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SUMMARY

Visceral pain is a global term used to describe pain originating from the internal organs of

the body, which affects a significant proportion of the population and is a common feature

of functional gastrointestinal disorders (FGIDs) such as irritable bowel syndrome (IBS).

While IBS is multifactorial, with no single etiology to completely explain the disorder, many

patients also experience comorbid behavioral disorders, such as anxiety or depression; thus,

IBS is described as a disorder of the gut–brain axis. Stress is implicated in the development

and exacerbation of visceral pain disorders. Chronic stress can modify central pain circuitry,

as well as change motility and permeability throughout the gastrointestinal (GI) tract. More

recently, the role of the gut microbiota in the bidirectional communication along the gut–

brain axis, and subsequent changes in behavior, has emerged. Thus, stress and the gut

microbiota can interact through complementary or opposing factors to influence visceral

nociceptive behaviors. This review will highlight the evidence by which stress and the gut

microbiota interact in the regulation of visceral nociception. We will focus on the influence

of stress on the microbiota and the mechanisms by which microbiota can affect the stress

response and behavioral outcomes with an emphasis on visceral pain.

Introduction

Irritable bowel syndrome (IBS) is a complex heterogeneous

disorder associated with abdominal visceral pain, constipation,

diarrhea, or a combination of both [1]. It is the most common dis-

order seen by gastroenterologists and presents frequently with a

number of intestinal and nonintestinal comorbidities [2]. Notably,

anxiety and depressive disorders account for 20–60% of these

comorbidities [2,3]. The disorder is now viewed as one of altered

gut–brain axis homeostasis [4–6]. A distinguishing feature of IBS

is that symptoms, including abdominal pain, are often triggered or

exacerbated during periods of stress [7,8]. Stress is defined as the
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reaction by the body to a stimulus, either physical or psychologi-

cal, that disrupts homeostasis. Stress has profound effects on the

gastrointestinal (GI) tract including but not limited to alterations

in intestinal motility [9], mucosal transport, gut barrier function

[10–12], and visceral perception [13,14]. More recently, the role

of the gut microbiota in the bidirectional communication along

the gut–brain axis, and subsequent changes in behavior, has

emerged [15,16]. Recent evidence proposes that stress can lead to

long-term changes in the gut microbiota [17]; however, the

importance of the gut microbiota and their role in visceral sensa-

tion and nociception remain to be further explored. The focus of

this review will be to attempt to summarize a complex body of lit-

erature describing the relationship between stress and visceral

pain and how the gut microbiota may interact through comple-

mentary or opposing factors to influence visceral nociceptive

behaviors.

Stress

Stress was first described by Hans Selye almost 80 years ago as the

general response of the body to any noxious stimulus [18]. Selye

elucidated the role of the hypothalamic–pituitary–adrenal (HPA)

axis in mediating the biological effects of stress on the host. At the

same time, Walter Cannon coined the phrase “fight or flight”

response [19] with much of his work building upon Claude Ber-

nard’s description of homeostasis [20]. The HPA and sympath-

omedullary axes are the two stress response pathways in

mammals. The HPA axis is slower-acting and adaptive, encom-

passing a network of anatomical constituents located both in the

central nervous system (CNS) and in the periphery. The crucial

components are the paraventricular nucleus (PVN) of the

hypothalamus, the pituitary gland (anterior lobe), and the adrenal

gland [21]. The HPA axis responds to a stressor by releasing corti-

cotropin-releasing hormone (CRH) into the hypophyseal portal

circulation, which travels to the anterior pituitary gland, where it

binds to its respective receptor (CRH1). This event leads to the pro-

duction of pro-opiomelanocortin, which is subsequently cleaved

within the pituitary corticotropes, to produce adrenocorticotropic

hormone (ACTH), which in turn is released into systemic circula-

tion. ACTH targets the adrenal cortex to stimulate the production

and secretion of glucocorticoids such a cortisol (humans) or corti-

costerone (rats and mice) [21]. Glucocorticoids are the main effec-

tor molecules of the HPA axis and, via binding to their

intracellular receptors, function to regulate the physiological

adaptations to stress [22,23]. Cortisol/corticosterone initiates neg-

ative feedback through binding to glucocorticoid (GR) and miner-

alocorticoid (MR) receptors [24,25] in the hippocampus, PVN, and

anterior pituitary [26]. However, binding of cortisol/corticos-

terone to the amygdala promotes CRH expression and facilitation

of the stress axis [27,28]. The HPA axis is under stringent regula-

tion at both the neuronal and the endocrine levels; however, the

body can also elicit maladaptive changes resulting in altered brain

structure and function in response to chronic and uncontrollable

stressors [29–31]. The sympathomedullary axis is responsible for

the acute fight or flight response, which is driven by the activation

of preganglionic sympathetic neurons located within the interme-

diolateral cell column of the thoracolumbar spinal cord. The pro-

jections of these preganglionic sympathetic neurons are pre- and

paravertebral ganglia. These project to terminal organs and to

chromaffin cells of the adrenal medulla resulting in increased cir-

culating levels of epinephrine (adrenal medulla) and nore-

pinephrine (sympathetic nerves) [32]. The release and action of

these catecholamines results in alterations in physiology such as

increased heart rate, vasoconstriction, and mobilization of energy

stores, to allow the host to adequately adapt to the stressor.

Visceral Pain

Visceral pain is a generic term that is applied to pain arising from

the internal organs contained within the thorax and abdomen

[33]. Acute visceral pain usually has an identifiable cause, such as

infection or tissue damage, which can be typically treated with an

appropriate therapeutic agent. In contrast, chronic visceral pain,

such as other types of chronic pain, is long-lasting and can be diffi-

cult to treat with current pharmaceuticals. The lack of identifiable

pathology in some types of chronic visceral pain has led to the use

of the term functional gastrointestinal disorders (FGIDs) to

describe 45 adult and pediatric disorders, including IBS, functional

dyspepsia, infant colic and abdominal migraine, that affect discrete

regions of the GI tract [34].

Within the GI tract, extrinsic nociceptors can respond to multi-

modal stimuli, depending on receptor expression, including

stretch, pH, bacterial products, substances released from immune

cells, and neurotransmitters released from the enteric nervous sys-

tem or enterochromaffin cells [35]. The nociceptors have nerve

endings throughout the layers of the GI tract (mucosal, submu-

cosal, muscular), and their cell bodies are located in the dorsal root

ganglion (DRG). The first synapse is in the superficial layers of the

dorsal horn of the spinal cord. The nociceptive signal is then trans-

mitted to the contralateral side of the spinal cord via decussating

fibers, and pain signals reach the brain via the spinothalamic tract,

which has a somatotropic arrangement in the anterolateral aspect

of the spinal cord. Although vagal afferents were not previously

thought to be involved in the mediation of visceral pain [36],

recent evidence suggests a role for vagal transmission of anti-/pro-

nociceptive signals, which bypasses the spinal cord [37–40].

Within the brain, the signal is then relayed to cortical areas for

localization and to limbic areas for the emotional component of

the pain response. Output from the cortical and limbic regions in

response to the pain activates descending inhibitory circuitry

within the brainstem that causes release of inhibitory neurotrans-

mitters within the dorsal horn of the spinal cord. While the mech-

anisms responsible for chronic pain are still under investigation,

and likely are dependent on the nature of the initiating stimulus,

sensitization can occur at a number of different sites. These

include but not limited to local mediators within the GI tract,

remodeling of ascending afferents within the dorsal horn, hyper-

activity of central pain circuitry, and/or loss of descending inhibi-

tion (Figure 1).

In the laboratory setting, GI hypersensitivity, or an exaggerated

sensitivity, is typically measured in response to distension of the

particular area of the GI tract. In the case of clinical studies, the

subject has a balloon catheter inserted into the colorectal region

and graded isobaric or isovolumetric distensions are performed

with the individual reporting their perception of the stimulus.

Thresholds can be determined for perception of the balloon, dis-
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comfort, and pain, with many patients with IBS reporting lowered

thresholds for all stimuli compared to healthy volunteers, and

hence, visceral hypersensitivity is apparent in a subset of patients

with IBS [41,42]. In preclinical studies, the same experimental

paradigm used in patients to assess visceral sensitivity has been

adapted to rats and mice [43,44]. Graded colorectal distension

(CRD) produces a visceromotor behavioral response (VMR) in

rodents that is typically positively correlated with distension pres-

sure/volume. The VMR can be quantified visually without addi-

tional instrumentation in freely moving animals, or as

quantification of the electromyogenic (EMG) signal following

implantation of electrodes in the overlying abdominal muscle,

which requires the animal to be partially restrained to minimize

movement artifact with the EMG signal. A nonsurgical assessment

of VMR via manometric recordings using sensors within the colon

to measure changes in intracolonic pressure has been established

in mouse models [45–47]. This method has the advantage that

animals do not have to be restrained while assessing colonic sensi-

tivity; however, the disadvantage is that the measurements can

contain artifacts due to colonic contractions during normal colonic

motility and unrelated to measures of colonic sensitivity. For fur-

ther reading on rodent CRD, the reader is referred to a review on

the assessment of visceral pain in rodent models by O’Mahony

and colleagues [45].

Multiple techniques have been developed to produce acute and

chronic colonic hypersensitivity as measured by an increase in

VMR to distension. Exposing neonatal pups to adverse experi-

ences (separation from the dam, direct colonic irritation/inflam-

mation) can produce a heightened VMR in adulthood [48,49]. In

adult animals, acute stressors (physical or psychological) typically

produce transient increases in the VMR, while repeated homo-

typic or heterotypic stressors can produce a chronic hypersensitiv-

ity [48,49]. Similarly, active inflammation induced by chemical

irritants or a pathogen causes acute hypersensitivity, with a subset

of rodents developing a persistent hypersensitivity following

recovery from the inflammation [48,49]. While each of these

models can demonstrate an increase in VMR to distension, which

has good construct validity for the clinical paradigm used to evalu-

Figure 1 Central and Peripheral Pain Sensitization. Heightened pain perception can occur due to a combination of both central sensitization and

peripheral sensitization. The hypothalamic–pituitary–adrenal (HPA) axis is activated by stress. In brief, the hypothalamus secretes corticotropin-releasing

hormone (CRH) into the hypophyseal portal system for the activation of the anterior pituitary and subsequent release of adrenocorticotropic hormone

(ACTH) into the systemic circulation. In response to ACTH, the adrenal cortex releases cortisol (corticosterone in rodents), which can directly activate

resident immune cells and extrinsic primary afferents within the gastrointestinal tract to promote peripheral sensitization. While cortisol binding to the

hypothalamus promotes feedback inhibition of the stress response, cortisol binding to the amygdala facilitates further stress-induced secretion of CRH,

promoting central sensitization of stress pathways. The amygdala also promotes CRH signaling in the brain stem to further promote central sensitization

by altering descending inhibition within the spinal cord. Direct injury to the GI tract can lead to sensitization of spinal afferents (lower threshold for

activation and/or longer lasting responses) that can persist following recovery from the injury.
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ate visceral pain, one deficit with these preclinical models is the

lack of the ability to monitor spontaneous visceral nociceptive

behaviors. A study by Chen et al. aimed to develop an alternative

approach to assess the affective responses of visceral pain. In an

experimental model of rodent colitis, a conditioned place prefer-

ence paradigmwas established whereby animals were conditioned

with intraluminal administration of 2% lidocaine hydrochloride

or vehicle followed by confinement to an assigned choice com-

partment for 30 min. A clear preference was observed for the

chamber paired with intracolonic lidocaine treatment in colitic

rats, whereas no preference was seen in control animals [50].

Continuing to develop novel translationally relevant animal mod-

els will undoubtedly aid in our understanding of the heteroge-

neous pathophysiology of visceral pain.

Stress and Visceral Pain

Maladaptive stress responses have been associated with an array

of pathologies including FGIDs, affective disorders, autoimmune

disease, and hypertension [21,22,51–53]. Moreover, evidence

suggests that stress can also have profound effects on pain pro-

cesses [48,54–57] including visceral pain [49]. Here we will dis-

cuss evidence from the literature to show a centrally mediated

mechanism of stress-induced visceral pain in IBS in both clinical

and preclinical studies.

Evidence from Clinical Studies

The emergence and rapid advancement of imaging technologies

has aided our understanding of the neurocircuitry underlying vis-

ceral hypersensitivity in patients with IBS [58]. Imaging studies

have allowed us to visualize aberrant circuitry within the brain in

regions involved in the stress response in patients with IBS. Silver-

man et al. were one of the first to show altered brain activation

patterns using positron emission tomography (PET) in patients

with IBS not only in response to actual and simulated rectal dis-

tension but also in the anticipation of rectal pain, specifically

decreased activation within the anterior cingulate cortex (ACC) of

patients with IBS compared to controls [59]. A similar study using

functional magnetic resonance imaging (fMRI) [60] also showed

altered activation patterns within specific brain regions. Again,

altered ACC activity was observed in patients with IBS; however,

in this study, increased activation within the ACC was observed. It

is important to note that these two earlier studies showed opposite

effects of rectal distension on ACC activity in patients with IBS,

which may in part be explained by methodological procedures.

Other studies have highlighted the important role of deactivation

of brain areas and circuits in the normal processing of pain signals,

with controls having greater frontal deactivation than patients

with IBS [61]. This was in line with others showing that patients

with IBS exhibited significant deactivation within the right insula,

the right amygdala, and the right striatum [62]. Moreover,

patients with IBS exhibit not only altered brain patterns to nox-

ious rectal distension but also subliminal, liminal, and supralimi-

nal distensions [63,64]. Taken together, it is becoming clear that

patients with IBS process visceral stimuli differently to that of con-

trol subjects at a central level, with IBS patients showing altered

activation and deactivation patterns to both nonnoxious and nox-

ious stimuli, which is characteristic of visceral hypersensitivity.

Following on from these earlier studies, there has been an abun-

dance of literature to support a role of altered central circuitry in

IBS and we are now beginning to build a consensus on the

numerous brain regions altered in IBS patients. The ACC is one

specific brain region that has consistently been shown to distin-

guish patients with IBS from controls in imaging studies; however,

other regions include the amygdala, insula, prefrontal cortex, tha-

lamus, somatosensory cortex, posterior cingulate, hippocampus,

periaqueductal gray, and cerebellum [65–69]. These studies also

showed gender-related differences in brain activation patterns

[65,70]. The progression and development of imaging tools such

as structural MRI and diffusion tensor imaging has allowed us to

understand the aberrant connectivity between these brain regions

in patients with IBS [71–78]. We are now beginning to appreciate

that different networks within the brain are altered in the IBS

population, which may in part explain the heterogeneous nature

of IBS symptomology [79]. These data implicate a “top-down”

mechanism of altered discrete neurocircuits, mainly involving

brain regions and nuclei implicated in nociception and affect, in

the mediation and presentation of visceral hypersensitivity in IBS.

Taken together, imaging studies have provided strong evidence

for altered neurocircuitry in the IBS population, which may

underpin centrally mediated visceral pain as well as altered

descending modulation of visceral pain in this patient population.

The implications of such studies suggest that a cognitive or behav-

ioral intervention may be of therapeutic benefit to patients with

IBS [80] as has recently been shown using mindfulness-based

techniques [81–84] and cognitive behavioral therapy [85–87].

Reverse translation models employing optogenetic technologies

will also allow us to further delineate the circuitry underlying vis-

ceral hypersensitivity and allow for a more precise understanding

of exact brain regions, nuclei, cell types, and mediators that are

involved and are amenable to pharmacological manipulation for

future drug discovery.

Evidence from Preclinical Studies

The majority of evidence implicating stress as a crucial player in

the pathophysiology of visceral pain comes from experimental

stress models, which have been developed to target critical periods

throughout the life span to assess the vulnerability, potential trig-

gers, and perpetuation influences of stress and the future develop-

ment of visceral pain [47]. Here we will discuss the most

commonly used animal models of early-life stress and adulthood

stress-induced visceral pain.

Early-life psychological stressors in the form of maternal neglect

or abuse (maternal separation, limited nesting, odor attachment

learning), or physical stressors in the form of injury (colonic irrita-

tion) can enhance the susceptibility of individuals to develop

altered visceral pain responses in adulthood, a key symptom of

IBS [47]. The maternal separation, limited nesting, and odor

attachment models are based on the premise that by altering the

dam–pup relationship during sensitive HPA axis phases in the first

2 weeks of life, this will have long-lasting effects on the stress

response and subsequent visceral pain sensitivity. Indeed,

numerous independent research groups have consistently found

heightened visceral sensitivity in these models [13,48,88–100].
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Moreover, maternal separation has also been associated with

altered intestinal permeability and motility [88,101–105]. Early-

life stress in the form of physical stressors has also been shown to

be a valid preclinical model of visceral pain. The neonatal GI tract

is highly sensitive to both mechanical and chemical stressors

resulting in a proinflammatory phenotype characterized by muco-

sal inflammation and tissue irritation. Animal models of daily irri-

tation of the neonatal colon by mechanical irritation (CRD) or

chemical irritation (mustard oil) have been shown to increase vis-

ceral pain behaviors from adolescence to adulthood [106–109].

The mechanisms by which these physical stressors exert their

long-term effects on visceral sensation are varied with contribu-

tions from both local effects within the gut and spinal and

supraspinal processes seen to induce plasticity and maintenance of

the hypersensitive profile [107,110–112].

Life-threatening stressors, psychological stressors (acute and

chronic stress), or physical stressors (intestinal infection or inflam-

mation) during adulthood have all been implicated in the devel-

opment of IBS. Water avoidance stress (WAS) and restraint stress

are among the most widely used acute stress paradigms to model

features of IBS preclinically. These stressors are based on an aver-

sive surrounding environment. In the case of WAS, animals are

placed on a raised platform surrounded by water for 1 h/day,

whereas restraint-stressed animals are placed in a device, which

restricts movement for 1–2 h/day. Both of these paradigms can be

performed in an acute or repetitive manner. In recent studies,

WAS has been described as a form of psychological stressor to

assess modulation of visceral pain [46,51,92,113–115]; however,

earlier work showed that WAS also leads to stress-related alter-

ations in gut motor function [116,117]. Restraint stress for 2 h has

also been shown to induce an immediate visceral hypersensitivity

in male [118] and female Wistar rats [97]. Convergent reports

suggest that daily stress predicts the intensity and severity of vis-

ceral pain [7,8,119–121]. In rat models, data show that a 1 h daily

WAS for 7/10 consecutive days induced visceral hypersensitivity

in male rats [113,114,122]. In mice, the data are inconsistent,

showing visceral hyperalgesia [46], visceral analgesia [46] or to

have no effect on visceral sensitivity [123] following WAS.

Recently, a clinically relevant model of IBS has been described

whereby animals undergo stress in the form of forced swim stress

for 3 days as well as estradiol treatment and have existing chronic

somatic pain (craniofacial muscle injury). This model displayed

chronic visceral hypersensitivity that persisted for months and

also exhibited other key features of IBS, specifically central sensiti-

zation [124]. Moreover, estrogen-dependent visceral hypersensi-

tivity has also been developed as an animal model of visceral pain

with clinical relevance due to the female preponderance seen in

patients with IBS [125]. Other models such as the chronic psy-

chosocial stress paradigm model the unpredictable nature of life’s

stressors with unpredictable and randomized sessions of social

defeat and cage overcrowding for 19 days. This model has been

shown to induce a heightened response to CRD [11,14,126] and

anxiety- and depression-related behaviors [127]. As a model of

corticosterone-induced pain targeting only the amygdala, implan-

tation of corticosterone micropellets on the dorsal surface of the

central nucleus of the amygdala has also been shown to increase

colonic sensitivity to CRD [128]. Although patients with IBS

report that psychological stress is a key factor in the onset and

exacerbation of symptoms, a significant proportion of IBS cases

occur after an illness, particularly an infection of the GI tract. A

transient Trichinella spiralis infection was shown to induce sus-

tained visceral hypersensitivity in a mouse model [129,130].

Moreover, similar findings were reported in a rat model of Nip-

postrongylus brasiliensis infection [131]. Although the vast majority

of human postinflammatory hypersensitivity symptoms are

observed after bacterial infection (Campylobacter, Shigella, Sal-

monella, or Escherichia coli infections), there has been limited ani-

mal models of postinfectious visceral hypersensitivity [132,133].

Inflammation is one of the leading causes/mechanisms thought to

underpin IBS and its associated symptomatology [134–137]. In

animal models, acetic acid [138], mustard oil [139,140], zymosan

[141,142], trinitrobenzenesulfonic acid (TNBS) [143,144], and

dextran sulfate sodium [145] evoke visceral hypersensitivity asso-

ciated with colonic inflammation.

Central Mechanisms of Stress-Induced Visceral
Pain

Numerous mediators involved in the HPA axis response to stress

have been implicated in the pathophysiology of IBS. Most nota-

bly, the role of CRH has been extensively investigated in preclini-

cal studies [101,146–157]. Although we acknowledge that CRH

has many peripheral functions [158], here we will briefly focus on

the centrally mediated effects of CRH. Numerous reviews discuss

this topic in more detail [156,159]. CRH is a 41-amino acid peptide

with two endogenous G-protein-coupled receptors, CRH1 and

CRH2 [160]. The receptors have a common signal transduction

pathway coupled to Gs-adenylate cyclase; however, they have

very different effects depending on localization and cell type

[161,162]. One of the earliest demonstrations that CRH was

involved in stress-related visceral pain was shown by Gu�e et al.

[118] where intracerebroventricular administration of CRH reca-

pitulated stress-induced visceral hypersensitivity in a similar man-

ner to that induced by restraint stress. Moreover, they also

showed that antagonism of CRH receptors using a-helical CRF9-41
reversed both the CRH- and the stress-induced visceral pain

[118]. There have been limited studies since then to specifically

elucidate the central role of CRH and its receptors on visceral

hypersensitivity with many studies showing changes in expres-

sion but lack pharmacological interventions [163–168]. We have

shown that stress-induced visceral pain is associated with

increased CRH expression in the central nucleus of the amygdala

(CeA) and that oligonucleotide knockdown of CRH within the

CeA reverses corticosterone- and stress-induced visceral hyper-

sensitivity [169]. Moreover, we have shown in a model of high

anxiety that CP 376395, a specific CRH1 antagonist administered

to the CeA, reversed visceral hypersensitivity [170]. Others have

also implicated the CeA as a critical nucleus involved in the medi-

ation of CRH effects on visceral sensitivity. Su et al. demonstrated

that direct CRH administration to the CeA increased visceral pain,

while CP 376395 attenuated this effect [171]. Furthermore,

intrahippocampal administration of CRF9-41 or JTC-017, a specific

CRH1 antagonist, attenuated visceral pain [172]. There has been

an abundance of studies showing peripheral administration of

CRH1 antagonists, which cross the blood–brain barrier, have posi-

tive effects in animal models of visceral pain [92,146,148,155];
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however, to date, no CRH1 antagonist has shown evidence of effi-

cacy in patients with IBS, and further research is required to

understand the relationship of CRH and its receptors on visceral

pain.

The Gut Microbiota

The gut microflora has recently emerged as one of the most fasci-

nating entities in modern biomedical research. The gut micro-

biome has been implicated in a whole host of physiological

functions from energy metabolism to psychiatric well-being [173–

175]. The abundance of microbiota residing in the human intes-

tine is estimated as 1014 microorganisms, which amounts to three

times the number of human cells in the body. The bulk of the

intestinal microbiota is of bacterial origin that varies in stability,

diversity, and number throughout development, from birth to old

age [176–178]. Technological advances in the methods used to

identify and quantify the gut microbiome have allowed us to bet-

ter understand its complexity, not only population complexity but

also functional complexity. Sequencing-based approaches have

rapidly developed and are reviewed in many recent publications

[179–182]. The human GI tract is dominated by two phyla: Firmi-

cutes and Bacteroidetes, together with members of Actinobacteria,

Verrucomicrobia, Proteobacteria, Fusobacteria, and Cyanobacteria

phyla [183]. The relative abundance of microbial populations sta-

bilizes after the first 3 years of life [184] and appears to be rela-

tively stable throughout adult life, but can be altered during

disease states. Specifically, disorders directly affecting the GI tract

such as inflammatory bowel disease [185] and celiac disease [186]

have been shown to exhibit microbial dysbiosis. Moreover, dys-

biosis has also been implicated in other nonintestinal disorders

such as autoimmune diseases [187], allergy, asthma, metabolic

syndrome, cardiovascular disease, and obesity [188]. Although

there is a general consensus that an overall decrease in the diver-

sity of the microbiota populations present within the GI tract is

associated with disease states, as well as reduced Lactobacillus and

Bifidobacterium species, no specific dysbiotic signature has emerged

across studies.

Stress and the Gut Microbiota

The origin and development of a “healthy” gut microbiota starts in

early life, which is also designated as an important neurodevelop-

mental time window. This provides an opportunity for the colo-

nizing microbiota to influence immature systems such as the pain

pathways in the CNS and make a permanent impact. This is abet-

ted by the bidirectional communication provided by the micro-

biota–gut–brain axis [189,190]. During early life, this axis is also

developing and is in itself open to modification by the gut micro-

biota, which has been shown in several studies [191,192].

Over 40 years ago, Tannock and Savage demonstrated that both

environmental stress and dietary stress were capable of markedly

altering the gut microbiota in mice, affecting factors that regulate

the localization and population levels of microorganisms along the

GI tract [193], possibly allowing for the establishment of patho-

genic bacterial species [193,194]. Studies have shown that both

prenatal and postnatal stress after birth can impact on microbial

colonization [195]. Furthermore, appropriate bacterial coloniza-

tion postnatally impacts on pain pathways, as germ-free mice dis-

play impaired ability to respond to inflammatory pain [196], and

we have shown that treatment with antibiotics in early life is asso-

ciated with visceral hypersensitivity [191]. Also, adult mice

exposed to a social disruption stressor showed an altered gut

microbiota as well as increased circulating levels of cytokines

[197]. In particular, this stress led to a decrease in L. reuteri, an

immunomodulatory species of bacteria. Social stress increases the

risk of inflammation-related diseases, promoting proinflammatory

gene expression and monocyte differentiation [190,198]. There-

fore, inflammatory alterations leading to an altered gut microbiota

can enhance the ability of enteric pathogens to colonize the intes-

tine [199]. It has also been shown that both acute stress and

repeated stress affect levels of intestinal secretory IgA, impacting

intestinal homeostasis, inflammatory response, and possibly dys-

biosis [200].

Stress can affect the gut microbiota not only through the

immune system but also leads to changes in catecholamine levels,

which also have a significant impact on the gut microbiota [201].

Moreover, stress affects recovery from bacterial infections due to

the fact that gut bacteria respond to neurotransmitters and other

stress-related mediators [201]. Animal models of IBS have shown

altered gut microbial populations [90,202,203], and recovery of

the IBS-like symptoms has occurred upon probiotic administra-

tion [203–205]. Recently, it has been shown that the gut micro-

biota is necessary for the expression of the anxiety-like and

depressive-like behaviors induced by maternal separation as

germ-free mice separated from their mothers in early life did not

show the typical phenotype induced by this early-life stress [206].

Maternal separation stress also appears to alter the gut environ-

ment, which can potentially lead to changes in the bacterial popu-

lation [207].

Hence, it is possible that stress changes the internal environ-

ment of the GI tract through immune, neurochemical, and physi-

cal mechanisms to make it a less habitable space for certain

bacteria, yet leads to the enhancement of more pathological spe-

cies. This can potentially increase pain and pain signaling mecha-

nisms from the GI tract contributing to visceral hypersensitivity.

The Gut Microbiota and Visceral Pain

Evidence from Clinical Studies

In recent years, the role of the gut microbiota in the pathophysiol-

ogy of IBS has been investigated with numerous independent

research groups showing divergent gut microbiota populations in

IBS patient cohorts, when compared to healthy controls [208–

214]. This topic has been the focus of many recent reviews

[4,10,215–217]. Patients with IBS were shown to have reduced

Bacteroides and Parabacteroides sp. when compared to healthy vol-

unteers [218]. Other groups have also shown similar findings with

decreased abundance of Bacteroides/Prevotella group and Veillonella

genus and increased Lactobacillus, Bacillus, Bifidobacteria, Clostrid-

ium, and Eubacterium rectale [219]. However, conflicting results

have emerged with Bacteroidetes phylum significantly increased in

patients with IBS [220,221]. Moreover, others have demonstrated

that subtypes of IBS cluster by microbiota composition revealing

certain subgroups of patients with IBS display normal-like micro-
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biota composition compared with healthy controls, while others

were characterized by an increase in Firmicutes-associated taxa

and a depletion of Bacteroidetes-related taxa [208].

Recent evidence suggests that probiotic interventions appear to

be beneficial for patients with FGIDs [222–224], further implicat-

ing a role of the gut microbiota in the pathophysiology of FGIDs.

Symprove, a probiotic containing Lactobacillus rhamnosus NCIMB

30174, L. plantarum NCIMB 30173, L. acidophilus NCIMB 30175,

and Enterococcus faecium NCIMB 30176, was shown to significantly

improve overall symptom severity in patients with IBS [225].

Moreover, Bifidobacterium bifidum MIMBb75 was shown to allevi-

ate global IBS symptomology, as measured on the Likert scale,

and also significantly improve symptoms such as pain/discomfort,

distension/bloating, urgency, and digestive disorder. In addition,

probiotic intervention also improved the quality of life of patients

with IBS [226]. Furthermore, another multispecies probiotic cock-

tail containing Bifidobacterium longum, B. bifidum, B. lactis, Lacto-

bacillus acidophilus, L. rhamnosus, and Streptococcus thermophilus also

showed positive effects over placebo in terms of relief from IBS

symptoms [224]. More recently, studies are suggesting that probi-

otic treatment itself does not alter the gut microbiota populations,

indicating a more complex relationship between the microbiota

and IBS pathophysiology [227–229]. Moreover, there is now

increasing evidence that alterations in the gut microbiota can

modulate both peripheral and central nervous systems functions,

thus altering neurochemistry and subsequently behavior [230–

232]. This is of particular relevance to visceral pain as both periph-

eral sensitization and central sensitization are thought to play sig-

nificant roles in the onset and development of visceral

hypersensitivity [233].

Evidence from Preclinical Studies

Manipulation of the gut microbiota through the use of probiotic

and prebiotic treatments has shown that visceral hypersensitivity

can be reversed in preclinical models [222]. A mixture of 8 probi-

otic bacterial strains (VSL#3) was shown to have protective effects

against development of visceral hypersensitivity driven by neona-

tal maternal separation [234]. Moreover, the same cocktail of pro-

biotics was shown to prevent visceral hypersensitivity induced by

inflammation via intracolonic instillation of 4% acetic acid when

given prophylactically [235]. Bifidobacterium species, particularly

Bifidobacterium infantis 35624, has been shown to be particularly

effective at ameliorating visceral hyperalgesia in both stress-

induced visceral hypersensitivity and colitis [236–238]. Lactobacil-

lus species have also displayed efficacy in visceral pain models

[89,239–241]. Indeed, Lactobacillus rhamnosus CNCM I-3690 was

shown to exhibit protective effects on intestinal barrier function

in a mouse model of increased colonic permeability by restoring

barrier integrity and increasing the levels of tight junction pro-

teins, occludin, and E-cadherin [242]. The modulation of the

intestinal barrier by the gut microbiota has been the focus of

recent reviews [243,244]. Furthermore, antibiotic-induced vis-

ceral hypersensitivity again underpins a role of the gut microbiota

in the pathophysiology of visceral pain, which appears to be

dependent on the time of exposure [191,239]. When animals are

exposed to antibiotic treatment in early life, they subsequently

develop visceral hypersensitivity in adulthood [191]. Further evi-

dence has also shown that antibiotic treatment in adulthood

attenuated visceral pain-related responses elicited by intraperi-

toneal acetic acid or intracolonic capsaicin [245], or indeed

increased visceral sensitivity to CRD [239]. Interestingly, rifax-

imin, a semisynthetic, nonabsorbable antibiotic, has also shown

positive effects in the treatment of IBS [246–254] and received

FDA approval in early June 2015 for the treatment of diarrhea

predominant IBS. Finally, the concept of fecal microbiota trans-

plantation as a potential treatment for FGIDs has recently been

the topic of numerous reviews [255–257]. Preclinical evidence has

shown that visceral hypersensitivity could be transferred to rats by

transplantation with IBS fecal microbiota [258]. These findings

add to the growing literature that microbiota dysfunction may be

a key player in the pathophysiology of IBS and may lead to future

novel therapeutic interventions.

Peripheral Mechanisms of Stress-Induced
Visceral Pain

The clinical literature suggests that altered microbial populations

are evident in patients with IBS; however, the implications of

such changes remain to be elucidated. The metabolic profile of

the gut microbiota is also altered in patients with IBS [213,259–

266], which may in part explain changes in symptomology.

Numerous independent groups have shown changes in the

metabolites produced by the gut microbiota, including bile acids

[266], organic acids such as acetic acid and propionic acid [213],

volatile organic metabolites [264], fecal proteases [263], formate,

glucose, lactate, pyruvate [260], amino acids (alanine, pyrog-

lutamic acid [262], tyrosine, lysine, leucine [260]), phenols

(hydroxyphenyl acetate, hydroxyphenyl propionate [262]),

polyunsaturated fatty acids (PUFAs) [267], and short-chain fatty

acids (SCFAs) [268]. These metabolites themselves can act as sig-

naling molecules to exert effects locally within the gut but also

have the potential to elicit effects distant to the site of produc-

tion. The gut microbiota are also involved in the production of a

range of neuroactive compounds including neurotransmitters:

gamma-aminobutyric acid (GABA), serotonin, norepinephrine,

and dopamine.

To date, there have been only a limited number of studies inves-

tigating the direct interactions of the gut microbiota and its

metabolites on pain and nociceptive processes. Formyl peptides

have been show to directly stimulate primary afferent nerves

[269], while other bacterial products such as lipopolysaccharide

(LPS) can directly activate colonic DRG neurons [270]. The mech-

anism of therapeutic effects of probiotic interventions has also

been investigated with Lactobacillus reuteri, demonstrating inhibi-

tory effects on lumbar DRG neurons [240]. In a recent study by

Cenac et al. [267], the authors investigated alterations in PUFA

content in colonic biopsies from patients with IBS. PUFAs are

known to be endogenous agonists of transient receptor potential

(TRP) channels, which are key in nociceptive signaling. TRPV4 in

particular is involved in numerous processes associated with vis-

ceral hypersensitivity, including protease-, serotonin-, and his-

tamine-induced visceral pain [271,272]. In this study, they show

increased levels of 5,6-EET, a TRPV4 agonist, in IBS colonic

biopsies, which correlated with increased pain scores [267]. They

also show that this specific PUFA activates mouse sensory neurons
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in vitro and that 35% of human DRG neurons express TRPV4,

implicating it as a critical channel in the mediation of visceral

pain.

Proteases produced by the gut microbiota and activated mast

cells have been implicated in the pathophysiology of visceral

hypersensitivity [273–278]. Proteases exert their effects through

proteinase-activated receptors (PARs), which are found on both

enteric neurons and extrinsic nerves that innervate the gut and

have been implicated in the mediation of pain [279]. Despite this,

the role of mast cells and their mediators, histamine, tryptase, and

chymase, to serve as therapeutic targets using mast cell stabilizers

remains controversial due to other sites of action outside of the

gut [280].

Many patients with IBS report that their diet is a key contrib-

utor to their symptoms [281]. Specific dietary interventions such

as the low fermentable substrate diet (LFSD) and the FODMAP

diet, which are known to alter the gut microbiota profile [282],

have shown beneficial effects with reduced abdominal pain in

patients with IBS both in childhood and adulthood [283–286].

Short-chain fermentable carbohydrates increase luminal H2 and

CH4 production, which increases gas production and bloating in

patients with IBS leading to luminal distension and increased

small intestinal water volume, which may worsen abdominal

pain [287].

Finally, a novel area of speculation is the role of SCFAs in the

communication of the gut microbiota with the brain. SCFAs pro-

duced in the gut, such as butyrate, are known to have histone

deacetlyase (HDAC) inhibitor activity. Thus, epigenetic processes

such as histone acetylation may also be altered by the gut micro-

biota (reviewed in [288]). Moreover, there is evidence to suggest

that epigenetic changes at the level of the spinal cord are

involved in early-life stress-induced visceral pain [100], adult-

hood stress-induced visceral pain [115], and estrogen-induced

visceral pain [289]. Indeed, supraspinal epigenetic mechanisms

have also been implicated in stress-induced visceral hypersensi-

tivity [113,290].

The Microbiota–Gut–Brain Axis

From the evidence discussed above, it is apparent that IBS is a

multifaceted disorder with both central and peripheral factors at

play; thus, it is most commonly described as a biopsychosocial dis-

order of the gut-brain axis. The gut–brain axis encompasses a

number of fundamental elements, including the CNS, the auto-

nomic nervous system (ANS) (sympathetic and parasympathetic),

the enteric nervous system (ENS), the neuroendocrine (HPA axis),

and neuroimmune systems, and more recently has expanded to

include the gut microbiota, which fulfill key roles in bidirectional

communication thus leading us to now refer to it as the micro-

biota–gut–brain axis [15,17,291–296]. This axis is pivotal in main-

taining homeostasis and is involved in the control of a plethora of

physiological functions including motor, sensory, autonomic, and

secretory functions of the gastrointestinal tract to regulate an

array of processes from energy metabolism to mood regulation

[296,297]. The network of communication throughout the axis is

facilitated by an extensive neuronal web of afferent fibers project-

ing from peripheral tissues to higher-order processing centers in

cortical CNS structures and efferent projections from the CNS to

the smooth muscle in the intestinal wall [4].

As mentioned previously, the spinal cord is fundamental in

mediating sensory signals between peripheral organs and the inte-

grative cortices within the brain. Sensitization of peripheral affer-

ents plays a key role in the peripheral sensitization leading to

visceral hypersensitivity in patients with IBS. This occurs as a

result of local inflammatory processes as well as alterations in sen-

sory motor gut function [298]. Indeed, clinical evidence has

shown low-grade mucosal inflammation [134] and enhanced

intestinal permeability [299] in patients with IBS, which may be

responsible for the local sensitization and facilitation of visceral

pain responses. The process of peripheral sensitization includes a

plethora of different receptor types that include the TRPV family,

PARs, cholecystokinin receptors, serotonin receptors, cannabinoid

receptors, as well as an array of ion channels including ATP-gated

ion channels, voltage-gated sodium and calcium channels, and

acid-sensing ion channels [298]. The ligands for these receptors

such as luminal contents, epithelial metabolites, immune media-

tors, lipids, and gut hormones are found within the GI tract. Bind-

ing of these endogenous ligands to their respective receptors leads

to the release of neurotransmitters such as acetylcholine, somato-

statin, substance P (SP), neurokinin A, and calcitonin gene-related

peptide, and a cascade of events that are all associated with pain

signaling and neurogenic inflammation [300].

Moreover, the CNS and GI tract are in constant bidirectional

communication through the vagus nerve and its branches. The

essential role of the vagus nerve in the microbiota–gut–brain axis

signaling has been shown previously [301,302], in preclinical

models whereby vagotomy prevented the anxiolytic effects of pro-

biotic treatment, an effect thought to be mediated by altered

GABAergic receptor expression [232,303,304].

Gut hormones released from the enteroendocrine cells such as

cholecystokinin (CCK), glucagon-like peptide (GLP), peptide YY

(PYY), and serotonin are mediators that sense the local environ-

ment in the gut and respond appropriately. They are involved in

many functions including digestion and protective processes.

Indeed, CCK has been implicated in visceral pain in both preclini-

cal and clinical studies [38,305–307]. Serotonin is predominantly

known for its role in the brain, where it functions as a neurotrans-

mitter; however, approximately 95% of serotonin in the body is

contained within the gut, specifically, in the enterochromaffin

cells of the mucosa and in the nerve terminals of the ENS neurons

[295]. Serotonin’s peripheral functions involve regulation of GI

motility, secretion, and sensory perception [308,309]. Its central

functions include the regulation of mood, cognitive functioning,

and central processing of sensory signals involved in pain pro-

cesses [310–312]. Thus, it is apparent that serotonin signaling is a

key linker in communication along this axis [313], dysfunction of

which may underlie the pathological symptoms present in both GI

and mood disorders, and may also explain the high comorbidity of

these disorders [3]. Moreover, therapeutic compounds that modu-

late serotonergic neurotransmission, such as tricyclic antidepres-

sants (TCAs) and selective serotonin reuptake inhibitors (SSRIs),

have been shown to be effective in the treatment of not only

affective disorders but also GI disorders such as irritable bowel

syndrome (IBS) [314–316].
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The immune system plays an important intermediary role in

the dynamic equilibrium that exists between the brain and the

gut [317]. It is well known that the HPA axis, ANS, and ENS all

have direct interactions with the immune system [318–322]. The

concept of the “leaky gut” again underpins the important bidirec-

tional communication between the periphery and the CNS and

the significant role the immune system plays. This phenomenon is

thought to underlie disorders of the microbiota–gut–brain axis as

well as CNS disorders such as major depressive disorder (MDD)

[323] and alcohol addiction [324]. It is thought that stress can lead

to alterations in epithelial barrier integrity, which can become

compromised, thus increasing intestinal permeability and conse-

quently translocation of Gram-negative bacteria across the muco-

sal lining. This allows humoral and cellular mediators to directly

interact with immune cells and the ENS [325] leading to the acti-

vation of an immune response characterized by increased produc-

tion of inflammatory mediators such as IL-6 and IFN-c [326].

Moreover, Toll-like receptors have been shown to play a key role

in IBS pathophysiology both in preclinical [327,328] and in clini-

cal studies [329]. Microglia, the immune cells of the CNS, have

also been shown to be altered by the gut microbiota, in particular

microglia maturation and function [330].

Taken together, several routes of communication have been

proposed to understand the communication between the intes-

tine, including the microbiota, and the brain, some of which have

been summarized here. The high comorbidity between gastroin-

testinal disorders including IBS and stress-related psychiatric

symptoms such as anxiety [331–333] are further evidence that

perturbation of the microbiota–gut–brain axis leads to alterations

in the stress response and overall behavior including pain sensitiv-

ity [334,335].

Summary and Future Directions

In this review, we have attempted to highlight for the reader the

mechanisms that facilitate both stress and nociception. Further-

more, we have provided evidence from the literature for the

microbiota–gut–brain axis and the role that it plays in visceral

nociception. An important key message is the need for more

research focusing on the overlapping mechanisms linking stress

and visceral hypersensitivity with alterations in the gut micro-

biome (Figure 2). The exact routes by which the microbiota can

exert direct effects on visceral pain and vice versa remain to be

explored, but potential targets include altered cognitive processes

and epigenetic mechanisms [288,336]. We anticipate that future

research will likely lead to novel therapeutic compounds target-

ing the microbiota–gut–brain axis to treat patients with func-

tional bowel disorders such as IBS whose visceral pain is

exacerbated during periods of stress. The complex and multilay-

ered communication between the gut microbial population and

the CNS has far-reaching implications not least in the area of vis-

ceral pain and comorbid stress disorders. Being able to target one

element of the axis in order to alleviate symptoms at both ends is

a huge therapeutic leap. Studies on the modulation of the gut

microbiota via prebiotic/probiotic treatment have shown a very

positive light on the potential for this therapy in comorbid vis-

ceral pain and stress disorders [235–237,337]. Also of potential

therapeutic value is the possibility of fecal transplantation. Stud-

ies have shown that condition and behavior are transferrable via

transplantation of feces [291,338,339]. Future wide-scale clinical

validation of such interventions in visceral pain disorders is now

warranted.

Figure 2 Summary Figure. The mechanisms by which stress can lead to heightened pain perception are varied and primarily occur through 3 distinct

routes: (1) hypothalamic–pituitary–adrenal (HPA) axis activation, (2) sensitized spinal afferents, and (3) altered descending pain pathways. Stress and the

gut microbiota are also known to interact bidirectionally, with stress causing intestinal dysbiosis, which subsequently alters HPA axis functioning. Many

systems and mediators are involved in this complex network including altered neurochemistry of the central, peripheral, and enteric nervous systems,

altered immune system functioning, and perturbed local production of gut hormones and mediators. What remains to be fully investigated are the exact

pathways by which the microbiota can exert direct effects on visceral pain processes and vice versa.
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