.

One area where an understanding of specific mast cell contributions to pain may

substantially transform our current understanding and therapeutic approaches is that of pain

conditions (such as fibromyalgia, subsets of vulvodynia or inflammatory bowel pain) that

present without overt inflammation. Central sensitization and CNS amplification and

maintenance of pain states can be seen as distal and disconnected from inflammatory

processes [87]. However, mast cell associations with such conditions have been reported in

multiple clinical contexts [12–14, 19–20]. The findings from pre-clinical models that

systemic mast cell activation can cause pain at different locations in the body [39], thalamic

mast cell abundance can change in response to nerve ligation [62] and increasing evidence

that mast cell-glial crosstalk in the CNS mediate neurodegenerative processes [88] all point

to the possibility that these versatile immune effectors may well be important players in

maintenance and transmission of central pain as has been recently reviewed [89].
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Systematic elucidation and analyses of mast cell contributions to central and peripheral pain

mechanisms will deepen our understanding of mast cell biology as well as aid the design of

novel, rational therapies for the treatment and management of pain.
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Highlights

• Mast cells are increasingly associated with pathophysiology of pain disorders

• Mast cell-focused pre-clinical rodent models of pain can reveal relevant

mechanisms

• Mast cell-neuron synapses in the tissue modulate nociceptive signal cascades

• Mast cell contributions to central and peripheral pain will inform new

therapeutics
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Figure 1. Mast cell-nerve proximity in the tissue facilitates neuro-immune cross-talk relevant to
modulation of pain
Mast cell-nerve interactions are facilitated by adhesion molecules E-Cadherin, CADM-1,

and N-Cadherin [62, 63]. Both mast cells and neurons have the potential to secrete nerve

growth factor (NGF) and substance P (SP) that bind trkA, and NK-1 receptors, respectively

[3]. NGF and SP participate in nociceptive signaling. NGF and tumor necrosis factor-α

(TNF- α) secreted by mast cells induce neuronal growth, and reduce subsequent neuronal

firing threshold through binding with trkA and TNFR, respectively [55, 65, 66, 67].

Tryptase released by mast cells binds to proteinase-activated receptor 2 (PAR2) on neurons,

and initiates a cascade involving TRPV1/4 activation via PLC and release of CGRP [72, 73].

CGRP in turn binds to a G-protein coupled receptor (CGRP-GPCR) on mast cells, and

promotes histamine release [74, 75]. [Artwork: John Koenig]
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