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Palmitoylethanolamide (PEA) is a pleiotropic lipid mediator with established

anti-inflammatory and anti-hyperalgesic activity. Ultramicronized PEA (PEA-um) has

superior oral efficacy compared to naïve (non-micronized) PEA. The aim of the present

study was two-fold: (1) to evaluate whether oral PEA-um has greater absorbability

compared to naïve PEA, and its ability to reach peripheral and central tissues under

healthy and local inflammatory conditions (carrageenan paw edema); (2) to better

characterize the molecular pathways involved in PEA-um action, particularly at the

spinal level. Rats were dosed with 30 mg/kg of [13C]4-PEA-um or naïve [13C]4-PEA

by oral gavage, and [13C]4-PEA levels quantified, as a function of time, by liquid

chromatography/atmospheric pressure chemical ionization/mass spectrometry. Overall

plasma levels were higher in both healthy and carrageenan-injected rats administered

[13C]4-PEA-um as compared to those receiving naïve [13C]4-PEA, indicating the greater

absorbability of PEA-um. Furthermore, carrageenan injection markedly favored an

increase in levels of [13C]4-PEA in plasma, paw and spinal cord. Oral treatment of

carrageenan-injected rats with PEA-um (10 mg/kg) confirmed beneficial peripheral

effects on paw inflammation, thermal hyperalgesia and tissue damage. Notably, PEA-um

down-regulated distinct spinal inflammatory and oxidative pathways. These last findings

instruct on spinal mechanisms involved in the anti-hyperalgesic effect of PEA-um in

inflammatory pain.
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INTRODUCTION

Palmitoylethanolamide (PEA) is an endogenous fatty acid amide signaling molecule synthesized
“on demand” in response to tissue injury/stress, as part of a mechanism to restore/maintain
homeostasis with anti-inflammatory, pain-relieving and neuroprotective actions (Solorzano
et al., 2009; Skaper and Facci, 2012; Piomelli and Sasso, 2014; Petrosino and Di Marzo,
2017). This view is supported by studies showing that PEA levels change in settings of tissue
injury, especially in situations associated with inflammatory and neurodegenerative processes
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(Franklin et al., 2003; Petrosino et al., 2007, 2010; Bisogno et al.,
2008; Loría et al., 2008; Garcia-Ovejero et al., 2009; Iannotti
et al., 2016; Petrosino and Di Marzo, 2017). This hypothesis is
supported by a large body of evidence showing that the systemic
administration of PEA elicits anti-inflammatory, antinociceptive,
and neuroprotective effects, both in vivo and in vitro (Mazzari
et al., 1996; Costa et al., 2008; Genovese et al., 2008; Esposito
et al., 2011; D’Agostino et al., 2012; Esposito and Cuzzocrea, 2013;
Abramo et al., 2017; Skaper, 2017; Scuderi et al., 2018), as well as
in man (Truini et al., 2011; Gatti et al., 2012; Marini et al., 2012;
Paladini et al., 2016; Artukoglu et al., 2017; Passavanti et al., 2017;
Chirchiglia et al., 2018) and companion animals (Scarampella
et al., 2001; Noli et al., 2015).

The lipophilic nature of PEA presents a major challenge in
its therapeutic use. PEA is practically insoluble in water and
poorly soluble inmost other aqueous solvents, with the logarithm
of its partition coefficient (log P) being >5 (Lambert et al.,
2001). Absorption of orally administered PEA is thus likely be
dissolution-rate-limited, with the amount absorbed conceivably
showing an inverse relation to particle size (Takano et al.,
2008). Micronization is frequently applied to reduce particle size
and improve the bioavailability and efficacy of very low water-
soluble molecules by increasing their dissolution rate (Joshi,
2011; Leleux and Williams, 2014; Campardelli et al., 2017).
Micronized pharmaceutical grade formulations of PEA obtained
by jet milling (particle size distribution: 0.8–10µm; Impellizzeri
et al., 2014; Skaper et al., 2014) are currently used in human
and veterinary medicine for inflammatory, hyperalgesic and
allergic disorders (Petrosino and Di Marzo, 2017). Marketed
PEA formulations contain: (i) unprocessed PEA (frequently
referred to as naïve PEA or pure PEA; from 100µm up to
2,000µm); (ii) micronized PEA (PEA-m; 2–10µm range); and
(iii) ultramicronized PEA (PEA-um; 0.8–6µm range). In the
carrageenan (CAR)-induced model of rat paw inflammation,
orally administered PEA-m/PEA-ummarkedly reduced both paw
edema and thermal hyperalgesia in comparison to naïve PEA
(Impellizzeri et al., 2014). PEA-m/PEA-um has a favorable safety
profile in genetox assays as well as in acute and repeat dose oral
toxicity studies (Nestmann, 2016).

Few pharmacokinetic studies have been reported for PEA
[reviewed in Petrosino and Di Marzo, 2017] although some
estimates have been attempted (Gabrielsson et al., 2016). Such
studies might be complicated by issues concerning: (i) PEA
natural occurrence and its synthetic/degradative machinery;
(ii) multiple mechanisms of action, both direct and indirect
(Smart et al., 2002; Ho et al., 2008; Petrosino et al., 2016;
Petrosino and Di Marzo, 2017). The first point can compromise
obtaining reliable pharmacokinetic data, since exogenous PEA—
even labeled—could re-arrange with the endogenous pool of PEA
through enzymatic pathways. Indeed, PEA is easily hydrolyzed
by fatty acid amide hydrolase and N-acylethanolamine acid
amidase (Cravatt et al., 1996; Ueda et al., 2001). The second
point is more difficult to assess, since PEA levels in blood
and tissues could be independent from its pharmacological
effect. Conceivably, the latter may be the product of a
cascade of events triggered by PEA but ultimately expressed
through second- or third-order pathways. This concept is

illustrated by the so-called “entourage effect,” a mechanism by
which PEA actions result from increased levels or receptor
affinity of endogenous protective compounds, such as the
endocannabinoids arachidonoyl-ethanolamide (Smart et al.,
2002; Ho et al., 2008; Petrosino and Di Marzo, 2017) and 2-
arachidonoyl-glycerol (Petrosino et al., 2016).

With the above considerations in mind, the present study
was carried out to investigate whether micronization enhances
absorption of orally administered PEA in the healthy organism.
Since PEA-based products are indicated for inflammatory
and hyperalgesic conditions, plasma levels of PEA after oral
administration of PEA-um were also measured in a rat model
of acute inflammation (CAR-induced paw edema). Finally, the
levels of PEA in paw, spinal cord and brain and possible
correlation to underlying molecular mechanisms in the CAR
model were investigated.

MATERIALS AND METHODS

Materials
Unless otherwise specified, all compounds used in this study
were purchased from Sigma-Aldrich (Milano, Italy). [13C]4-PEA-
um and naïve [13C]4-PEA were obtained from Epitech Group
SpA (Saccolongo, Padova, Italy).N-heptadecanoyl-ethanolamine
was purchased from Cayman Chemical (Cabru, Arcore, Italy).
All solutions used for in vivo infusions were prepared using
non-pyrogenic saline (0.9% wt/vol NaCl; Baxter Healthcare Ltd.,
Thetford, Norfolk, UK).

Synthesis of [13C]4-PEA and Preparation of
an Ultramicronized Formulation
In order to limit interference from endogenous PEA and
improve sensitivity and selectivity of the analytical method,
13C-labeled PEA was used. [13C]4-PEA was prepared from
palmitic acid-1,2,3,4-13C4, 99 atom % 13C. Palmitic acid-13C4

(520mg) was dissolved in 20ml dry methanol containing 0.05ml
methanesulfonic acid. The resulting solution was refluxed under
a dry nitrogen atmosphere for 2 h and then evaporated under
vacuum. 1.25 g of ethanolamine was added and the resulting
oily mixture warmed at 120◦C in an oil bath for 4 h under a
nitrogen atmosphere. The mixture was then cooled to room
temperature and partitioned using ethyl acetate and water. The
aqueous phase was discarded and the organic phase evaporated
under vacuum. The residue thus obtained was crystallized from
isopropanol, recovered by filtration and vacuum-dried. The final
yield of pure naïve [13C]4-PEA was 480mg, with a particle size
range of 100–700µm (Skaper et al., 2014).

[13C]4-PEA-um was produced by processing naïve [13C]4-
PEA in a pilot spiral jet-mill micronizer (PILOTMILL-2, FPS
Srl, Como, Italy), with pressurized nitrogen at 12 bar as carrier.
Particle size distribution was assessed with a Laser Diffraction
Particle Size Analyzer Mastersizer 3000 (Malvern Instruments
Ltd, Malvern, UK): Dv 10 = 1.03µm; Dv 50 = 2.52µm; Dv
90 = 4.73µm. Ten percent of the particles were smaller than
1.03µm, 50% smaller than 2.52µm, and 90% smaller than
4.73µm; overall particle size range was 0.8–6µm (Impellizzeri
et al., 2014; Skaper et al., 2014).
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Animals
The study was carried out using Sprague–Dawley male rats (200–
230 g, Envigo, RMS S.r.l., Udine, Italy). Food and water were
available ad libitum. Experiments were performed in accordance
with Italian Ministry of Health (art. 31, D.L. 26/2014) guidelines
for the care and use of laboratory animals and EEC regulations
(O.J. of E.C. L 358/1 12/18/1986). The University of Messina
Review Board for the care of animals approved the study.

Treatments
Treatment groups were arranged to measure the time-
dependence of plasma levels of [13C]4-PEA in healthy rats
receiving by oral gavage a single dose (30 mg/kg) of either
[13C]4-PEA-um or naïve [13C]4-PEA dissolved in vehicle (1.5%
carboxymethylcellulose wt/vol in saline). Parallel groups of
rats so treated were concurrently subjected to a model of acute
inflammation induced by intraplantar injection of carrageenan
(CAR, 0.1ml of a 1% suspension in 0.85% saline) into the
right hind paw as previously described (Salvemini et al., 1996;
Impellizzeri et al., 2016). Tissue (paw, spinal cord, brain) levels
of [13C]4-PEA were also assessed in healthy and CAR-injected
rats administered [13C]4-PEA-um, as follows:

(i) healthy rats receiving naïve [13C]4-PEA (N = 20);
(ii) healthy rats receiving [13C]4-PEA-um (N = 20);
(iii) CAR rats receiving naïve [13C]4-PEA, concurrently with

CAR injection (N = 30);
(iv) CAR rats receiving [13C]4-PEA-um, concurrently with CAR

injection (N = 30).

Early absorption times were considered the most relevant for
unmasking differences due to particle size, and healthy rats
were sacrificed by anesthetic (isoflurane) overdose 5, 15, 30,
and 60min after [13C]4-PEA administration. Based on the
time-course of CAR-associated inflammatory and hyperalgesic
responses, two additional time points were investigated in the
CAR-injected rats, i.e., 180 and 360min. Five rats from each
treatment group were sacrificed at each time point. Blood (from
naïve [13C]4-PEA-treated rats, N = 20), as well as paw, spinal
cord and whole brain collected at sacrifice were immediately
frozen in liquid nitrogen and stored at −70◦C for later [13C]4-
PEA analysis.

Additional CAR-injected rats were used for assessing the
effects of PEA-um. They received a single oral dose of PEA-um
(10 mg/kg) dissolved as above and were randomly allocated to
the following groups:

(i) CAR + saline: subjected to CAR-induced paw edema
(N = 5);

(ii) CAR + PEA-um: same as the CAR + saline group, but
PEA-umwas administered concurrently with CAR injection
(N = 5).

(iii) Sham-operated rats: the same surgical procedures as the
CAR group, except that saline was administered instead of
CAR (N = 5).

The dose and the route of PEA-um administration were chosen
based on previous studies (Conti et al., 2002; Impellizzeri et al.,
2014). At the end of the experiment (6 h post-CAR), rats were

sacrificed by anesthetic (isoflurane) overdose. Samples from the
hind paw and spinal cord (L4-L6) were collected and either
fixed in 10% neutral-buffered formalin and embedded in paraffin
for both histological and immunohistochemical examination,
or stored at −70◦C for further analyses. The 6-h time point
was based on previous studies showing that the acute phase of
inflammatory response and hyperalgesia (0–6 h) is characterized
by central sensitization-related responses (D’Agostino et al.,
2007, 2009), in other words, the spinal changes we were interested
in to investigate the anti-hyperalgesic effect of PEA-um.

Different doses of PEA-um (30 mg/kg dose for blood/tissue
analysis and 10 mg/kg dose for pharmacological study were
chosen for the following reasons. In vivo studies have shown
the most pharmacologically efficacious effective dose of PEA to
be 10 mg/kg Esposito and Cuzzocrea, 2013, which was effective
whether given before or after CAR injection (Conti et al., 2002).
Concerning tissue analysis, prior experience showed high inter-
individual variability in plasma levels for a 10 mg/kg dose,
especially when using native PEA. Also, published data on
blood/tissue levels following PEA administration were performed
with higher doses [e.g., 100 mg/kg, Artamonov et al., 2005;
Vacondio et al., 2015]) and 30 mg/kg (Petrosino et al., 2016;
Siracusa et al., 2017). Further, sensitivity of the LC-APCI-MS
analysis was a concern.

[13C]4-PEA Measurement by Liquid
Chromatography/Atmospheric Pressure
Chemical Ionization/Mass Spectrometry
(LC-APCI-MS)
Plasma sample collection was performed as previously described
(Petrosino et al., 2016). The levels of [13C]4-PEA in rat
plasma and tissues were measured using the protocol previously
described for PEA (Bisogno et al., 1997; Di Marzo et al.,
2001; Marsicano et al., 2002; Petrosino et al., 2016), except
that N-heptadecanoyl-ethanolamine was added as internal
standard instead of [2H]4-PEA. Briefly, plasma and tissues
were homogenized in chloroform/methanol/50mMTris-HCl pH
7.4 (2:1:1 by vol.) containing 10 pmol of N-heptadecanoyl-
ethanolamine. The lipid-containing organic phase was pre-
purified by open-bed silica gel chromatography, and the
fractions obtained by eluting with chloroform/methanol (90:10
by vol.) were analyzed by LC-APCI-MS using a Shimadzu high-
performance liquid chromatography apparatus (LC-10ADVP)
coupled to a Shimadzu (LCMS-2020) quadrupole MS via a
Shimadzu APCI interface. LC-APCI-MS analysis of PEA was
carried out in the selected ion monitoring mode, using m/z
values of 314 and 304 (molecular ions +1 for the standard and
[13C]4-PEA, respectively); retention times were 17 and 13min,
respectively. [13C]4-PEA levels were calculated on the basis of
their area ratios with the internal standard signal areas to give
the amounts in pmol/ml of volume or pmol/g of tissue.

Assessment of Paw Edema
Paw edema was measured with a plethysmometer (Ugo Basile,
Comerio, Varese, Italy) prior to CAR injection and every hour for
6 h. Edemawas expressed as the increase in paw volume (ml) after
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CAR injection relative to the pre-injection value for all animals.
Scores were expressed as paw volume difference (ml).

Nociceptive Tests
Hyperalgesic responses to heat were assessed using the Plantar
Test (Hargreaves method, Ugo Basile) with a cutoff latency of
20 s to avoid tissue damage (Hargreaves et al., 1988). Rats were
individually housed in Plexiglas compartments and allowed to
habituate. A mobile unit consisting of a high-intensity projector
bulb was positioned to deliver a thermal stimulus directly to an
individual hind paw from beneath the chamber. The withdrawal
latency period of injected paws was determinedwith an electronic
clock circuit and thermocouple. Results were expressed as paw
withdrawal latencies. Behavioral testing was done with the
experimenter blinded to treatment conditions.

Histological Evaluation
Seven micrometer-thick sections stained with haematoxylin and
eosin were examined by light microscopy coupled to an Imaging
system (AxioVision, Zeiss, Milan, Italy) and scored by two
investigators in a blinded fashion. The degree of inflammation
was evaluated according to a score from 0 to 5, as previously
described (Bang et al., 2009; Impellizzeri et al., 2014).

Myeloperoxidase (MPO) Activity
The activity ofMPO (an enzyme released by neutrophils and used
as a marker of neutrophil infiltration) was assessed as previously
described (Cuzzocrea et al., 2007). The rate of absorbance was
measured spectrophotometrically at 650 nm. MPO activity was
determined as the capacity to degrade 1mM of peroxide within
1min at 37◦C, and expressed as units per g of wet tissue.

Staining of Mast Cells
Identification of mast cells was performed in paw edema sections
by blue toluidine staining as described previously (Ahmad et al.,
2012). Mast cell density was expressed as the number of mast cells
per unit area of hind paw tissue.

Determination of Cytokine Levels in Paw
Exudates
Tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β and
IL-6 released in the paw exudates were measured by ELISA (R&D
systems, Minneapolis, MN) as described previously by Salvemini
et al. (1996), and the results expressed as pg per paw normalized
to the volume of exudate recovered from each paw.

Western Blot Analysis of IκB-α, Nuclear
Factor-KappaB (NF-κB), Inducible Nitric
Oxide Synthase (iNOS), Cyclooxygenase-2
(COX-2), and Manganese Superoxide
Dismutase (MnSOD)
Western blot analysis was performed as previously described
(Cordaro et al., 2016). The following primary antibodies were
used: anti-IκBα (1:500, Santa Cruz Biotechnology, DBA, Milan,
Italy), anti-iNOS (1:1000, BD-transduction, DBA, Milan, Italy),
anti-COX-2 (1:1000, Cell Signaling- DBA, Milan, Italy), anti-
MnSOD (1:1000, Santa Cruz Biotechnology) and anti-NF-κB

p65 (1:500; Cell Signaling) at 4◦C overnight in 1 × phosphate-
buffered saline (PBS)/5% (w/v)/non-fat dried milk/0.1% Tween-
20. To control for equal loading of protein lysates, blots
were also incubated with either an anti-β-actin antibody
(1:5000; Santa Cruz Biotechnology) for the cytosolic fraction
or an anti-lamin A/C antibody (1:5000; Sigma-Aldrich) for
the nuclear fraction. Importantly, the blot was stripped with
glycine 2% and reprobed several times to optimize detection
of proteins and to visualize other proteins without the need
for multiple gels and transfers. The signals were revealed
with a chemiluminescence detection system reagent according
to the manufacturer’s instructions (Super Signal West Pico
Chemiluminescent Substrate; Pierce). Relative expression of
protein bands was quantified by densitometry with BIORAD
ChemiDocTM XRS+software and standardized to β-actin or
lamin A/C levels. Pictures of blot signals (8 bit/600 dpi
resolution) were imported to analysis software (Image Quant TL,
v2003).Western blot analyses are representative of three different
gels made by dividing the number of samples obtained from five
animals for each experimental group repeated three times on
different days.

Immunohistochemical Localization of
Nitrotyrosine
Immunohistochemistry was performed as previously described
(Paterniti et al., 2010). Paw and spinal cord slices were
incubated overnight with anti-nitrotyrosine rabbit polyclonal
antibody (1:200 in PBS, v/v, Millipore- DBA, Milan, Italy).
Sections were rinsed with PBS and incubated with peroxidase-
conjugated goat anti-rabbit IgG (1:2,000 Jackson Immuno
Research, West Grove, PA, USA). Specific labeling was detected
with a biotin-conjugated goat anti-rabbit IgG and avidin-
biotin peroxidase complex (Vector Laboratories, Burlingame,
CA, USA). To authenticate the binding specificity for different
antibodies, duplicate slices were incubated with only primary
or secondary antibody; no positive staining was observed
in these sections. Slices were quantitatively evaluated for
a variance in immunoreactivity by computer-assisted color
imaging (Leica QWin V3, Cambridge, UK). The percentage area
of immunoreactivity (determined by the number of positive
pixels) was expressed as percent of total tissue area (red staining).
Replicates for all experimental conditions and histochemical
staining were acquired from each rat in each experimental group.
All analyses were carried out by two observers blinded to the
treatment.

Statistical Evaluation
All values in the figures and text are expressed as mean
± standard error of the mean (SEM). Tissue level analyses
were performed using the generalized linear model (GLM).
In order to compare the levels of different formulations at
different times Tukey-Kramer post-hoc analysis was used. In
experiments involving histology and immunohistochemistry, the
images shown are illustrative of at least three experiments done
on different days on tissue sections collected from all animals
in each group. The results were analyzed by one-way ANOVA
followed by Bonferroni’s multiple comparison test. Data were
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analyzed using SAS v9.2 (SAS Institute, Cary, NC, USA). A
p-value of < 0.05 was considered significant. Exact p values are
reported, unless < 1 out of 10,000 (reported as p < 0.0001),
0.0001 being the lower limit for the statistical program.

RESULTS

Plasma Levels of [13C]4-PEA in Healthy and
Car-Injected Rats
To investigate whether particle size influences absorption of
PEA, levels of [13C]4-PEA were first quantified in plasma of
healthy rats 5, 15, 30, and 60min after oral administration
of the ultramicronized and naïve formulations (30 mg/kg).
Mean plasma levels of [13C]4-PEA were significantly higher
in rats receiving [13C]4-PEA-um than for naïve [13C]4-PEA
(p = 0.0013) across all time points. In the former group, a
significant peak concentration of [13C]4-PEA was found after
5min (5.4 ± 1.87 pmol/ml, p < 0.0001), being 5 times higher
than in rats administered the naïve formulation (1.1 ± 0.35
pmol/ml; p = 0.0078). There was a second, albeit lower peak
of [13C]4-PEA at 60min (2.7 ± 0.6 pmol/ml, p = 0.0006;
Figure 1A) in [13C]4-PEA-um-treated rats. No significant peak
plasma concentrations were found after oral administration of
naïve [13C]4-PEA (Figure 1A).

The effect of particle size on plasma levels of orally
administered [13C]4-PEA was next examined in CAR-injected

FIGURE 1 | Effect of ultramicronization on plasma levels of [13C]4-PEA in

healthy and CAR-injected rats. Levels of [13C]4-PEA in plasma of healthy

(A) and CAR-injected (B) rats 5, 15, 30, 60, 180, and 360min after oral

administration of 30 mg/kg [13C]4-PEA-um or naïve [13C]4-PEA. Data are

means ± SEM of five animals for each group. *P < 0.05 vs. baseline;
◦P < 0.05 vs. naïve PEA.

animals. As for healthy rats, there was a significantly greater
absorption for the ultramicronized as compared to the naïve
formulation (p = 0.0013). An acute inflammatory state did not
substantially alter absorption of naïve [13C]4-PEA, as plasma
levels did not differ significantly from baseline at any time point.
In contrast, [13C]4-PEA-um treatment resulted in higher levels of
[13C]4-PEA across all time points in CAR-injected compared to
healthy rats (p = 0.0046). Furthermore, marked increases in the
absorption of orally administered [13C]4-PEA-um were observed
at 30, 60, and 180min compared to baseline (p < 0.0001 for
each time, Figure 1B). Already 30min after administration of
[13C]4-PEA-um, plasma levels of [13C]4-PEA were 1.2 ± 0.41
pmol/ml and 22.8 ± 6.42 pmol/ml in healthy and CAR rats,
respectively (p = 0.0345), this difference being maintained at
60min (2.7± 0.6 pmol/ml and 16.7± 3.04 pmol/ml, respectively,
p= 0.0191).

Levels of [13C]4-PEA in Tissues of Healthy
and Car-Injected Rats
Since the absorption of PEA was higher following oral
administration of ultramicronized compared to naïve [13C]4-
PEA, both in healthy and (even more so) in CAR-injected rats,
we next assessed tissue levels of [13C]4-PEA after a single oral
dose of [13C]4-PEA-um. In paw tissue from healthy rats, levels
significantly above baseline were observed at 15min (p= 0.0070),
30min (p = 0.0347) and 60min (p = 0.0025). This was also
the case for paw tissue collected from CAR-injected rats, being
significantly higher than baseline at each time point, except
t = 180min (p= 0.0406, p= 0.0002, p= 0.0001, p < 0.0001, and
p = 0.0031 at 5, 15, 30, 60, and 360min, respectively; Figure 2).
Notably, subplantar CAR injection resulted in a significantly
higher distribution of [13C]4-PEA in the paw compared to
healthy tissue across all time points (p = 0.0002). In particular,
after 15min the level of [13C]4-PEA in the paw of CAR rats was
more than 6-fold higher compared to healthy rats (42.4 ± 6.39
pmol/g vs. 271.3± 36.93 pmol/g, respectively, p < 0.0001).

In spinal cord of healthy rats, measurable amounts of [13C]4-
PEA were found from 5 to 30min (p = 0.0222, p = 0.0185,
p = 0.0467 at 5, 15, 30, respectively; Figure 3). This was the case
also for CAR-injected rats from 30min (p = 0.0020, p = 0.0001,
and p= 0.0030 at 30, 60, and 360min, respectively). Interestingly,
subplantar injection of CAR resulted in a significantly higher
distribution of [13C]4-PEA also in spinal cord compared to
healthy animals across all time points (p = 0.0004). Notably,
15min after administration of [13C]4-PEA-um, [13C]4-PEA
concentration in the spinal cord of CAR rats was 110-fold higher
than in the healthy group (0.10 ± 0.03 pmol/g vs. 11.1 ± 4.79
pmol/g, respectively, p= 0.0396).

In the brain of healthy rats, oral administration of [13C]4-
PEA-um resulted in significantly increased levels of [13C]4-PEA
compared to baseline at 5, 30, and 60min (p= 0.0221, p= 0.0297,
and p = 0.0074, respectively). Similar results were found in the
brain of CAR-injected rats, the levels being significantly different
from baseline at 5, 60, 180 and 360min (p= 0.0129, p= 0.0043,
p = 0.0068, p = 0.0083, respectively; Figure 4). Unlike paw and
spinal cord, there were no consistent differences in the levels of

Frontiers in Pharmacology | www.frontiersin.org 5 March 2018 | Volume 9 | Article 249

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Petrosino et al. Ultramicronized Palmitoylethanolamide: Levels and Effects

FIGURE 2 | Time-course of [13C]4-PEA levels in paw tissue of healthy and CAR-injected rats following oral administration of [13C]4-PEA-um. Levels of [13C]4-PEA in

the paw of healthy and CAR-injected rats were determined after oral administration of 30 mg/kg [13C]4-PEA-um. Data are means ± SEM of five animals for each

group. *P < 0.05 vs. baseline; **P < 0.001 vs. baseline; ◦◦P < 0.001 vs. healthy rats.

FIGURE 3 | Time-course of [13C]4-PEA levels in spinal cord tissue of healthy and CAR-injected rats following oral administration of [13C]4-PEA-um. Levels of

[13C]4-PEA in the spinal cord of healthy and CAR-injected rats were determined after oral administration of 30 mg/kg [13C]4-PEA-um. Data are means ± SEM of five

animals for each group. *P < 0.05 vs. baseline; **P < 0.001 vs. baseline; ◦P < 0.05 vs. healthy rats.

[13C]4-PEA in brain between healthy rats and those receiving
subplantar CAR injection at any time point.

PEA-um Counteracts Car-Induced Rat Paw
Edema and Thermal Hyperalgesia
Hyperalgesic responses involve both central and peripheral
sensitization (Hargreaves et al., 1988; Urban and Gebhart, 1999).
CAR intraplantar injection led to a time-dependent development
of paw edema and thermal hyperalgesia, which peaked at 2–3 h
and lasted for 6–8 h (Hargreaves et al., 1988; Salvemini et al.,

1999). Oral administration of PEA-um (10 mg/kg) significantly
reduced the development of paw edema beginning from the
second h (Figure 5A) and thermal hyperalgesia from the first h
(Figure 5B).

PEA-um Decreases Car-Induced
Histological Damage and Neutrophil
Infiltration in Rat Paw Tissue
Tissue from sham-treated rats appeared normal
(Figures 6A,A’,D, histological score). In contrast, a marked
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FIGURE 4 | Time-course of [13C]4-PEA levels in brain of healthy and CAR-injected rats following oral administration of [13C]4-PEA-um. Levels of [13C]4-PEA in the

brain of healthy and CAR-injected rats were determined after oral administration of 30 mg/kg [13C]4-PEA-um. Data are means ± SEM of five animals for each group.

*P < 0.05 vs. baseline.

FIGURE 5 | Effect of oral PEA-um on CAR-induced rat paw edema and thermal hyperalgesia. Paw edema (A) and thermal hyperalgesia (B) were assessed at the time

points indicated after intraplantar injection of CAR into the rat hind paw. Oral administration of PEA-um (10 mg/kg) produced significant improvements in both scores.

Values are means ± SEM #P < 0.05, ##P < 0.01, and ###P < 0.001 vs. CAR.

accumulation of inflammatory cells (Figures 6B,B’,D,
histological score) was evident 6 h after CAR injection into
the right hind paw. Oral treatment with PEA-um (10 mg/kg)

significantly diminished this histological alteration (p < 0.0001),
as well as inflammatory cell infiltration (Figures 6C,C’,D,
histological score). Progression of histological injury was

Frontiers in Pharmacology | www.frontiersin.org 7 March 2018 | Volume 9 | Article 249

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Petrosino et al. Ultramicronized Palmitoylethanolamide: Levels and Effects

associated with neutrophil infiltration as confirmed by an
increase in MPO activity (Figure 6E). Oral treatment with PEA-
um (10 mg/kg) significantly reduced MPO activity (p < 0.0001;
Figure 6E).

PEA-um Decreases Car-Induced Mast Cell
Infiltration in Rat Paw Tissue
CAR-injected rat paw tissue, stained with toluidine blue revealed
a clear infiltration of mast cells (Figures 7B,D), as compared to
sham animals (Figures 7A,D). Oral treatment with PEA-um (10
mg/kg) significantly decreased mast cell infiltration (p = 0.0003;
Figures 7C,D).

PEA-um Reduces Car-Induced Cytokine
Release, Nitrotyrosine Formation, and
iNOS Expression in Rat Paw Tissue
The reduction of rat paw edema and thermal hyperalgesia by
oral administration of PEA-um (10 mg/kg) was associated with a
significant decrease in paw exudate content of pro-inflammatory
and pro-nociceptive cytokines such as TNF-α (Figure 8A), IL-
6 (Figure 8B) and IL-1β (Figure 8C), as compared to the
CAR-injected group (p < 0.0001, p < 0.0001, p = 0.0001,
respectively). Involvement of peroxynitrite in ROS-mediated
nociception was evaluated by immunohistochemical detection
of nitrated proteins (nitrotyrosine formation; Figures 8D–G).
At the time of maximal inflammation and hyperalgesia (6 h),
nitrotyrosine expression was clearly measurable in the inflamed
paws and was associated with iNOS expression (Figures 8H,H’,
densitometric analysis). Formation of nitrated proteins and
expression iNOS were significantly inhibited (p = 0.0001) by
oral administration of PEA-um (10mg/kg) (Figures 8F,G,H,H’,
densitometric analysis).

PEA-um Decreases Car-Induced COX-2
Expression, IκB-α Degradation and NF-κB
p65 Nuclear Translocation in Rat Paw
Tissue
To better understand the molecular mechanism underlying
the anti-inflammatory effects of PEA-um, IκB-α degradation
and NF-κB p65 nuclear translocation were evaluated by
Western blot analysis. The expression of IκB-α significantly
decreased in rat paw tissue from CAR-injected rats, as
compared to the sham-treated group (p < 0.0001; Figures 9A,A’,
densitometric analysis), and oral treatment with PEA-um (10
mg/kg) significantly limited CAR-induced IκB-α degradation
(p = 0.0001). In contrast, translocation of the NF-κB subunit
p65 increased in rat paw tissue from CAR-injected rats, when
compared to sham rats (Figures 9B,B’, densitometric analysis),
with PEA-um (10 mg/kg) oral treatment significantly decreasing
p65 translocation (p < 0.0001; Figures 9B,B’, densitometric
analysis). Given the COX-2 role in lipid degradation and
subsequent production of leukotrienes and prostaglandins, we
examined its expression by Western blot analysis 6 h after CAR
injection and oral treatment with PEA-um. COX-2 expression
significantly increased in rat paw tissue from CAR-injected rats
as compared to the sham group (p < 0.0001 Figures 9C,C’

densitometric analysis), and was significantly decreased with
oral PEA-um (10 mg/kg) treatment (p = 0.0003; Figures 9C,C’
densitometric analysis).

PEA-um Modulates Car-Induced MnSOD,
COX-2, and iNOS Expression in Rat Spinal
Cord
Central modulation of the nociceptive signal takes place in the
lumbar tract of the spinal cord. Thus, we examined expression
of the mitochondrial antioxidant MnSOD at L4/L6 to interrogate
the involvement of central ROS (Esposito et al., 2016). MnSOD
expression was significantly reduced in spinal cord 6 h after CAR
injection, as compared to sham rats (p = 0.0002; Figures 10A,A’
densitometric analysis). In contrast, oral treatment with PEA-
um (10 mg/kg) significantly increased spinal MnSOD levels
(p = 0.0002). As the acute phase of CAR-induced paw edema
is characterized by central sensitization mediated primarily by
prostanoids, we investigated spinal COX-2 and iNOS expression
6 h after CAR-injection and oral treatment with PEA-um.
Indeed, COX-2 and iNOS expression were both significantly up-
regulated (p < 0.0001 and p = 0.0001, respectively) in spinal
cord from CAR-injected rats (Figures 10B,C,B’,C’, densitometric
analysis, respectively) as compared to the sham-treated group.
Oral treatment with PEA-um (10mg/kg) significantly diminished
spinal COX-2 (p = 0.0004; Figures 10B,B’, densitometric
analysis) and iNOS expression (p = 0.0001; Figures 10C,C’,
densitometric analysis).

PEA-um Modulates Car-Induced Spinal
IκB-α Degradation and NF-κB p65 Nuclear
Translocation
CAR injection provoked a statistically significant decrease of
spinal IκB-α in the cytosolic fraction, as compared to the
sham-treated group (p < 0.0001; Figures 11A,A’, densitometric
analysis). This effect was significantly prevented by oral
treatment with PEA-um (10 mg/kg) (p= 0.0002; Figures 11A,A’,
densitometric analysis). Additionally, at the L4/L6 level, nuclear
translocation of the NF-κB p65 subunit was significantly
increased in the nuclear fraction 6 h after CAR injection, as
compared to sham-treated rats (p < 0.0001; Figures 11B,B’,
densitometric analysis), and oral treatment with PEA-um (10
mg/kg) significantly reduced this effect (p < 0.0001).

DISCUSSION

An expanding body of literature surrounding PEA points to its
promise in the application of a naturally-occurring molecule
with anti-inflammatory and pain-relieving properties in the
treatment of such conditions in both humans and companion
animals (Re et al., 2007; Petrosino and Di Marzo, 2017).
Oral delivery of drugs remains the most common route of
administration, given its versatility, simplicity of administration
and patient compliance. In the case of highly lipophilic agents
like PEA with their low aqueous solubility and bioavailability,
jet milling is often used to reduce large crystals down to
the micron/submicron range and thereby enhance dissolution
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FIGURE 6 | Effect of oral PEA-um on CAR-induced histological damage and neutrophil infiltration in paw tissue. Histological analysis was performed by

hematoxylin/eosin staining. (A), sham; (B), intraplantar injection of CAR into the rat hind paw; (C), CAR + PEA-um (10 mg/kg). Inserts (A’,B’,C’) are higher-resolution

images of the respective panels. (D), histological scores. (E), myeloperoxidase (MPO) activity in paw tissues from various treatment groups. Oral treatment with

PEA-um produced significant improvements in both measurements. The figures are representative of at least three independent experiments for all animals from each

group. Values are means ± SEM of five animals for each group. ###P < 0.001 vs. CAR; ***P < 0.001 vs. sham.

FIGURE 7 | Effect of oral PEA-um on CAR-induced mast cell infiltration in rat paw tissue. (A), sham; (B), intraplantar injection of CAR into the rat hind paw; (C), CAR

+ PEA-um (10 mg/kg); (D), mast cell density. Oral treatment with PEA-um effected a significant decrease in the numerical density of toluidine blue-positive cells, as

compared to the CAR group. The figures are representative of at least three independent experiments for all animals from each group. Values are means ± SEM of five

animals for each group. ###P < 0.001 vs. CAR; ***P < 0.001 vs. sham.

while increasing absorption and bioavailability (Chaumeil,
1998; Rasenack and Müller, 2004; Olusanmi et al., 2014).
We therefore decided to first investigate plasma levels of

PEA-um, and naïve PEA in healthy rats, exploiting a novel
methodology based on the LC-MS measurement of synthetic
and 99% isotopically pure [13C]4-PEA. This allows one to
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FIGURE 8 | Effect of oral PEA-um on CAR-induced cytokine release, nitrotyrosine formation, and iNOS expression in rat paw tissue. A significant increase of TNF-α

(A), IL-6 (B), and IL-1β (C) levels was detected in paw exudates after intraplantar injection of CAR into the rat hind paw. Oral treatment with PEA-um (10 mg/kg)

significantly reduced levels of all three cytokines. Immunohistochemical staining for nitrotyrosine was positive in paw tissue sections from CAR-injected rats (E,E’,G),

as compared to sham animals (D,D’,G). The intensity of nitrotyrosine staining was significantly reduced after oral treatment with PEA-um (F,F’,G). A significant

increase of iNOS expression was observed in paw tissue from CAR-injected rats (H,H’), as compared to sham-treated rats (H,H’). Oral treatment with PEA-um

significantly reduced iNOS expression (H,H’). A representative blot of lysates obtained from five animals for each group is shown, and densitometric analysis of all

animals is reported. The figures are representative of at least three independent experiments and for all animals from each group. Values are means ± SEM of five

animals for each group. ###P < 0.001 vs. CAR; ***P < 0.001 vs. sham.

both limit bias from endogenous PEA and quantify mainly
the exogenous compound and not its metabolites, although
ethanolamine exchange cannot be excluded. It also avoids the
pitfall relative to the recently reported PEA contamination
in glass pipettes and the polyurethane foam used for their
packaging (Angelini et al., 2017). Moreover, this methodology
now permits one to determine, for the first time, the tissue levels
of PEA after oral administration of a pharmacologically relevant
dose.

Oral administration of [13C]4-PEA-um (30 mg/kg) to healthy
rats resulted in [13C]4-PEA detectable in the bloodstream already
after 5min, with a peak plasma concentration of 5.4 ± 1.87
pmol/ml. In contrast, administration of naïve [13C]4-PEA did
not yield a significant peak plasma concentration of [13C]4-PEA.
Based on a basal value of around 9 pmol/ml PEA in rat plasma
(Sharma et al., 2011; Wang et al., 2014), oral administration
of PEA-um appears to rapidly elevate by some 50% circulating
PEA levels. Vacondio et al. (2015) orally administered to rats

a formulation of PEA (100 mg/kg suspended in corn oil and
subjected to ultrasonication/vortexing) that reached a peak, 20-
fold rise in plasma concentration after 15min followed by a
return to baseline within 2 h. In terms of particle size their
formulation would likely be more similar to PEA-um than to
naïve PEA. The discrepancy between (Vacondio et al., 2015)
and our study (earlier and lower plasma peak following [13C]4-
PEA-um oral administration) could reflect differences in: (i)
bioavailablity related to particle size and vehicle; (ii) dosing; (iii)
methodology to quantify plasma levels. Plasma levels of PEA have
been measured also in human volunteers and beagle dogs after
a single oral administration of PEA-m (∼5 mg/kg) and PEA-
um (30 mg/kg), respectively (Petrosino et al., 2016). In humans,
PEA levels increased up to two-fold 2 h after administration
(Petrosino et al., 2016), while in dogs, levels increased up to six-
fold after 1–2 h. This difference could depend on species and
doses used, but might relate to a relationship between absorption
and particle size. Interestingly, after dosing PEA-um, a second
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FIGURE 9 | Effect of oral PEA-um on COX-2 expression, IκB-α degradation and NF-κB p65 nuclear translocation in rat paw tissue. The levels of IκB-α decreased in

paw tissue homogenates from CAR-injected rats, as compared to sham-treated rats (A,A’). Oral treatment with PEA-um (10 mg/kg) significantly recovered IκB-α

levels (A,A’). NF-κB p-65 translocation significantly increased in paw tissue homogenates from CAR-injected rats, as compared to sham-treated rats (B,B’), and

PEA-um significantly decreased this effect. CAR-injected rats also displayed increased COX-2 expression as compared to sham-treated rats (C,C’) which was

significantly limited by oral PEA-um treatment. A representative blot of lysates obtained from five animals for each group is shown, and densitometric analysis of all

animals is reported. Values are means ± SEM of five animals for each group. ###P < 0.001 vs. CAR; ***P < 0.001 vs. sham.

plasma peak was found (Figure 1A), suggesting the possibility of
enterohepatic recycling, although lymphatic transport cannot be
ruled out.

PEA has an established anti-inflammatory profile and
therapeutic utility in conditions characterized by hyper-
activation of inflammatory and nociceptive pathways (Re et al.,
2007; Esposito and Cuzzocrea, 2013; Petrosino and Di Marzo,
2017). Applying a classical model of acute inflammation (CAR-
induced rat paw edema), levels of [13C]4-PEA were measured
following a single oral dose (30 mg/kg) of ultramicronized
or naïve [13C]4-PEA. These data confirmed the superior
absorption behavior of the ultramicronized formulation, and
more importantly, demonstrated significantly higher plasma
levels of [13C]4-PEA in CAR rats compared to healthy animals
dosed with [13C]4-PEA-um. Interestingly, following PEA-um
administration, a rightward shift of the curve was observed in
CAR-injected rats as compared to healthy animals. In particular,
at 5min post PEA-um administration the ratio of PEA levels
in blood between healthy and CAR-injected animals was 4.9,
in favor of the former group (Figures 1A,B). A feasible, albeit

speculative, explanation might come from findings in paw
tissues. As depicted in Figure 2, the ratio of PEA levels between
healthy and CAR-injected rats at 5min post treatment was 4.3
in favor of the latter. Although speculative, these differences in
plasma and tissue distribution could reflect tissue needs for this
natural bio-protector, with an early “flux” of PEA from blood to
the CAR-injected paw (the injured/inflamed site), to establish an
equilibrium between compartments (i.e., blood and the injury
site) to serve their respective needs for PEA. Conceivably, and
similar to the “on-demand” synthesis of endogenous PEA, there
is “on-demand” distribution of exogenous PEA in CAR-injected
rats, with PEA levels in blood rising by 5min and then rapidly
falling as PEA is re-directed to the paw.

In healthy rats orally administered [13C]4-PEA-um, [13C]4-
PEA was detected in both spinal cord and brain—albeit
consistently lower in the former—perhaps a consequence, in
part, of the brain’s higher perfusion rate compared to spinal
cord (Marcus et al., 1977). Siracusa et al. (2017) reported a
brain level of 21.68 ± 4.67 pmol/g [13C]4-PEA 15min after oral
administration of [13C]4-PEA-um (30 mg/kg) to healthy rats, in
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FIGURE 10 | Effect of oral PEA-um on CAR-induced spinal MnSOD, COX-2 and iNOS expression. A significant decrease of MnSOD expression was observed in the

spinal cord of CAR-injected rats, as compared to sham-treated rats (A,A’). Oral treatment with PEA-um (10 mg/kg) significantly restored MnSOD expression (A,A’).

Increased COX-2 (B,B’) and iNOS (C,C’) expression was detected in the spinal cord from CAR-induced rats, as compared to sham-treated rats. Oral treatment with

PEA-um reduced both parameters (B,B’,C,C’). A representative blot of lysates obtained from five animals for each group is shown, and densitometric analysis of all

animals is reported. Values are means ± SEM of five animals for each group. ###P < 0.001 vs. CAR; ***P < 0.001 vs. sham.

line with our determination of 16.20 ± 6.08 pmol/g. Further,
following oral administration of [13C]4-PEA-um, levels of [13C]4-
PEA in spinal cord of CAR rats were 26 to 110-fold higher than
in healthy rats, perhaps due to transient changes in the blood-
spinal cord-barrier that may occur secondary to CAR-induced
peripheral inflammation (Xanthos et al., 2012). Indeed, increased
penetration of certain drugs (e.g., morphine) into the spinal cord
occurs in the CAR hind paw model (Lu et al., 2009). To some
extent, levels of [13C]4-PEA in the paw of CAR rats were higher
than in control, in line with the local increase of PEA that occurs
at sites of inflammation (e.g., 2,4-dinitrofluorobenzene-mediated
contact dermatitis in mice or skin of atopic dogs; Petrosino et al.,
2010; Abramo et al., 2014). Initial studies carried out almost two
decades ago based on intraperitoneal and oral administration of
a particle size-uncharacterized radiolabeled PEA resulted in label
in heart, lung, diaphragm, spleen, kidney, liver, testis, plasma,
and brain (Zhukov, 1999; Artamonov et al., 2005). Because
radioactivity was not specifically identified with the amide, one
cannot exclude the possibility that the label detected actually
reflected radioactive metabolites of PEA. More recently, Grillo
et al. (2013) examined the distribution of PEA (10 mg/kg) in
mouse tissues following its subcutaneous administration as a
corn oil emulsion. In terms of particle size this PEA formation
may be more similar to PEA-um than naïve PEA, having
been ground and emulsified by vortexing/ultrasonification. PEA
reached the blood, brain, retina and heart after both 24 and

48 h (Grillo et al., 2013). Although differences in route of
administration, target species and PEA labeling/formulation
render comparison with the present study impractical, the data of
Grillo et al. (Grillo et al., 2013) encourage the view that micron-
sized PEA administration favors prolonged blood absorption
and tissue distribution. Moreover, evidence for passage of
PEA through the blood-brain barrier also comes from studies
carried out following intravenous administration ofN-(16-(18)F-
fluorohexadecanoyl)ethanolamine ((18)F-FHEA) as a positron
emission tomography probe for imaging the activity of N-
acylethanolamine hydrolyzing enzymes [namely the enzymes
responsible of PEA metabolism (Iannotti et al., 2016; Petrosino
and Di Marzo, 2017)] in the brain (Pandey et al., 2014).

Our findings on PEA-um blood absorption and tissue
distribution, together with a prior study demonstrating superior
oral efficacy of PEA-um compared to naïve PEA in the CAR-
induced paw edema model (Impellizzeri et al., 2014), led
us to investigate PEA-um effects in this model, focusing on
aspects of the underlying molecular mechanisms. As pointed
out earlier, the 6 h post-CAR time-point is considered optimal
for evaluating central sensitization-related responses, that is, the
spinal changes of interested to investigate the anti-hyperalgesic
effect of PEA-um. Although the peak PEA concentration in
paw tissue was reached before 6 h, this study does not allow
to determine if there is a ‘lag time’ between the appearance
of PEA in the tissue and its anti-hyperalgesic effect. Indeed,
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FIGURE 11 | Effect of oral PEA-um on CAR-induced spinal IκB-α degradation

and NF-κB p65 nuclear translocation. The levels of IκB-α significantly

decreased in spinal cord tissue homogenates from CAR-injected rats, as

compared to sham-treated rats (A,A’). Oral treatment with PEA-um (10 mg/kg)

significantly recovered spinal IκB-α levels (A,A’). Further, levels of NF-κB p65

significantly increased in spinal cord tissue homogenates from CAR-injected

rats (B,B’), and treatment with PEA-um significantly decreased NF-κB p-65

translocation. A representative blot of lysates obtained from five animals for

each group is shown, and densitometric analysis of all animals is reported.

Values are means ± SEM of five animals for each group. ###P < 0.001 vs.

CAR; ***P < 0.001 vs. sham.

assuming a simple relationship between local tissue levels
and the observed pharmacological effects may be unrealistic
and, in every case, was not the focus of this investigation.
That being said, we confirmed the reported effects of orally
administered micron-sized formulations of PEA (10 mg/kg)
on changes induced by CAR injection (Impellizzeri et al.,
2014; Esposito et al., 2016; Petrosino et al., 2017), in terms
of limiting paw edema, thermal hyperalgesia, neutrophilic
infiltration (MPO activity), and tissue damage. PEA-um also
counteracted the CAR-induced output of pro-inflammatory and
pro-nociceptive mediators in paw tissues and exudates. Levels
of IL-1β, TNF-α, and IL-6, and formation of nitrosylated
proteins were significantly decreased in PEA-um-treated rats
compared to the CAR-injected group, as described for PEA-
m (Esposito et al., 2016) and PEA-um (Petrosino et al.,
2017).

The early inflammatory response to CAR-induced edema
results from release of mast cell histamine and serotonin (Di
Rosa et al., 1971). Further, mast cell numbers increase in many
inflammatory conditions (Kempuraj et al., 2004; Carvalho et al.,
2006; Welker et al., 2008; Chang et al., 2009; Wang et al., 2009;
Demir et al., 2013; Galdiero et al., 2017; Voisin et al., 2017).
That PEA-um counteracted the CAR-induced increase in mast
cell number is in accord with a recent report (Petrosino et al.,
2017) and with the known ability of PEA to down-modulate
mast cell behaviors (Aloe et al., 1993; De Filippis et al., 2011;
Skaper et al., 2013), thereby reducing their number (De Filippis
et al., 2011; Iuvone et al., 2016) and activation state (i.e., mediator
release; Facci et al., 1995; Mazzari et al., 1996; Cerrato et al., 2010;
Cantarella et al., 2011; Esposito et al., 2011; De Filippis et al., 2013;
Donvito et al., 2015; Abramo et al., 2017).

Intraplantar injection of CAR decreases IκB-α expression
and increases NF-κB p65 expression and activity (Wang et al.,
2004), actions responsible for the increased expression of pro-
inflammatory cytokines and activation of iNOS and COX-2
(Baeuerle and Baltimore, 1988; D’Agostino et al., 2007). Here,
oral treatment with PEA-um significantly reduced COX-2 and
iNOS expression, limited IκB-α degradation and decreased
translocation of the NF-κB p65 subunit in paw tissue. One
previous study examining the effect of oral PEA treatment on
these nuclear factors in the CAR paw edema model showed
similar results following administration of PEA-m or PEA co-
micronized with the natural polyphenol polydatin (Esposito
et al., 2016). Intracerebroventricular or spinal administration of
PEA 30min prior to CAR also prevented IκB-α degradation
and NF-κB p65 nuclear translocation in the spinal cord
(D’Agostino et al., 2007, 2009). In CAR-injected rats, spinal NF-
κB was significantly decreased and IκBα increased following oral
PEA-um treatment, effects consistent with the observed time-
course of [13C]4-PEA appearance in spinal cord following oral
administration of [13C]4-PEA-um under these conditions. Spinal
mechanisms have not been previously studied following oral
PEA-um administration, although similar results were reported
for PEA-m and co-micronized PEA-polydatin (Esposito et al.,
2016).

Peripheral inflammation enhances COX-2-mediated
prostaglandin synthesis in the CNS, which contributes to
nociception and hyperalgesia (Maihöfner et al., 2000; Ghilardi
et al., 2005). Moreover, spinal cord iNOS is involved in CAR-
induced inflammatory pain (Tao et al., 2003). Intraplantar CAR
injection leads to a rapid induction of COX-2 in spinal cord and
other CNS regions (Ichitani et al., 1997) and iNOS in spinal cord
(Wang et al., 2014). Here, oral treatment with PEA-um reduced
COX-2 and iNOS expression at the spinal level, as previously
reported for co-micronized PEA-polydatin (Esposito et al.,
2016). Analogous to the latter study, spinal MnSOD expression
was increased by PEA-um treatment. Interestingly, MnSOD is
suggested to play a role in controlling peroxynitrite formation
through superoxide detoxification (Macmillan-Crow and
Cruthirds, 2001) to counteract the development of hyperalgesia
associated with acute inflammation (Muscoli et al., 2004; Wang
et al., 2004). Thus, the effect on spinal MnSOD expression
encourages a role for PEA-um treatment in counteracting
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peripheral as well as central sensitization. Moreover, inactivation
of MnSOD contributes to the development of opiate-induced
antinociceptive tolerance (Muscoli et al., 2007). That PEA-um
counteracts the CAR-induced decrease of spinal MnSOD
expression may shed new light not only on the anti-hyperalgesic
effect of PEA-um on different kinds of pain but also on its
ability to delay opiate tolerance (Di Cesare Mannelli et al., 2015).
These latter data may also reflect the finding that oral PEA-um
results in significant elevations in spinal cord over at least
6 h.

In conclusion, the present study shows that, in both healthy
rats and those subjected to an acute peripheral inflammatory
stimulus, orally administered PEA-um has a more favorable
absorption profile compared to naïve PEA. In addition, these
findings shed new light on spinal mechanisms involved in the
anti-hyperalgesic effect of PEA-um in acute inflammatory pain.
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