
 International Journal of 

Molecular Sciences

Article

Quercetin Inhibits the Production of IL-1β-Induced
Inflammatory Cytokines and Chemokines in ARPE-19
Cells via the MAPK and NF-κB Signaling Pathways

Shu-Chen Cheng 1,2 , Wen-Chung Huang 3,4 , Jong-Hwei S. Pang 2,5, Yi-Hong Wu 2,6,7,* and
Ching-Yi Cheng 3,8,9,*

1 Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 33372, Taiwan;
kkaren0330@yahoo.com.tw

2 Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University,
Taoyuan 33302, Taiwan; jonghwei@mail.cgu.edu.tw

3 Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine and
Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of
Science and Technology, Taoyuan 33303, Taiwan; wchuang@mail.cgust.edu.tw

4 Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital,
Taoyuan 33305, Taiwan

5 Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital,
Taoyuan 33305, Taiwan

6 Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial
Hospital, Taoyuan 33372, Taiwan

7 School of Traditional Chinese Medicine, College of Medicine, Chang Gung University,
Taoyuan 33302, Taiwan

8 Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
9 Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
* Correspondence: mzpjih@gmail.com (Y.-H.W.); jennycheng@mail.cgust.edu.tw (C.-Y.C.);

Tel.: +886-3-3196200 (ext. 2611) (Y.-H.W.); +886-3-2118999 (ext. 5114) (C.-Y.C.)

Received: 13 May 2019; Accepted: 13 June 2019; Published: 17 June 2019
����������
�������

Abstract: Quercetin, a bioflavonoid derived from vegetables and fruits, exerts anti-inflammatory
effects in various diseases. Our previous study revealed that quercetin could suppress the expression
of matrix metalloprotease-9 (MMP-9) and intercellular adhesion molecule-1 (ICAM-1) to achieve
anti-inflammatory effects in tumor necrosis factor-α (TNF-α)-stimulated human retinal pigment
epithelial (ARPE-19) cells. The present study explored whether quercetin can inhibit the interleukin-1β
(IL-1β)-induced production of inflammatory cytokines and chemokines in ARPE-19 cells. Prior
to stimulation by IL-1β, ARPE-19 cells were pretreated with quercetin at various concentrations
(2.5–20 µM). The results showed that quercetin could dose-dependently decrease the mRNA and
protein levels of ICAM-1, IL-6, IL-8 and monocyte chemoattractant protein-1 (MCP-1). It also
attenuated the adherence of the human monocytic leukemia cell line THP-1 to IL-1β-stimulated
ARPE-19 cells. We also demonstrated that quercetin inhibited signaling pathways related to the
inflammatory process, including phosphorylation of mitogen-activated protein kinases (MAPKs),
inhibitor of nuclear factor κ-B kinase (IKK)α/β, c-Jun, cAMP response element-binding protein
(CREB), activating transcription factor 2 (ATF2) and nuclear factor (NF)-κB p65, and blocked the
translocation of NF-κB p65 into the nucleus. Furthermore, MAPK inhibitors including an extracellular
signal-regulated kinase (ERK) 1/2 inhibitor (U0126), a p38 inhibitor (SB202190) and a c-Jun N-terminal
kinase (JNK) inhibitor (SP600125) decreased the expression of soluble ICAM-1 (sICAM-1), but not
ICAM-1. U0126 and SB202190 could inhibit the expression of IL-6, IL-8 and MCP-1, but SP600125
could not. An NF-κB inhibitor (Bay 11-7082) also reduced the expression of ICAM-1, sICAM-1, IL-6,
IL-8 and MCP-1. Taken together, these results provide evidence that quercetin protects ARPE-19 cells
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from the IL-1β-stimulated increase in ICAM-1, sICAM-1, IL-6, IL-8 and MCP-1 production by blocking
the activation of MAPK and NF-κB signaling pathways to ameliorate the inflammatory response.

Keywords: quercetin; retinal pigment epithelial cells; anti-inflammatory; cytokines; chemokines

1. Introduction

The retinal pigment epithelium (RPE), a single layer of cells located in the posterior part of the eye
between the photoreceptors and vascularized choroid, is an indispensable part of the visual system and
is responsible for several essential physiological functions. RPE cells can selectively transport nutrients
and metabolic waste between the photoreceptors and choroid, maintain the ionic and fluid balance,
absorb stray light, form the blood–retina barrier, phagocytose the photoreceptor outer segments, and
secrete extracellular matrix components, hormones and growth factors for the photoreceptors, Bruch’s
membrane and choriocapillaris [1–3]. When RPE cells are stimulated with inflammatory mediators
such as tumor necrosis factor (TNF)-α, interferon-γ and interleukin-1β (IL-1β), they will produce
cytokines and chemokines and then trigger inflammatory responses. Therefore, RPE cells are crucial
elements in the pathogenesis of inflammation-associated progressive eye diseases, of which age-related
macular degeneration (AMD) is the most important [4]

It is estimated that 8.7% of the global population suffer from AMD, and this number will probably
double in the next 20 years with the increase in life expectancy. Consequently, AMD has become a major
public health issue and an increased social and economic burden [5]. AMD is currently considered
to be an irreversible permanent disease in the older population that is characterized by distorted
central vision, a dark or gray patch (scotoma) in the central vision, and then progressive loss of central
vision, which causes difficulties in daily living activities such as reading fine print or recognizing
faces and color [6]. AMD has been classified into two distinct subtypes: Dry AMD (geographic
atrophy; nonexudative) and wet AMD (neovascular; exudative), and its pathological processes includes
lipofuscin accumulation, drusen formation, RPE geographic atrophy, photoreceptor dysfunction and
degeneration, plus choroidal neovascularization [6–8]. Because of the elevated levels of inflammatory
cytokines and chemokines such as IL-6, IL-8, intercellular adhesion molecule-1 (ICAM-1) and monocyte
chemoattractant protein-1 (MCP-1), either locally in the ocular fluids or tissue or systemically in the
serum of AMD patients, chronic inflammation is thought to facilitate the progress of AMD [9–13].

Quercetin is a natural bioflavonoid widely distributed in various vegetables and fruits such as
onions, cranberries and green tea [14,15]. Quercetin possesses anti-inflammatory, anticarcinogenic,
antioxidative, free-radical scavenging, antifibrotic and antiproliferative capacities that can be expressed
in different cell types and animal models [15–20]. Based on these properties, quercetin has been
documented to have the potential to treat diabetes [21], cancer [22,23], and neurodegenerative [24],
liver [25] and cardiovascular diseases [26,27]. In ophthalmology, quercetin has recently been used
to treat dry eye, corneal inflammation and corneal neovascularization [28]. Quercetin has also been
reported to protect human retinal pigment epithelial (ARPE-19) cells against H2O2-induced injury [29],
inhibit the expression of vascular cell adhesion molecule-1, ICAM-1, matrix metalloproteinase-2
(MMP-2) and MMP-9 in vascular endothelial growth factor-stimulated 661W cells [30], decrease TNF-α
and IL-1β expression in rats with streptozotocin-induced diabetes [31], and reduce the production
of IL-6, IL-8 and MCP-1 in 4-hydroxynonenal-stimulated ARPE-19 cells [15]. These studies provide
a theoretical basis for the clinical application of quercetin in the prevention and treatment of retinal
inflammatory diseases. However, the mechanisms by which quercetin mediates its anti-inflammatory
effects are still debated.
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In this study, we first investigated whether quercetin has anti-inflammatory properties in ARPE-19
cells stimulated by IL-1β and then analyzed the potential underlying pathways of inflammation.
Understanding the role and mechanisms of action of quercetin could contribute to the discovery of
effective therapeutic targets for retinal inflammatory diseases.

2. Results

2.1. IL-1β Induces the Expression of ICAM-1, sICAM-1, IL-6, IL-8 and MCP-1 in ARPE-19 Cells

The infiltration of macrophages or lymphocytes into the posterior chamber of the eye and the
secretion of proinflammatory mediators such as IL-1β are important processes in retinal inflammation.
IL-1β is an inducible proinflammatory cytokine that plays an early role in the production of inflammatory
chemokines and cytokines. It triggers the inflammatory response and attracts more inflammatory
cells to migrate into the retina, resulting in the functional impairment and degeneration of the retina.
Therefore, ARPE-19 cells were treated for the specified time with or without various concentrations
(0.1, 1, 2 ng/mL) of IL-1β, to explore whether the production of ICAM-1, sICAM-1, IL-6, IL-8 and
MCP increased after this stimulation. The concentrations of the IL-1β (0.1, 1, 2 ng/mL) used alone had
no toxic effects or changes in the cell viability on ARPE-19 cells, as tested for an LDH release test or
a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay (data not shown). As
shown in Figure 1A–E, the increases in the levels of ICAM-1, sICAM-1, IL-6, IL-8 and MCP-1 detected
by Enzyme-Linked Immunosorbent Assay (ELISA) or Western blotting were positively correlated with
the concentration of IL-1β and the stimulation time.

2.2. Quercetin Inhibits the Expression of ICAM-1, sICAM-1, IL-6, IL-8 and MCP-1 in IL-1β-Stimulated
ARPE-19 Cells

Numerous studies have reported the quercetin can inhibit the expression of IL-6, IL-8, ICAM-1
or MCP-1 induced by various stimuli such as LPS, TNF-α, high glucose and calcium ionophore
A23187 in human mast cells, mesangial cells, neutrophils, airway epithelial cells and rat intestinal
microvascular endothelial cells, respectively [32–36]. In these experiments, the efficacy and modes
of action of quercetin appear to be affected by a diversity of cell types and inflammatory stimulants.
Therefore, we evaluated whether quercetin has anti-inflammatory properties in IL-1β-stimulated
ARPE-19 cells. We first assessed the cytotoxicity of quercetin in ARPE-19 cells by an MTT assay. As
shown in Figure 2A, the viability of ARPE-19 cells was significantly reduced at quercetin concentrations
higher than 30 µM. Accordingly, quercetin concentrations from 2.5 to 20 µM were chosen for all
subsequent experiments (ELISA, Western blotting, and Reverse Transcription-Quantitative Polymerase
Chain Reaction (RT-qPCR) tests). Before being stimulated with 1 ng/mL IL-1β for 24 h, ARPE-19
cells were pretreated with different concentrations of quercetin (2.5, 5, 10 or 20 µM) for 1 h. As the
quercetin concentration increased, the ICAM-1 level gradually decreased and the release of sICAM-1
into the culture medium was inhibited (Figure 2B,C). Twenty micromolar quercetin also significantly
inhibited the expression of IL-6, IL-8 and MCP-1 (Figure 2D–F). To investigate whether quercetin
affects the mRNA expression of ICAM-1, IL-6, IL-8 and MCP-1 in IL-1β-stimulated ARPE-19 cells,
cells were pretreated with 20 µM quercetin for 1 h and then incubated with IL-1β (1 ng/mL) for 4 h.
Quercetin clearly reduced the IL-1β-induced expression of mRNA for ICAM-1, IL-6, IL-8 and MCP-1
(Figure 3A–D).
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Figure 1. Interleukin-1β (IL-1β) induces the expression of intercellular adhesion molecule-1 (ICAM-
1), soluble ICAM-1 (sICAM-1), IL-6, IL-8 and monocyte chemoattractant protein-1 (MCP-1) in human 
retinal pigment epithelial (ARPE-19) cells. (A) IL-1β at concentrations of 0.1–2 ng/mL was used to 
stimulate ARPE-19 cells for the indicated times. The protein expression of ICAM-1 was analyzed by 
Western blotting (top panels) and quantified by Image Lab software (lower panels). (B) The levels of 
sICAM-1, (C) IL-6, (D) IL-8 and (E) MCP-1 in ARPE-19 cells were measured using Enzyme-Linked 
Immunosorbent Assay (ELISA) after stimulation with 1 ng/mL IL-1β for the indicated times. The data 

Figure 1. Interleukin-1β (IL-1β) induces the expression of intercellular adhesion molecule-1 (ICAM-1),
soluble ICAM-1 (sICAM-1), IL-6, IL-8 and monocyte chemoattractant protein-1 (MCP-1) in human
retinal pigment epithelial (ARPE-19) cells. (A) IL-1β at concentrations of 0.1–2 ng/mL was used to
stimulate ARPE-19 cells for the indicated times. The protein expression of ICAM-1 was analyzed by
Western blotting (top panels) and quantified by Image Lab software (lower panels). (B) The levels of
sICAM-1, (C) IL-6, (D) IL-8 and (E) MCP-1 in ARPE-19 cells were measured using Enzyme-Linked
Immunosorbent Assay (ELISA) after stimulation with 1 ng/mL IL-1β for the indicated times. The data
are expressed as mean ± SD of three independent experiments. * p < 0.05 compared with the basal level.
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Figure 2. Quercetin attenuates the expression of ICAM-1, sICAM-1, IL-6, IL-8 and MCP-1 in IL-1β-
stimulated ARPE-19 cells. (A) Effects of quercetin on ARPE-19 cell viability. ARPE-19 cells were 
treated for 24 h with 2.5–40 μM quercetin and a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide (MTT) assay was used to analyze the cell viability. (B) ICAM-1 protein level was evaluated 
by Western blotting and then quantified using Image Lab software. (C) The levels of sICAM-1, (D) 
IL-6, (E) IL-8 and (F) MCP-1 were assessed by ELISA after cells were incubated for 1 h with quercetin 
at the indicated doses and then activated with 1 ng/mL IL-1β for 24 h. The data are expressed as mean 

Figure 2. Quercetin attenuates the expression of ICAM-1, sICAM-1, IL-6, IL-8 and MCP-1 in
IL-1β-stimulated ARPE-19 cells. (A) Effects of quercetin on ARPE-19 cell viability. ARPE-19 cells were
treated for 24 h with 2.5–40 µM quercetin and a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) assay was used to analyze the cell viability. (B) ICAM-1 protein level was evaluated by
Western blotting and then quantified using Image Lab software. (C) The levels of sICAM-1, (D) IL-6,
(E) IL-8 and (F) MCP-1 were assessed by ELISA after cells were incubated for 1 h with quercetin at the
indicated doses and then activated with 1 ng/mL IL-1β for 24 h. The data are expressed as mean ± SD of
three independent experiments. # p < 0.05 versus control cells. * p < 0.05 versus IL-1β-stimulated cells.
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Figure 3. Quercetin attenuates the expression of ICAM-1, IL-6, IL-8 and MCP-1 mRNA in IL-1β-
stimulated ARPE-19 cells. ARPE-19 cells were pretreated with 20 μM quercetin for 1 h before 
stimulation with 1 ng/mL IL-1β for 4 h. Reverse Transcription-Quantitative Polymerase Chain 
Reaction (RT-qPCR) was used to determine the fold changes in (A) ICAM-1, (B) IL-6, (C) IL-8 and (D) 
MCP-1 gene expression with β-actin as an internal control. The data are expressed as mean ± SD of 
three independent experiments. # P < 0.05 versus control cells. * P < 0.05 versus IL-1β-stimulated cells. 

2.3. Quercetin Suppresses Inflammatory Signaling Pathways in ARPE-19 Cells 

Many studies have demonstrated that quercetin can combat inflammation through regulating 
mitogen-activated protein kinase (MAPK) pathways in different types of cells under different 
stimulants [14,32,36–38]. Because we observed that quercetin inhibited the expression of ICAM-1, 
sICAM-1, IL-6, IL-8 and MCP-1 in IL-1β-stimulated ARPE-19 cells, we investigated whether quercetin 
could suppress the phosphorylation of signaling pathway proteins in these cells. The cells were 
incubated with 20 μM quercetin for 1 h before stimulation with 1 ng/mL IL-1β for the indicated times. 
The results demonstrated that quercetin significantly attenuated the phosphorylation of MAPKs 
(extracellular signal-regulated kinase (ERK) 1/2, p38, and c-Jun N-terminal kinase (JNK) 1/2), cAMP 
response element-binding protein (CREB), activating transcription factor 2 (ATF2) and c-Jun in IL-
1β-stimulated ARPE-19 cells, implying that these proteins may promote the production of ICAM-1, 
sICAM-1, IL-6, IL-8 and MCP-1 (Figure 4A–C,5A–C). 

Figure 3. Quercetin attenuates the expression of ICAM-1, IL-6, IL-8 and MCP-1 mRNA in
IL-1β-stimulated ARPE-19 cells. ARPE-19 cells were pretreated with 20 µM quercetin for 1 h before
stimulation with 1 ng/mL IL-1β for 4 h. Reverse Transcription-Quantitative Polymerase Chain Reaction
(RT-qPCR) was used to determine the fold changes in (A) ICAM-1, (B) IL-6, (C) IL-8 and (D) MCP-1
gene expression with β-actin as an internal control. The data are expressed as mean ± SD of three
independent experiments. # p < 0.05 versus control cells. * p < 0.05 versus IL-1β-stimulated cells.

2.3. Quercetin Suppresses Inflammatory Signaling Pathways in ARPE-19 Cells

Many studies have demonstrated that quercetin can combat inflammation through regulating
mitogen-activated protein kinase (MAPK) pathways in different types of cells under different
stimulants [14,32,36–38]. Because we observed that quercetin inhibited the expression of ICAM-1,
sICAM-1, IL-6, IL-8 and MCP-1 in IL-1β-stimulated ARPE-19 cells, we investigated whether quercetin
could suppress the phosphorylation of signaling pathway proteins in these cells. The cells were
incubated with 20 µM quercetin for 1 h before stimulation with 1 ng/mL IL-1β for the indicated
times. The results demonstrated that quercetin significantly attenuated the phosphorylation of
MAPKs (extracellular signal-regulated kinase (ERK) 1/2, p38, and c-Jun N-terminal kinase (JNK) 1/2),
cAMP response element-binding protein (CREB), activating transcription factor 2 (ATF2) and c-Jun in
IL-1β-stimulated ARPE-19 cells, implying that these proteins may promote the production of ICAM-1,
sICAM-1, IL-6, IL-8 and MCP-1 (Figure 4A–C and Figure 5A–C).
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Figure 4. Quercetin inhibits the phosphorylation of mitogen-activated protein kinases (MAPKs) and 
inhibitor of nuclear factor κ-B kinase (IKK)α/β in IL-1β-stimulated ARPE-19 cells. ARPE-19 cells were 
treated with 20 μM quercetin for 1 h prior to the stimulation with 1 ng/mL IL-1β for the indicated 
time. Western blotting and Image Lab software were used to analyze and quantify the 
phosphorylation of (A) extracellular signal-regulated kinase (ERK) 1/2, (B) p38, (C) c-Jun N-terminal 
kinase (JNK) 1/2 and (D) IKKα/β. The data are expressed as mean ± SD of three independent 
experiments. # P < 0.05 versus control cells. * P < 0.05 versus IL-1β-stimulated cells. 

Figure 4. Quercetin inhibits the phosphorylation of mitogen-activated protein kinases (MAPKs) and
inhibitor of nuclear factor κ-B kinase (IKK)α/β in IL-1β-stimulated ARPE-19 cells. ARPE-19 cells were
treated with 20 µM quercetin for 1 h prior to the stimulation with 1 ng/mL IL-1β for the indicated time.
Western blotting and Image Lab software were used to analyze and quantify the phosphorylation of
(A) extracellular signal-regulated kinase (ERK) 1/2, (B) p38, (C) c-Jun N-terminal kinase (JNK) 1/2 and
(D) IKKα/β. The data are expressed as mean ± SD of three independent experiments. # p < 0.05 versus
control cells. * p < 0.05 versus IL-1β-stimulated cells.
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Figure 5. Quercetin attenuates the phosphorylation of cAMP response element-binding protein 
(CREB), activating transcription factor 2 (ATF2), c-Jun and nuclear factor (NF)-κB p65 in IL-1β-
stimulated ARPE-19 cells. ARPE-19 cells were treated with 20 μM quercetin for 1 h prior to stimulation 
with 1 ng/mL IL-1β for the indicated time. Western blotting and Image Lab software were used to 
analyze and quantify the phosphorylation of (A) CREB, (B) ATF2, (C) c-Jun and (D) Nuclear factor 
(NF)-κB p65. The data are expressed as mean ± SD of three independent experiments. # P < 0.05 versus 
control cells. * P < 0.05 versus IL-1β-stimulated cells. 
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While previous studies have reported the potential roles of MAPKs in RPE cells treated with 
different stimulants and inhibitors, the results are inconsistent [39–42]. To explore the importance of 
three separate MAPKs in retinal inflammatory diseases, ARPE-19 cells were pretreated with MAPK 
inhibitors (10 μM p38 inhibitor SB202190, 10 μM ERK1/2 inhibitor U0126 or 10 μM JNK inhibitor 
SP600125) for 1 h prior to incubation with 1 ng/mL IL-1β for 24 h. Interestingly, the MAPK inhibitors 
reduced the IL-1β-induced expression of sICAM-1 but not that for ICAM-1 and ICAM-1 mRNA levels 
(Figures 6A,B,7A). Next, we investigated whether MAPK inhibitors could attenuate the IL-1β-
stimulated production of inflammatory cytokines IL-6, IL-8 and MCP-1. As shown in Figure 6C–E, 
the release of IL-6, IL-8 and MCP-1 was reduced by U0126 and SB202190, but not by SP600125. Similar 
trends were observed for the expression of mRNA for IL-6, IL-8 and MCP-1 (Figure 7B–D). These 
results suggested that in IL-1β-stimulated ARPE-19 cells, quercetin reduces sICAM-1 levels via the 
p38, ERK1/2 and JNK1/2 pathways and suppresses IL-6, IL-8 and MCP-1 levels via the p38 and 
ERK1/2 pathways. 

Figure 5. Quercetin attenuates the phosphorylation of cAMP response element-binding protein (CREB),
activating transcription factor 2 (ATF2), c-Jun and nuclear factor (NF)-κB p65 in IL-1β-stimulated
ARPE-19 cells. ARPE-19 cells were treated with 20 µM quercetin for 1 h prior to stimulation with
1 ng/mL IL-1β for the indicated time. Western blotting and Image Lab software were used to analyze
and quantify the phosphorylation of (A) CREB, (B) ATF2, (C) c-Jun and (D) Nuclear factor (NF)-κB p65.
The data are expressed as mean ± SD of three independent experiments. # p < 0.05 versus control cells.
* p < 0.05 versus IL-1β-stimulated cells.

2.4. MAPK Inhibitors Decrease the IL-1β-Induced Expression of sICAM-1, IL-6, IL-8 and MCP-1 in
ARPE-19 Cells

While previous studies have reported the potential roles of MAPKs in RPE cells treated with
different stimulants and inhibitors, the results are inconsistent [39–42]. To explore the importance of
three separate MAPKs in retinal inflammatory diseases, ARPE-19 cells were pretreated with MAPK
inhibitors (10 µM p38 inhibitor SB202190, 10 µM ERK1/2 inhibitor U0126 or 10 µM JNK inhibitor
SP600125) for 1 h prior to incubation with 1 ng/mL IL-1β for 24 h. Interestingly, the MAPK inhibitors
reduced the IL-1β-induced expression of sICAM-1 but not that for ICAM-1 and ICAM-1 mRNA
levels (Figure 6A,B and Figure 7A). Next, we investigated whether MAPK inhibitors could attenuate
the IL-1β-stimulated production of inflammatory cytokines IL-6, IL-8 and MCP-1. As shown in
Figure 6C–E, the release of IL-6, IL-8 and MCP-1 was reduced by U0126 and SB202190, but not
by SP600125. Similar trends were observed for the expression of mRNA for IL-6, IL-8 and MCP-1
(Figure 7B–D). These results suggested that in IL-1β-stimulated ARPE-19 cells, quercetin reduces
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sICAM-1 levels via the p38, ERK1/2 and JNK1/2 pathways and suppresses IL-6, IL-8 and MCP-1 levels
via the p38 and ERK1/2 pathways.
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Figure 6. Inhibitory effects of MAPKs and NF-κB inhibitors on the protein expression of ICAM-1, 
sICAM-1, IL-6, IL-8 and MCP-1 in IL-1β-stimulated ARPE-19 cells. ARPE-19 cells were pretreated 
with 10 μM U0126 (U0), 10 μM SB202190 (SB), 10 μM SP600125 (SP) or 5 μM Bay11-7082 (Bay) for 1 h 
prior to stimulation with 1 ng/mL IL-1β for 24 h. (A) ICAM-1 protein expression was measured by 
Western blotting and quantified using Image Lab software. (B) The levels of sICAM-1, (C) IL-6, (D) 
IL-8 and (E) MCP-1 were detected by ELISA. The data are expressed as mean ± SD of three 
independent experiments. # P < 0.05 versus control cells. * P < 0.05 versus IL-1β-stimulated cells. 

Figure 6. Inhibitory effects of MAPKs and NF-κB inhibitors on the protein expression of ICAM-1,
sICAM-1, IL-6, IL-8 and MCP-1 in IL-1β-stimulated ARPE-19 cells. ARPE-19 cells were pretreated
with 10 µM U0126 (U0), 10 µM SB202190 (SB), 10 µM SP600125 (SP) or 5 µM Bay11-7082 (Bay) for 1 h
prior to stimulation with 1 ng/mL IL-1β for 24 h. (A) ICAM-1 protein expression was measured by
Western blotting and quantified using Image Lab software. (B) The levels of sICAM-1, (C) IL-6, (D) IL-8
and (E) MCP-1 were detected by ELISA. The data are expressed as mean ± SD of three independent
experiments. # p < 0.05 versus control cells. * p < 0.05 versus IL-1β-stimulated cells.
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IL-6, IL-8 and MCP-1 in IL-1β-stimulated ARPE-19 cells. ARPE-19 cells were treated with 10 μM 
U0126 (U0), 10 μM SB202190 (SB), 10 μM SP600125 (SP) or 5 μM Bay11-7082 (Bay) for 1 h, followed by 
stimulation with 1 ng/mL IL-1β for 4 h. The fold changes in (A) ICAM-1, (B) IL-6, (C) IL-8 and (D) 
MCP-1 gene expression were analyzed using RT-qPCR with β-actin as an internal control. The data 
are expressed as mean ± SD of three independent experiments. #P < 0.05 versus control cells. *P < 0.05 
versus IL-1β-stimulated cells. 
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Figure 7. Inhibitory effects of MAPKs and NF-κB inhibitors on the expression of mRNA for ICAM-1,
IL-6, IL-8 and MCP-1 in IL-1β-stimulated ARPE-19 cells. ARPE-19 cells were treated with 10 µM
U0126 (U0), 10 µM SB202190 (SB), 10 µM SP600125 (SP) or 5 µM Bay11-7082 (Bay) for 1 h, followed
by stimulation with 1 ng/mL IL-1β for 4 h. The fold changes in (A) ICAM-1, (B) IL-6, (C) IL-8 and
(D) MCP-1 gene expression were analyzed using RT-qPCR with β-actin as an internal control. The data
are expressed as mean ± SD of three independent experiments. # p < 0.05 versus control cells. * p < 0.05
versus IL-1β-stimulated cells.

2.5. Quercetin Decreases Nuclear Factor (NF)-κB Activation in IL-1β-Stimulated ARPE-19 Cells

Previous studies have confirmed that NF-κB plays an indispensable role in inflammation [43].
When RPE cells are stimulated by proinflammatory cytokines such as IL-1β, phosphorylation of the
inhibitor of NF-κB (IκB) is induced, leading to translocation of NF-κB into the nucleus, which results
in the transcription of cytokine and chemokine genes. Quercetin has been demonstrated to exert
its anti-inflammatory effects through downregulating the NF-κB signaling pathways in vitro [44–46]
and in vivo [47,48]. In the present study, ARPE-19 cells were pretreated with 20 µM quercetin for 1 h
prior to the stimulation with IL-1β (1 ng/mL) for the indicated times to investigate whether quercetin
could reduce the phosphorylation of inhibitor of nuclear factor κ-B kinase (IKK)α/β and NF-κB p65.
As shown in Figures 4D and 5D, quercetin clearly suppressed the IL-1β-induced phosphorylation of
IKKα/β and NF-κB p65 in ARPE-19 cells.

We next explored the role of NF-κB in the expression of ICAM-1, sICAM-1, IL-6, IL-8 and MCP-1
in IL-1β-stimulated ARPE-19 cells. As shown in Figure 6A,B, when cells were pretreated with 5 µM
Bay11-7082, the expression of both sICAM-1 and ICAM-1 was decreased. Pretreatment with Bay11-7082
also downregulated ICAM-1 mRNA expression (Figure 7A). Similar outcomes were also obtained for
the expression of protein and mRNA for IL-6, IL-8 and MCP-1 (Figure 6C–E and Figure 7B–D). These
results suggested that NF-κB is the principal pathway mediating the reduction of ICAM-1, sICAM-1,
IL-6, IL-8 and MCP-1 levels in IL-1β-stimulated ARPE-19 cells.
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Immunofluorescence staining was also used to elucidate whether quercetin attenuated
IL-1β-induced NF-κB p65 translocation from the cytoplasm into the nucleus. First, we used 1 ng/mL
IL-1β to stimulate ARPE-19 cells for the indicated times. Although the NF-κB p65 subunit was mainly
present in the cytoplasm in the unstimulated ARPE-19 cells, the results indicated that IL-1β induced
NF-κB p65 translocation within 5 min and achieved the maximal response within 30 min (Figure 8A).
Pretreatment of cells with either quercetin or Bay 11-7082 before their stimulation with IL-1β blocked
NF-κB p65 translocation into the nucleus so that the p65 subunit was retained in the cytoplasm
(Figure 8B). These results suggested that quercetin attenuated the expression of ICAM-1, sICAM-1,
IL-6, IL-8 and MCP-1 in IL-1β-stimulated ARPE-19 cells by downregulating NF-κB p65 translocation.
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Figure 8. Quercetin attenuates NF-κB p65 translocation in IL-1β-stimulated ARPE-19 cells.
Immunofluorescence staining was used to evaluate NF-κB p65 translocation in (A) ARPE-19 cells
stimulated with 1 ng/mL IL-1β for the indicated time, and (B) ARPE-19 cells pretreated with 20 µM
quercetin or 5 µM Bay 11-7082 for 1 h prior to activation with 1 ng/mL IL-1β for 10 min. The image is
representative of the results of four independent experiments. Green: the location of the p65 subunit;
Blue: DAPI for nuclear staining.
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2.6. Quercetin Attenuates THP-1 Cell Adherence to IL-1β-Stimulated ARPE-19 Cells

It has been reported that decreased ICAM-1 expression results in the suppression of the adhesion of
THP-1 cells [41,49]. Because we demonstrated that quercetin strongly inhibited ICAM-1 expression, we
wanted to investigate whether quercetin could also attenuate THP-1 cell adhesion to IL-1β-stimulated
ARPE-19 cells. Indeed, pretreatment with 20 µM quercetin seemed to significantly decrease THP-1 cell
adherence to IL-1β-activated ARPE-19 cells (Figure 9A,B). We next investigated whether the inhibitors
of ERK1/2, p38, JNK1/2 and NF-κB could modulate THP-1 cell adhesion and showed that NF-κB
inhibitor (5 µM Bay 11-7082) significantly attenuated THP-1 cell adhesion to IL-1β-stimulated ARPE-19
cells (Figure 9A,B). Combined with the fact that quercetin inhibited the phosphorylation of IKKα/β

and NF-κB p65 and blocked NF-κB p65 translocation, these findings illustrate that quercetin decreased
ICAM-1 expression via the NF-κB pathway, which contributed to the enhancement of THP-1 cell
adhesion to IL-1β-stimulated ARPE-19 cells.
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Figure 9. Quercetin significantly suppresses THP-1 cell adherence to IL-1β-stimulated ARPE-19 cells.
ARPE-19 cells were preincubated with quercetin (10, 20 µM), 10 µM U0126, 10 µM SB202190, 10 µM
SP600125 or 5 µM Bay 11-7082 for 1 h and then stimulated with 1 ng/mL IL-1β for 24 h. (A,B) A THP-1
monocyte adhesion assay was used to evaluate the physiological function of ICAM-1. The fluorescence
intensity represents THP-1 cell adhesion to IL-1β-stimulated ARPE-19 cells, which was quantified using
Image J software. The data are expressed as mean ± SD of three independent experiments. # p < 0.05
versus control cells. * p < 0.05 versus IL-1β-stimulated cells.
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3. Discussion

Inflammation has been reported to be involved in the pathophysiology of various retinal
diseases, including AMD, polypoidal choroidal vasculopathy, diabetic retinopathy and retinal vein
occlusion [50–54]. RPE cells have been demonstrated to secrete cytokines in vitro after stimulation with
IL-1β [55]. IL-1β is a proinflammatory cytokine that can trigger the inflammatory cascade and plays a
major role in retinal inflammation [54,56]. Previous studies have also shown that IL-1β upregulates the
expression of IL-6 [55,57,58], IL-8 [55,59], ICAM-1 [60] and MCP-1 [39,61] in human RPE cells. In the
present study, stimulation of ARPE-19 cells with IL-1β induced increased production of ICAM-1, IL-6,
IL-8 and MCP-1, which is consistent with these previous results.

ICAM-1, also known as CD54, is a transmembrane glycoprotein that plays a key role in
recruitment, adhesion and infiltration of neutrophils and monocytes to the retina [62–64]. The
excessive proinflammatory cytokines released by these neutrophils or monocytes initiate inflammation
and aggravate damage. Previous studies have indicated that ICAM-1 expression is increased in
posterior uveitis, proliferative vitreoretinopathy, proliferative diabetic retinopathy and AMD [12,60,64].
The sICAM-1 detected in culture supernatants and human body fluids such as serum, synovial fluid
and urine has been documented to recruit lymphocytes and eosinophils to inflamed tissue [65,66].
Nevertheless, the mechanisms involved in sICAM-1 generation have not been fully elucidated.
It is thought that sICAM-1 is either produced by proteolytic cleavage of membrane-bound
ICAM-1 or is specifically encoded by distinct mRNA transcripts [67,68]. Previous studies have
confirmed that sICAM-1 levels are elevated in patients with proliferative retinal disease [69], Graves’
ophthalmopathy [70], idiopathic uveoretinitis [71] and various inflammatory diseases, and that
sICAM-1 levels could be used to assess illness severity and prognosis [72–76]. IL-6, a multifunctional
cytokine, contributes to activating T lymphocytes, stimulating immunoglobulin secretion, increasing
vascular permeability and triggering acute-phase protein release [77–79]. MCP-1 (also called CCL2)
belongs to the C–C chemokine family and stimulates and attracts monocytes and lymphocytes, resulting
in monocyte/macrophage infiltration [80,81]. IL-8 belongs to the C–X–C chemokine family and is a
chemoattractant for eosinophils and neutrophils [11]. Previous studies have demonstrated that IL-6,
IL-8 and MCP-1 not only initiate inflammatory responses but also promote angiogenesis, thereby
stimulating AMD progression [10,82–85]. Our results showed that the levels of ICAM-1, sICAM-1,
IL-6, IL-8 and MCP-1 in IL-1β-stimulated ARPE-19 cells were positively correlated with the IL-1β
concentration and the duration of stimulation, suggesting that these cytokines and chemokines play a
crucial part in the process of RPE inflammation.

Previous ophthalmic studies suggested that quercetin reduced IL-6 and IL-8 mRNA expression
in cultured tissue from Graves’ orbitopathy [16], attenuated IL-6, IL-8 and ICAM-1 mRNA levels
in IL-1β-stimulated orbital fibroblasts from Graves’ orbitopathy [86], and inhibited IL-6 and IL-8
secretion in TNF-α-stimulated human corneal epithelial (HCE) and conjunctival (IOBA-NHC) cell
lines [87]. In addition, quercetin was shown to attenuate TNF-α-induced ICAM-1 and MMP-9
expression in ARPE-19 cells [88], and reduce both the RNA and protein levels of IL-6, IL-8 and MCP-1
in 4-hydroxynonenal-stimulated ARPE-19 cells [15]. Thus, there is increasing evidence that quercetin
may protect RPE cells from damage in vitro [15,88–90]. The present study provides the first evidence
that quercetin inhibits the mRNA and protein expression of IL-6, IL-8, MCP-1, ICAM-1 and sICAM-1
in IL-1β-stimulated ARPE-19 cells. We also showed that quercetin suppressed THP-1 cell adherence to
IL-1β-stimulated ARPE-19 cells. These findings suggest that quercetin could have anti-inflammatory
activity in IL-1β-stimulated ARPE-19 cells.
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Because inflammation may be a key factor in RPE degeneration, dysfunction and loss in retinal
degenerative diseases, the intracellular signaling pathways involved in initiating the release of cytokines
and chemokines in RPE cells are important. One of the most widely reported signaling pathways in
many cell systems is the MAPK signaling pathway, in which inflammatory stimulants contribute to the
activation of MAPKs, followed by increased release of cytokines and chemokines [91–93]. Quercetin
has been reported to have anti-inflammatory effects via inhibiting the activation of MAPKs in a number
of different cell lines treated with different inflammatory stimulants [14,34,36,37]. In this study, we
illustrated that IL-1β activated the phosphorylation of MAPKs (ERK1/2, p38 and JNK1/2), c-Jun and
transcription factors (CREB and ATF2) in ARPE-19 cells, and that quercetin significantly suppressed
this phosphorylation, which in turn led to a reduction in the expression of ICAM-1, sICAM-1, IL-6,
IL-8 and MCP-1.

We also used MAPK-inhibitor treatment of IL-1β-stimulated ARPE-19 cells to explore the
significance of individual MAPKs. We discovered that MAPK inhibitors, including SB202190, SP600125
and U0126, did not reduce the expression of ICAM-1, but did reduce that of sICAM-1. These
findings indicated that ICAM-1 and sICAM-1 were regulated by different signaling mechanisms in
IL-1β-stimulated ARPE-19 cells. We also showed that although ERK1/2 and p38 inhibitors suppressed
the expression of IL-6, IL-8 and MCP-1, JNK inhibitor did not. Some of these observations are identical
to the findings reported by Bian et al. who showed that only ERK1/2 or p38 inhibitors were able to
reduce IL-8 and MCP-1 levels in IL-1β-stimulated ARPE-19 cells [39].

There is increasing evidence that NF-κB influences the inflammatory process by regulating the
gene and protein expression of cytokines and chemokines [78]. The inflammatory signals generated
by the stimulation of ARPE-19 cells by IL-1β induce the production of phosphorylated IKKα/β and
lead to the activation of NF-κB. The activated NF-κB then moves into the nucleus from the cytoplasm,
resulting in inflammatory gene expression. Many studies have reported that quercetin exerts its
anti-inflammatory effects mainly through downregulation of NF-κB [15,30,32,94].

Our previous studies found that quercetin decreased ICAM-1 expression by downregulating
NF-κB in TNF-α-stimulated ARPE-19 cells [88]. In the present study, we demonstrated that quercetin
significantly inhibited phosphorylation of IKKα/β and NF-κB p65 and reduced NF-κB p65 translocation
into the nucleus. IL-1β-stimulated ARPE-19 cells were treated with NF-κB inhibitor (Bay 11-7082) to
determine whether quercetin downregulated NF-κB activation and thereby attenuated the mRNA and
protein levels of ICAM, sICAM-1, IL-6, IL-8 and MCP-1. We observed that Bay11-7082 decreased the
expression of ICAM, sICAM-1, IL-6, IL-8 and MCP-1 and that this inhibition was associated with the
downregulation of the NF-κB signaling pathway. Thus, we confirmed that NF-κB has an effect on the
regulation of cytokine and chemokine production in these cells.

Previous studies have shown that ICAM-1 is involved in the recruitment of monocytes, neutrophils
and lymphocytes, and in the adhesive interactions of THP-1 cells [95–97]. In this study, we investigated
whether quercetin reduced ICAM-1 levels and hence affected THP-1 cell adhesion to ARPE-19 cells.
We found that 20 µM quercetin reduced the expression of ICAM-1 in ARPE-19 cells and inhibited the
adhesion of THP-1 cells to IL-1β-stimulated ARPE-19 cells. We also observed that the ICAM-1 level
was regulated only by the NF-κB pathway, and not by the MAPK pathway: When inhibitors of MAPKs
or NF-κB were used to treat IL-1β-stimulated ARPE-19 cells, only the NF-κB inhibitor reduced THP-1
cell adhesion. Taken together, these observations indicated that quercetin downregulates the NF-κB
pathway to decrease the ICAM-1 level and thereby inhibits THP-1 cell adhesion to ARPE-19 cells.

4. Materials and Methods

4.1. Materials

Anti-phospho-ATF-2, anti-phospho-c-Jun, anti-phospho-CREB, anti-phospho-Erk1/2,
anti-phospho-IKKα/β, anti-phospho-JNK1/2, anti-phospho-p38 and anti-phospho-NF-κB p65
antibodies were obtained from Cell Signaling Technology (Danvers, MA, USA). Anti-ICAM-1,
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anti-glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and anti-NF-κB p65 antibodies were
obtained from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Bay 11-7082, SB202190, SP600125
and U0126 were obtained from Enzo Life Sciences (Farmingdale, NY, USA). Human recombinant
IL-1β was obtained from R&D Systems (Minneapolis, MN, USA). Quercetin was obtained from HWI
Analytik (Rheinzabern, Germany). Quercetin stock solution was dissolved in dimethyl sulfoxide
(DMSO) and then diluted to the desired concentrations with culture medium. All other reagents used
in the experiments were obtained from Sigma-Aldrich (St. Louis, MO, USA).

4.2. Cell Culture

The human retinal pigment epithelial cell line, ARPE-19 cells (Bioresource Collection and Research
Center, Hsinchu City, Taiwan), was cultured in Dulbecco’s modified Eagle’s medium (DMEM)/F-12
medium (Gibco BRL, Grand Island, NY, USA) containing sodium bicarbonate, 10% (v/v) fetal bovine
serum (FBS; HyClone, Logan, UT, USA) and antibiotics (50 ng/mL gentamycin, 100 U/mL penicillin G
and 100 µg/mL streptomycin (HyClone). Cells were subcultured every 3 to 4 days using 0.05% (v/v)
trypsin-ethylenediaminetetraacetic acid (EDTA; Life Technologies, Carlsbad, CA, USA).

The human monocytic leukemia cell line (THP-1 cells) was obtained from the American Type
Culture Collection (Manassas, VA, USA) and grown in RPMI 1640 medium (Gibco) containing
antibiotics and 10% FBS in a humidified 5% CO2 atmosphere at 37 ◦C. We changed the medium every
4 to 5 days.

4.3. Cell Viability Assay

The MTT (Sigma-Aldrich) assay was used to measure the inhibition of cell viability by quercetin.
Cells were seeded into 96-well plates and treated with quercetin at different concentrations (2.5–40 µM)
for 24 h. Next, each well was incubated with 0.5 mg/mL MTT solution for 1 h at 37 ◦C. The plates
were then washed and DMSO added to dissolve the formazan crystals followed by analysis using a
SpectraMax i3x microplate reader (Molecular Devices, San Jose, CA, USA) at 570 nm. The MTT assay
for each concentration was carried out in triplicate and the cell viability is presented as a percentage
relative to the cells without quercetin treatment.

4.4. ELISA

ARPE-19 cells were pretreated with or without quercetin (2.5–20 µM) for 1 h and then stimulated
with IL-1β (1 ng/mL) for the indicated times. The same experiments were also performed including
specific inhibitors of JNK (10 µM SP600125), p38 (10 µM SB202190), MEK1/2 (10 µM U0126) and NF-κB
(5 µM Bay 11-7082). Cells in the negative control were treated with DMSO at the same concentrations as
those present in quercetin or inhibitors. The levels of IL-6, IL-8, soluble ICAM-1 (sICAM-1) and MCP-1
were measured in samples of media using ELISA kits (R&D Systems, Minneapolis, MN, USA). The
optical density of samples was measured spectrophotometrically with a microplate reader (Multiskan
FC, Thermo) at 450 nm. All ELISAs were performed according to the manufacturers’ instructions [98].

4.5. Preparation of Cell Extracts and Western Blot Analysis

First, ARPE-19 cells were incubated with or without IL-1β at various concentrations (0.1, 1 or
2 ng/mL) for the indicated times. Second, cells were pretreated with quercetin (2.5 µM–20 µM) or
inhibitors (10 µM U0126, 10 µM SP600125, 10 µM SB202190 or 5 µM Bay 11-7082) for 1 h before
stimulation with 1 ng/mL IL-1β for either 1 h to measure the phosphorylation of protein or for 24 h to
evaluate the ICAM-1 protein level. The concentrations of the choice of inhibitors had no toxic effects or
changes in the cell viability on ARPE-19 cells, as tested for an LDH release test or a MTT assay (data
not shown). The negative control was prepared as described in the previous section.
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Proteins were extracted from ARPE-19 cells after being washed rapidly with ice-cold
phosphate-buffered saline (PBS) and subsequently added to lysis buffer (25 mM NaCl (pH 7.4),
25 mM NaF, 25 mM Tris-HCl, 1 mM sodium vanadate, 25 mM sodium pyrophosphate,
2.5 mM ethylenediaminetetraacetic acid (EDTA), 2.5 mM ethylene glycol-bis(β-aminoethyl
ether)-N,N,N’,N’-tetraacetic acid (EGTA), 0.05% (v/v) Triton X-100, 0.5% (w/v) sodium dodecyl sulfate
(SDS), 0.5% (w/v) deoxycholate, 5 µg/mL aprotinin, 0.5% (w/v) NP-40, 5 µg/mL leupeptin and 1 mM
phenylmethylsulfonyl fluoride (PMSF)). The resulting lysates were then centrifuged for 10 min at
15,000 rpm and 4 ◦C. A Pierce bicinchoninic acid (BCA) protein assay kit (Thermo Fisher Scientific,
Rockford, IL, USA) was utilized to evaluate the protein concentration.

The same amount of protein (30 µg) from each sample was denatured, separated on a
10% gel for SDS polyacrylamide gel electrophoresis and transferred onto Immobilon-P transfer
membranes (Millipore, Billerica, MA, USA), which were then blocked with the blocking buffer
(Visual Protein, Taipei, Taiwan) for 60 min and incubated with a 1:1000 dilution of primary
antibodies (anti-phospho-c-Jun, anti-phospho-ATF-2, anti-phospho-CREB, anti-phospho-ERK1/2,
anti-phospho-p38, anti-phospho-JNK1/2, anti-phospho-IKKα/β, anti-phospho-NF-κB p65, anti-ICAM-1
and anti-GAPDH) at 4 ◦C overnight. Next, these membranes were washed with Tween-Tris-buffered
saline (TTBS; 150 mM NaCl, 50 mM Tris-HCl, 0.05% (v/v) Tween 20, pH 7.4) and then incubated with
anti-mouse or anti-rabbit horseradish peroxidase-conjugated secondary antibodies at a dilution of
1:10,000 for 1 h at room temperature. Finally, these membranes were washed four times for 15 min
each with TTBS and incubated with enhanced chemiluminescence reagents to detect and quantify the
specific protein using a ChemiDoc XRS+ system (Bio-Rad Laboratories, Inc., Hercules, CA, USA).

4.6. Total RNA Extraction and RT-qPCR

ARPE-19 cells were pretreated with or without 20 µM quercetin or inhibitors (5 µM Bay 11-7082,
10 µM SB202190, 10 µM U0126 or 10 µM SP600125) for 1 h before being stimulated with 1 ng/mL IL-1β
for 4 h. The total RNA of ARPE-19 cells was extracted using TRIzol reagent (Sigma-Aldrich) as per the
manufacturer’s protocol. The RNA concentration was then measured with a microspectrophotometer
(Nano-100; Allsheng Instruments, Hangzhou City, Zhejiang, China). The 260/280 ratios of all samples
are between 1.8–2. An iScript cDNA Synthesis Kit (Bio-Rad) was used to reverse transcribe total
RNA into cDNA. Gene expression was quantified using an iQ™ SYBR Green Supermix kit (Bio-Rad
Laboratories, Hercules, CA, USA) and a CFX connect Real-Time PCR Detection System (Bio-Rad).

A melting curve analysis was performed to verify the accuracy of the amplicon after the
amplification program. The relative gene expression was estimated using the ∆∆Ct method: β-actin
expression served as an internal control and the ratio of the number of copies of the target gene mRNA
to the number of copies of β-actin was calculated. All data are expressed as the fold-change relative
to the mRNA level in the control cells. Each sample was run in triplicate. Primer Express software
(PrimerQuest Tool, IDT, Inc., Coralville, IA, USA) was used to design the primers for qPCR to span
exon–exon boundaries. The primers used for the target genes are listed in Table 1.

Table 1. Primers used in RT-qPCR analyses of mRNA expression.

Gene Primers (5′-3′ Sequence) GenBank Accession
Number

Product Size
(bp)

IL-6 Forward
Reverse

TCGGTCCAGTTGCCTTCTC
GAGGTGAGTGGCTGTCTGT NM_000600 121

IL-8 Forward
Reverse

GCAGAGGGTTGTGGAGAAGT
TGGCATCTTCACTGATTCTTGG NM_000584 90

MCP-1 Forward
Reverse

GAATCACCAGCAGCAAGTGT
GAGTGTTCAAGTCTTCGGAGTT NM_002982 149

ICAM-1 Forward
Reverse

ACCATCTACAGCTTTCCGGC
CTGAGACCTCTGGCTTCGTC NM_000201.2 55
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4.7. Immunofluorescence Staining

ARPE-19 cells were seeded into six-well culture plates with coverslips until they were 50–60%
confluent and then pretreated with or without 1 ng/mL IL-1β for the indicated times (0, 5, 10, 15,
and 30 min). Quercetin (20 µM) or an NF-κB inhibitor (5 µM Bay 11-7082) were added for 1 h before
application of 1 ng/mL IL-1β for 10 min. Next, cells were fixed with 4% (w/v) paraformaldehyde
for 15 min, permeabilized with 0.3% Triton X-100 for 1 min, blocked with PBS containing 5% (w/v)
bovine serum albumin for 15 min and stained with an anti-NFκB p65 antibody overnight at 4 ◦C.
The next day, the coverslips were treated with secondary antibody for 1 h at room temperature
and mounted with aqueous mounting medium containing 4′,6-diamidino-2-phenylindole (Vector
Laboratories, Burlingame, CA, USA). Cells were washed 2–3 times with PBS between each of the above
experimental steps. The images were examined using a fluorescence microscope (Leica Microsystems,
Wetzlar, Germany).

4.8. Monocyte Adhesion Assay

Before being stimulated with 1 ng/mL IL-1β for 24 h, ARPE-19 cells were pretreated with or
without quercetin (10 or 20 µM) or inhibitors (5 µM Bay 11-7082, 10 µM SB202190, 10 µM SP600125
or 10 µM U0126) for 1 h. THP-1 cells were labeled with 5 µM calcein AM (a fluorescent dye) at
37 ◦C for 30 min in RPMI-1640 medium in the dark and then washed by centrifugation. Next, the
labeled THP-1 cells (5 × 105 cells/mL) were cocultured with ARPE-19 cells in plates for 1 h and washed
gently three times with PBS to remove nonadherent THP-1 cells. Finally, the numbers of fluorescently
labeled adherent THP-1 cells in five random fields were counted under a fluorescence microscope
(Leica Microsystems).

4.9. Statistical Analysis

The intensity of the bands on the Western blotting and the numbers of fluorescently labeled
adherent THP-1 cells in the monocyte adhesion assay were quantified using Image Lab software
(Bio-Rad) and Image J software (W. Rasband, NIH, USA), respectively. All quantitative data are
presented as the mean ± SD of at least three independent experiments. One-way analysis of variance
followed by Tukey’s post hoc test using GraphPad Prism version 7 (GraphPad Software Inc., San Diego,
CA, USA) was performed to identify the differences among multiple groups. The results were
considered significant if p < 0.05.

5. Conclusions

The results of this study clearly demonstrated that the proinflammatory cytokine IL-1β significantly
increased the protein and gene expression of ICAM-1, sICAM-1, IL-6, IL-8 and MCP-1 in ARPE-19
cells. We also provided evidence for the first time that quercetin markedly decreased the protein and
gene expression of these cytokines and chemokines in IL-1β-stimulated ARPE-19 cells. Quercetin also
inhibited signaling pathways associated with the inflammatory process, including phosphorylation
of MAPKs, NF-κB p65, IKKα/β, c-Jun, CREB and ATF2, and blocked the translocation of NF-κB p65
into the nucleus (Figure 10). In conclusion, quercetin has the potential to ameliorate inflammatory
responses in RPE cells and may serve as a therapeutic intervention for retinal inflammatory diseases
such as AMD.
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