
Opioid-induced hyperalgesia (OIH) is defined as a state of nociceptive sensitization 
caused by exposure to opioids. The condition is characterized by a paradoxical response 
whereby a patient receiving opioids for the treatment of pain could actually become 
more sensitive to certain painful stimuli. The type of pain experienced might be the 
same as the underlying pain or might be different from the original underlying pain. OIH 
appears to be a distinct, definable, and characteristic phenomenon that could explain 
loss of opioid efficacy in some patients.

Findings of the clinical prevalence of OIH are not available. However, several 
observational, cross-sectional, and prospective controlled trials have examined the 
expression and potential clinical significance of OIH in humans. Most studies have been 
conducted using several distinct cohorts and methodologies utilizing former opioid 
addicts on methadone maintenance therapy, perioperative exposure to opioids in 
patients undergoing surgery, and healthy human volunteers after acute opioid exposure 
using human experimental pain testing. 

The precise molecular mechanism of OIH, while not yet understood, varies substantially 
in the basic science literature, as well as clinical medicine. It is generally thought to 
result from neuroplastic changes in the peripheral and central nervous system (CNS) 
that lead to sensitization of pronociceptive pathways. While there are many proposed 
mechanisms for OIH, 5 mechanisms involving the central glutaminergic system, spinal 
dynorphins, descending facilitation, genetic mechanisms, and decreased reuptake and 
enhanced nociceptive response have been described as the important mechanisms. 
Of these, the central glutaminergic system is considered the most common possibility. 
Another is the hypothesis that N-methyl-D-aspartate (NMDA) receptors in OIH include 
activation, inhibition of the glutamate transporter system, facilitation of calcium 
regulated intracellular protein kinase C, and cross talk of neural mechanisms of pain 
and tolerance. 

Clinicians should suspect OIH when opioid treatment’s effect seems to wane in the 
absence of disease progression, particularly if found in the context of unexplained pain 
reports or diffuse allodynia unassociated with the original pain, and increased levels 
of pain with increasing dosages. The treatment involves reducing the opioid dosage, 
tapering them off, or supplementation with NMDA receptor modulators. 

This comprehensive review addresses terminology and definition, prevalence, the 
evidence for mechanism and physiology with analysis of various factors leading to OIH, 
and effective strategies for preventing, reversing, or managing OIH.
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2.0 Historical considerations 
As early as the 19th century, OIH was observed in 

patients receiving morphine for pain. It was recognized 
that a potent analgesic such as morphine could actu-
ally result in an increase in pain and was observed by 
Albutt in 1870 (18). Albutt described that, “At such 
times I have certainly felt it a great responsibility to 
say that pain, which I know is an evil, is less injurious 
than morphia, which may be an evil.” It was questioned 
that, “Does morphia tend to encourage the very pain 
it pretends to relieve? In addition, Albutt stated that, 
“Experience is needed” and, “. . . in the cases in ques-
tion, I have much reason to suspect that a reliance upon 
hypodermic morphia only ended in that curious state of 
perpetuated pain.”

In addition, Rossbach (19) in 1880 noted that, 
“when dependence on opioids finally becomes an ill-
ness of itself, opposite effects like restlessness, sleep 
disturbance, hyperesthesia, neuralgia, and irritability 
become manifest.”

Accumulating evidence suggests that the adminis-
tration of opioid analgesics leads not only to analgesia, 
but may also lead to a paradoxical sensitization to nox-
ious stimuli (20). This phenomenon is referred to as OIH. 
Among the more important human studies document-
ing this effect are those demonstrating hyperalgesia in 
former opioid addicts maintained on methadone when 
compared with matched controls not receiving metha-
done or other opioids (21-23). 

In the early to mid 2000 period, studies had focused 
toward the toxic effects of opioid metabolites, causative 
of OIH, such as morphine-3-glucoronide, with central 
nervous system (CNS) effects of irritability and allodynia 
(24-26). In addition, hydromorphone 3-glucuronide was 
also shown to have toxic activity in rats (27). Further, 
OIH was reported to result only from the phenanthrene 
class of drugs. However, OIH has been demonstrated 
with drugs of different classes to include, but not be 
limited to, methadone and the phenanthrene class, and 
has been demonstrated in acute opioid administration 
in the synthetic class to include the piperidines, but not 
with oxymorphone (24,28-30). 

3.0 terminology 
Tolerance and sensitization have been described to 

have similarities; however, tolerance is a pharmacologic 
concept which occurs when there is a progressive lack 
of response to a drug, thus requiring increased dos-
ing, which can occur with a variety of drugs not limited 
to opioids (15). In addition, tolerance might not only 

The use of opioids for the treatment of chronic 
non-cancer pain has escalated in recent years, 
making them one of the most commonly 

prescribed medications in the United States (1-4). 
However, this escalation has many problems. Among 
those problems are a lack of evidence supporting 
their long-term effectiveness, misuse and abuse of 
prescription opioids, and multiple adverse events 
associated with long-term opioid use, including opioid-
induced hyperalgesia (OIH) (1-17).

Chronic opioid therapy could paradoxically induce or 
sensitize patients to acute pain, a condition termed “opi-
oid-induced hyperalgesia” (14,15). Even though direct and 
indirect experiments from animals and patients shows the 
evidence for opioid-induced analgesia, the clinical impli-
cations of this phenomenon continue to be unclear. How-
ever, the implications are that patients on high doses of 
long-term opioid pharmacotherapy can suffer exquisite 
acute pain after surgery, but more importantly, escalating 
doses in chronic opioid therapy might cause OIH by induc-
ing a vicious cycle of increasing dosage and anxiety, both 
for physician and patient (17). Consequently, as Chapman 
et al (4) pointed out, the answers to multiple questions 
are lacking, including the proportion of patients with OIH 
who receive opioid therapy, the propensities of patients 
to develop OIH, the preferential effect on certain types of 
acute or chronic pain, dose relationship and prevalence 
of OIH, and the duration and prevalence of OIH. Further, 
there are no well-known strategies which are effective in 
preventing, reversing, or managing OIH.

Apart from the paucity of literature on OIH and 
various related factors, systematic reviews are lack-
ing on this subject. Consequently, this comprehensive 
review is undertaken to evaluate OIH and address the 
prevalence of OIH; analyze various factors leading to 
OIH with types of pain, and the relationship between 
opioid dosage, and identification of acute painful con-
ditions secondary to OIH; and effective strategies for 
preventing, reversing, or managing OIH. 

1.0 metHods

This is a narrative review of the literature from 1966 
through November 2010 including reports, systematic re-
views, all types of studies, and other literature concerning 
OIH. The data was collected by doing a search of PubMed, 
EMBASE, Cochrane Reviews, and a manual search of all 
pertinent references in the literature. The keywords used 
were opioid-induced hyperalgesia, allodynia, opioid with-
drawal, addiction, opioid or opiate tolerance, neuropathic 
pain, chemically induced pain, and hyperpathia.



www.painphysicianjournal.com  147

Opioid-Induced Hyperalgesia 

develop to the analgesia provided by opioids, but also 
adverse events might develop, which are seen with mul-
tiple drugs including opioid administration such as pru-
ritus, nausea, sedation, and respiratory depression. 

Other differences between tolerance and sensitiza-
tion include that tolerance is characterized by decreas-
ing efficacy of the drug, which can be overcome by 
increasing the dose; whereas OIH cannot be overcome 
by increasing the dosage since it is a form of pain sen-
sitization induced by the drug which occurs within the 
CNS. In fact, increasing the dosage would only worsen 
the pain and conversely, pain is improved by reducing or 
eliminating the opioid. 

OIH is defined as a state of nociceptive sensitization 
caused by exposure to opioids. The condition is char-
acterized by a paradoxical response whereby a patient 
receiving opioids for the treatment of pain might ac-
tually become more sensitive to certain painful stimuli. 
The type of pain experienced might be the same as the 
underlying pain or might be different from the original 
underlying pain. OIH appears to be a distinct, definable, 
and characteristic phenomenon that could explain the 
loss of opioid efficacy in some cases.

4.0 mecHanism and PatHoPHysiology

Significant evidence has been accumulating con-
cerning the mechanism and pathophysiology of OIH in 
the literature. 

4.1 Basic Science Evidence 
In a systematic review, Angst and Clark (14) re-

viewed the majority of publications available describ-
ing OIH in various animal models. Following this, they 
described a model for OIH that considers this process 
to be neurobiologically multifactorial. It seems that, in 
general, neurobiologic systems that respond to opioids 
acutely in such a manner as to provide analgesia, might 
change over time in such a way as to enhance nocicep-
tion, especially in the setting of declining opioid doses 
(14,15). The best investigated sites of such plasticity in-
clude peripheral effects, spinal effects, and supraspinal 
effects.

Mao (31) has documented the occurrence of OIH in 
laboratory animals. He compared dose response effects 
before and after administration of an opioid. A progres-
sive reduction in baseline nociceptive pain thresholds 
were illustrated with intrathecal morphine administra-
tion (32), with fentanyl boluses (33), and with repeated 
heroin administration (34). Thus, the concept that de-
sensitization can be present with concurrent or repeat 

administration of opioids has been demonstrated. 
Many laboratories have reported mechanical allo-

dynia and/or thermal hyperalgesia after the acute ad-
ministration of opioids like heroin and fentanyl (33,35), 
the chronic administration of intrathecal morphine 
(36,37), the local peripheral administration of mor-
phine (38), or the chronic administration of systematic 
opioids of several types (39-41).

Pronociceptive effects of remifentanil in a mouse 
model of post surgical pain were demonstrated (42). 
In this model of incisional pain, remifentanil induced 
pronociceptive effects, which were dose dependent 
but unaltered by the duration of administration. In ad-
dition, a second surgery performed on the same site 
and experimental conditions induced greater post-op-
erative hyperalgesia that was enhanced when remifen-
tanil was used as an anesthetic.

4.2 Clinical Evidence 
Similar to basic science evidence, supporting clini-

cal evidence has also been established (14,21,30,43-55). 
Clinical OIH has been described after intraoperative 
remifentanil infusion (30), in patients with detoxifica-
tion from high dose opioids with improvement in pain 
(43), and increased pain sensitivity with methadone 
(21). Further, there have been a host of experimental 
studies in human volunteers in anecdotal reports of in-
creased pain sensitivity induced or observed with con-
comitant use of opioids. These studies and the mecha-
nisms of OIH have been extensively reviewed (14). 

A prospective trial in which long-acting morphine 
was given to participants with chronic low back pain 
demonstrated measurable hyperalgesia within one 
month of beginning therapy (44). An observational 
study in patients with non-cancer chronic pain, taking 
either methadone or morphine, compared with a con-
trol group, indicated that patients with chronic pain 
managed with opioids and methadone-maintained 
patients were hyperalgesic when assessed by the cold 
pressor test, but not by the electrical stimulations test 
(45). In a review of OIH (46), the findings reinforced 
the opinion that the development of OIH is based on 
confounders including the pain modality tested, route 
of drug administration, and specific opioid in question, 
specifically in normal human volunteers receiving acute 
morphine infusions. 

In another systematic evidence-based structured 
review of OIH (47), the strongest evidence came from 
opioid infusion studies in normal volunteers as mea-
sured by secondary hyperalgesia. The authors con-
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cluded that there was not sufficient evidence to sup-
port or refute the existence of OIH in humans except 
in the case of normal volunteers receiving opioid infu-
sions (47). They also identified differential effects on 
pain pathways with respect to hyperalgesia, which was 
attributed to inherent differences in how opioid expo-
sure modulates different nociceptive systems. Further, 
they identified the toxic metabolite morphine-3-glu-
coronide as a possible confounding factor in studies of 
OIH.

Among other reviews, Mitra (48) found strong as-
sociation between high-grade tolerance and the devel-
opment of OIH. Of interest were studies which revealed 
that morphine administration can cause neuronal cell 
death, which could be a contributory factor in the de-
velopment of not only tolerance, but also OIH. They 
also described that P-glycoprotein inhibition might play 
a role in the induction, maintenance, and severity of 
OIH. The P-glycoprotein system is a transport system as-
sociated with the system for secreting toxins out of the 
body, including the removal of morphine and morphine 
metabolites from the central compartment. Further, in-
hibition of the P-glycoprotein system can result in rapid 
escalation and/or higher cerebrospinal fluid (CSF) levels 
of morphine and morphine metabolites. Current lit-
erature suggests that P-glycoprotein inhibitors include 
verapamil, cyclosporin, quinine, ketoconazole, and re-
serpine, among others. 

4.3 Mechanism 
A substantial and growing body of literature sup-

ports the conclusion that genetics and other factors in-
fluence pain sensitivity and analgesic responses. Howev-
er, the genetics of OIH are not well explored in part due 
to the barriers posed by genetic studies. While there are 
many proposed mechanisms for OIH, 5 mechanisms in-
volving the central glutaminergic system, spinal dynor-
phins, descending facilitation, genetic mechanisms, and 
decreased reuptake and enhanced nociceptive response 
have been described as the important mechanisms.

4.3.1 Central Glutaminergic System 
Among the mechanisms proposed to explain OIH 

or desensitization, the central glutaminergic system is 
the most common possibility (39). The majority of the 
studies examining the mechanisms of OIH involve the 
systemic administration of opioids (31,32). The excit-
atory neurotransmitter NMDA plays a central role in 
the development of OIH. The current data suggest that 
opioid-induced desensitization or pharmacological tol-

erance, and sensitization or OIH, even though distinct 
processes, might share common cellular mechanisms in 
part mediated through activation of the central gluta-
minergic system (32). Silverman (17) summarized the 
role of NMDA in OIH as follows: 
1.  NMDA receptors become activated and when in-

hibited, prevent the development of tolerance and 
OIH (37,56,57).

2.  The glutamate transporter system is inhibited, 
therefore increasing the amount of glutamate 
available to NMDA receptors (58).

3.  Calcium regulated intracellular protein kinase C is 
likely a link between cellular mechanisms of toler-
ance and OIH (37,59,60).

4.  Cross talk of neural mechanisms of pain and toler-
ance may exist (61,62).

5.  Prolonged morphine administration induces neu-
rotoxicity via NMDA receptor mediated apoptotic 
cell death in the dorsal horn (58,63-66).
Sensitization of spinal neurons accompanies opi-

oid-induced enhanced nociception, the mechanism 
mediated by the central glutaminergic system via the 
NMDA and reversed by an NMDA receptor antagonist 
such as MK801 (64,65). In addition, repeated morphine 
administration has also been shown to illicit increased 
levels of the pro-nociceptive peptide calcitonin gene 
related peptide (CGRP) and substance P within the dor-
sal root ganglia (64). Another interesting hypothesis is 
that OIH results from the activation of descending pain 
facilitation mechanisms that arise from the rostral ven-
tromedial medulla (RVM).

4.3.2 Spinal Dynorphins 
Spinal dynorphin plays an important role in OIH in 

that levels have shown increases with continuous infu-
sions of µ-receptor agonists (67). These increased levels 
lead to the release of spinal excitatory neuropeptides 
such as CGRP from primary afferents (68). OIH is there-
fore a pro-nociceptive process facilitated by increasing 
the synthesis of excitatory neuropeptides and their re-
lease upon peripheral nociceptive stimulation (32).

Increased activity of the excitatory peptide neu-
rotransmitted cholecystokinin (CCK) in the RVM acti-
vates spinal pathways that up-regulate spinal dynor-
phin and consequently enhance nociceptive inputs at 
the spinal level (41,67-70).

4.3.3  Descending Facilitation 
One of the common mechanisms described in OIH is 

the activation of facilitative descending pathways from 
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the RVM (41). The descending facilitation influence on 
OIH can be seen through several mechanisms. Subsets 
of neurons (on and off cells within the RVM) have a 
unique response to opioids (71,72). These activities 
might facilitate spinal nociceptive processing (73). Fur-
ther, lesioning of the descending pathway to the spinal 
cord (dorsolateral funiculus) prevents the increase seen 
in excitatory neuropeptides (68). 

4.3.4  Genetic Influences 
While traditional pharmacological, electrophysi-

ological, biochemical and molecular techniques have 
been useful in the exploration of OIH, now murine ge-
netics are used to identify genomic loci linked to this 
phenomenon (20). A substantial and growing body of 
literature supports the conclusion that genetics influ-
ence pain sensitivity and analgesic responses and conse-
quently, potentially also OIH (20,65,74-81). 

Jensen et al (82) described genetic influence by 
the activity of the catecholamine breakdown enzyme 
Catechol-O-methyltransferase (COMT). They described 
that there are 3 possible genotypes of this polymor-
phism representing substitution of the amino acid va-
line for methionine. The breakdown of dopamine and 
noradrenaline is up to 4 times higher for the valine 
allele compared to methionine, resulting in different 
levels of synaptic dopamine/noradrenaline following 
neurotransmitter release (83). This polymorphism has 
previously been associated with multiple aspects of 
memory function, anxiety, and regulation of pain sen-
sitivity (84-87), but not following the single pain stimu-
lus (84,88-91), compared to individuals homozygous for 
the COMTval158 allele. These mechanisms indicate that 
COMT influences central pain modulation. 

4.3.5  Decreased Reuptake and Enhanced 
Nociceptive Response 

Among the many mechanisms proposed to explain 
OIH, the decreased reuptake of neurotransmitters from 
the primary afferent fibers has been considered as the 
common mechanism (58), along with enhanced respon-
siveness of spinal neurons to nociceptive neurotrans-
mitters like substance P and glutamate (65,74). Though 
not previously linked to OIH, the enhanced expression 
of β2 adrenergic receptors (β2-AR) have been identified 
as adaptive changes occurring during chronic exposure 
to opioids (75,76). Likewise, the functional enhance-
ment of β2-AR signaling has been demonstrated after 
chronic morphine exposure in various nervous system 
tissues (76,77).

Jensen et al (82) described that sensitivity to pain is 
a complex interaction of afferent sensory input and cog-
nitive processing of this stimuli. The pain experience is 
modulated on all levels of the neural axis. Several brain 
networks act as potent modulators of pain and studies 
have shown that prefrontal brain regions are involved 
in the inhibition of nociception (88). A suggested com-
mon pathway for these mechanisms is the recruitment 
of the descending pain defense system, which is partly 
modulated by the central catecholaminergic system 
(i.e., noradrenaline and dopamine) (89). The function 
of these systems is genetically influenced by the activity 
of the catecholamine breakdown enzyme COMT (83). 
Further, the reduced capacity to activate the µ-opioid 
system due to a reduced concentration of endogenous 
opioids (84) would predict increased pain sensitivity 
during repeated pain stimulation due to less effective 
recruitment of endogenous pain inhibition leading to 
a more pronounced sensitization in some individuals. 
However, experimental evidence has suggested that 
the endogenous opioid system did not significantly af-
fect OIH (92). This evaluation also suggested that alter-
native mechanisms such as pronociceptive stimulation 
and neuroplastic changes might be responsible for the 
expression of OIH.  

4.3.6 Other Mechanisms
While all the molecular mechanisms are similar, 

they also have been described based on the site of 
the plasticity. Some of the mechanism studies based 
on plasticity include: 1) sensitization of primary affer-
ent neurons; 2) enhanced production and release of 
excitatory neurotransmitters and diminished reuptake 
of neurotransmitters; 3) sensitization of second order 
neurons to excitatory neurotransmitters; and 4) neuro-
plastic changes in the RVM medulla that may increase 
descending facilitation via “on-cells” leading to up-
regulation of spinal dynorphin and enhanced primary 
afferent neurotransmitter release and pain (15).

4.3.6.1 Peripheral Effect 
It has been postulated that it is not required for 

drugs to reach the CNS in order for some degree of 
hyperalgesia to emerge from repeated drug adminis-
tration. Due to the recognition of µ-opioid receptors 
expressed on both the central and peripheral termi-
nals of primary afferent neurons, it was considered 
possible that the peripheral injection of selective opi-
oid agonists could cause functional changes in the 
neurons (15). While these injections were associated 
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with anti-nociception acutely, repeated injection was 
associated with tolerance and mechanical hyperalge-
sia which was interpreted as a sign of “local” physi-
cal dependence. This phenomenon was not limited to 
opioid receptors alone, but also to other receptors.

4.3.6.2 Spinal Effects
Spinal cord plasticity underlying OIH has been 

demonstrated after both the intraspinal and systemic 
administration of opioids. One of the first studies in 
this area involved the daily bolus administration of 
intrathecal morphine to rats for more than one week 
(37). The early observations also showed that if intra-
thecal morphine was infused in a continuous manner, 
that the degree of OIH which developed was smaller 
than if bolus administration with intermittent absti-
nence was employed, which was reduced by spinal 
blockade of the NMDA receptor (93). 

Since the time of the early observations, more 
spinal receptor systems have been explored as caus-
ative of OIH including spinal dynorphin (67), spinal 
cyclooxygenase (COX) (94), spinal cytokines like inter-
leukin-1ß (IL-1) and chemokines like fractalkine (95). 
Thus, biochemical and behavioral observations sug-
gest that the dorsal horn of the spinal cord is central 
to many of the mechanisms converging to support 
OIH (15).

4.3.6.3 Supraspinal Effects
There is growing appreciation that higher CNS 

centers might participate in supporting the hypoth-
esis of supraspinal effects and other forms of abnor-
mal pain sensitivity through enhanced descending 
facilitation to the spinal cord dorsal horn. The focus 
of this work has been the RVM. Microinjection of lo-
cal anesthetic to stop neuronal discharge from this 
structure or lesioning of the dorsolateral funiculus, 
which carries descending nerve fibers from the RVM, 
prevents or reverses not only OIH, but also tolerance 
to opioids (21,23,41,96,97). Pursuant to these obser-
vations, it has been suggested that CCK released in 
the RVM and acting through CCK-2 receptors might 
activate the RVM and support the descending influ-
ences (98).

5.0 clinical Prevalence

Over the past decade, several observational, cross-
sectional, and prospective controlled trials have exam-
ined the expression and potential clinical significance 
of OIH in humans (15). These studies have been con-

ducted using several distinct cohorts and methodolo-
gies: 1) Former opioid addicts on methadone mainte-
nance therapy, 2) perioperative exposure to opioids 
in patients undergoing surgery, and 3) healthy human 
volunteers after acute opioid exposure using human ex-
perimental pain testing. 

5.1 In Former Opioid Addicts 
A number of studies have examined pain sensitivity 

in opioid addicts maintained on methadone using cold 
pressor, electrical, and pressure pain models (99). These 
studies show a modality-specific increased sensitivity 
to cold pressor pain in these patients, compared with 
matched or healthy controls (21-23,96-98,100). In con-
trast, hyperalgesia to electrical pain was weak or absent 
as was hyperalgesia in mechanically evoked pain mod-
els (22,96,99). Other investigators studying healthy hu-
man volunteers were also unable to show development 
of OIH in thermal pain models (50,51). Chu et al (44) 
described that these results suggest that OIH develops 
differently for various types of pain (15).

Overall, multiple observations provide  support for 
the hypothesis that OIH is caused by chronic opioid ex-
posure, even though there are multiple limitations as-
sociated with these studies. 

5.2 During Perioperative Exposure to Opioids
A small number of clinical studies have looked at 

OIH in the setting of acute perioperative period expo-
sure. Two prospective controlled clinical studies have re-
ported increased postoperative pain despite increased 
postoperative opioid use in patients who received high 
doses of intraoperative opioids (30,101). However, oth-
ers have shown no significant difference in postopera-
tive pain sensitivity based on intraoperative opioids 
(102-104). 

Consequently, the observations provide mixed sup-
port for the hypothesis of development of OIH after 
acute perioperative opioid exposure. 

5.3 In Healthy Volunteers
Several studies have examined the development 

of OIH in humans after acute short-term exposure to 
opioids. Multiple investigators, in combination, have 
provided direct evidence for development of OIH in hu-
mans using models of secondary hyperalgesia and cold 
pressor pain (51,105-108). 

Compton et al (108,109) found increased sensitivity 
to cold pressor pain in a small cohort of healthy human 
volunteers following precipitated opioid withdrawal 
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after injection of acute physical opioid dependence . 
It also has been shown that there is a reduction in 

physical pain sensitivity in response to social exclusion 
and social encounters (110). Enhanced central thermal 
nociception has been reported in mildly depressed non-
patients and transiently sad healthy individuals. 

5.4 In Chronic Pain Patients
OIH is critical in managing chronic opioid therapy 

(22,40,44,50,54,111,112). Hooten et al (111) evaluated 
associations between heat pain perception and opioid 
dose among patients with chronic pain undergoing opi-
oid tapering in a prospective evaluation. Their cohort 
included 109 patients using opioids who were admit-
ted to an outpatient multidisciplinary rehabilitation 
program that incorporates opioid tapering. They used 
a standardized quantitative sensory test (QST) method 
of levels. Standardized values of heat pain perception 
were obtained one day following program admis-
sion and following completion of the opioid taper at 
program dismissal. The results showed that a greater 
baseline morphine equivalent dose was associated with 
lower or more hyperalgesic values. The dose dependent 
association retained significance after adjusting for 
pain severity, pain duration, and pain diagnosis. Taper-
ing of greater morphine equivalent doses was associ-
ated with lower values. The association retained signifi-
cance after adjusting for pain severity, pain duration, 
pain diagnosis, opioid withdrawal symptoms, and time 
between completion of the taper and performance of 
the dismissal QST. 

Hay et al (45), in an observational report, indicated 
that patients with chronic pain management with opi-
oids, and methadone-maintained patients were hyper-
algesic when assessed by the cold pressor test. However, 
there was no allodynia. 

Cohen et al (49) evaluated 355 patients on a steady 
regimen of analgesic medications and scheduled for an 
interventional procedure, and who were treated with 
a standard subcutaneous injection of lidocaine prior 
to a full dose of local anesthetic. The results showed 
that both opioid dose and duration of treatment di-
rectly correlated with pain intensity and unpleasant-
ness scores compared with patients not receiving opioid 
treatment. Patients receiving opioid therapy were more 
likely to rate the standardized pain stimulus as being 
more unpleasant than painful. They concluded that the 
results of this study bolster preclinical and experimental 
pain models demonstrating enhanced pain perception 
in patients receiving opioid therapy. In addition, other 

human data suggests that the short-term infusion of 
opioids like the µ-opioid receptor agonist remifentanil, 
followed by abrupt cessation, exacerbates preexisting 
hyperalgesia (35,51,54).

In contrast to the clinical and experimental evi-
dence, some studies have shown that oral opioid ad-
ministration of “commonly used” doses of oral opioids 
does not result in abnormal pain sensitivity beyond that 
of patients receiving non-opioid analgesia (55). In con-
trast, another study (7) further illustrated that OIH is 
present in the opioid addict population. Further, they 
also concluded that detoxification from opioids does 
not reset pain perception for at least one month. 

5.5 With Administration of Very Low Dose 
Opioids

A limited amount of direct human data directly sup-
ports the notion that low opioid doses cause hyperalge-
sia (15). In fact, one of the only studies to examine this 
question demonstrated biphasic effects of morphine in 
a subset of former opioid addicts given morphine (113). 
In addition, the question has been approached from 
another angle and the results have illustrated that the 
inclusion of very low doses of opioid antagonists might 
reduce postoperative opioid consumption (114,115). 
However, the findings have not been reproduced by 
others (116,117). In contrast, the animal data appear 
to be more definitive in the heightened nociceptive 
sensitization (one-thousandth of the systemic analgesic 
dose) after single dose morphine in arthritic rats (118). 

There is no clinical application for extremely low 
dose opioids. 

5.6 In Patients Administered Very High Dose 
Opioids

OIH more commonly has been seen in patients re-
ceiving high opioid doses, rather than low or moderate 
doses. There are multiple case reports and some stud-
ies; however, there has not been any systematic evidence 
(15). The majority of the reports involve the systemic or 
intrathecal administration of morphine, raising the pos-
sibility that metabolites, such as morphine-3-glucuronide 
that is known to cause neuroexcitation, could contribute 
to hyperalgesia (119-121). Chu et al (15) report that con-
trary to the low dose OIH phenomenon, high dose OIH 
does not seem to be modified by opioid receptors; rather 
it is influenced by 2 non-opioid receptor systems: glycine 
and the spinal cord NMDA receptor system (122-126). 
This is based on the information that opioid antagonists 
do not efficiently reduce the OIH of high dose opioids, 
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and the stereospecificity of high dose OIH does not fit 
the specificity for binding to opioid receptors (15). One 
non-opioid receptor system contributing to these ef-
fects is glycine. The intrathecal injection of glycine was 
dose-dependent for reversing allodynia caused by the 
intrathecal administration of high doses of morphine 
(126). Further, studies have focused on the spinal cord 
NMDA receptor system as mediating the hyperalgesia 
and allodynia effects of large doses of morphine (125).

6.0  diagnosis and management 

6.1  Diagnosis
Lack of effectiveness might be seen with the ad-

ministration of opioids for chronic pain more commonly 
than anticipated and reported. Common traditional so-
lutions to this include opioid rotation, reduction of the 
administered dose, or detoxification to manage OIH. 
However, a major dilemma faces the pain practitioner 
in the diagnosis of OIH and differentiating it from toler-
ance. Thus, it is a challenge to distinguish between the 
two since treatment of each is quite different. In addi-
tion, the clinician must be able to distinguish among 
OIH, progression of the disease process, interval injury, 
and clinical exacerbation of preexisting pain. 

There are features that differentiate OIH from 
increases in preexisting pain, disease progression, in-
creased activity, increased demands, increased stress, 
and interval injury. In contrast, OIH typically produces 
diffuse pain, less defined in quality, which extends to 
other areas of distribution from preexisting pain. Fur-
ther, OIH mimics opioid withdrawal including pain, since 
the neurobiology of both is similar (32). Further, OIH 
has been demonstrated clinically by inducing changes 
in pain threshold, tolerability, and distribution pattern 
in opioid-maintained former addicts (21). Finally, if the 
preexisting pain is undertreated or a pharmacologic 
tolerance exists, then an increase in opioid dose will 
result in reduction of pain. Conversely, OIH would be 
worsened with increasing opioid dosage. 

6.2 Modulation of Opioid-Induced 
Hyperalgesia

Even though precise molecular mechanisms respon-
sible for the development of OIH are just beginning to 
be understood, preclinical models implicate the gluta-
minergic system and pathologic activation of NMDA 
receptors in the development of central sensitization. 
Consequently, clinical work in attenuating or prevent-
ing the expression of OIH has primarily focused on ma-

nipulation of the glutaminergic system, either through 
direct or indirect modulation of the NMDA receptor. 
However, the clinical efficacy and significance of these 
approaches has not been evaluated in large prospective 
clinical trials.

The NMDA receptor is composed of several differ-
ent subunits (NR1, NR2A-D, and sometimes NR3A/B) 
that are differentially expressed in various regions of 
the brain and during development (15,127). Further, 
the subunit expression of individual NMDA receptors 
can affect their binding sensitivity to neuromodulators 
and function (128). However, multiple drugs available 
have variable and undetermined effectiveness. The first 
generation NMDARAs, such as ketamine and dextro-
methorphan, have limited clinical utility in some pa-
tients precisely because of these reasons. 

6.2.1 Ketamine
Even though ketamine binds to many different 

receptor sites, it is known to be an uncompetitive an-
tagonist of the phencyclidine binding site of NMDA re-
ceptor, where its primary anesthetic effects are thought 
to occur (129). While its role as a clinical anesthetic has 
been limited (130), its role as NMDA receptor in chronic 
neuropathic pain has been expanding (131-136). 

Meta-analyses of studies examining perioperative 
low-dose ketamine in conjunction with opioid admin-
istration yielded opposing results (49,137-145). Fur-
ther, a systematic review failed to show any significant 
evidence that ketamine improves the effectiveness of 
opioid therapy in cancer pain. However, ketamine has 
been shown to be significantly beneficial in patients 
who require large amounts of opioid medications or 
exhibit some degree of opioid tolerance. Human exper-
imental pain studies have shown that administration of 
S-ketamine abolishes remifentanil-induced aggravation 
of hyperalgesia induced by intradermal electrical stimu-
lation (50,51). In addition, the findings were corrobo-
rated in the post-surgical patient population. 

In summary, there is some evidence to show that 
perioperative administration of low-dose ketamine 
might modulate the expression of OIH or analgesic 
tolerance and that it reduces postoperative wound hy-
peralgesia after acute intraoperative opioid exposure. 
However, the clinical significance of these benefits still 
needs to be demonstrated in larger prospective studies 
and in chronic pain populations.

6.2.2 Methadone
Methadone has been shown to have weak NMDA 
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receptor antagonism (146). Thus, it has been shown 
that methadone is effective in reducing high-dose opi-
oid OIH (147-149). In fact, multiple published reports in 
the literature have shown that opioid rotation to meth-
adone significantly improved or resolved suspected OIH 
(147-152). 

Methadone offers several advantages for opioid 
switching or rotation, including incomplete cross-toler-
ance with opioid receptors and NMDA receptor antago-
nism (151,153). However, methadone is also associated 
with multiple disadvantages of complex conversion and 
toxicity, including Torsades de Points, when high doses 
are administered. Further, methadone exposure has 
been linked to increased pain states in studies of for-
mer opioid addicts maintained on methadone (22,96-
98). Thus, methadone might activate pronociceptive 
pathways, despite its NMDARA properties. In a case re-
port, OIH was aggravated with methadone rather than 
reversing it (154). 

6.2.3 Dextromethorphan 
Dextromethorphan is a non-competitive NMDA-

RA typically used as a cough suppressant. There have 
been a number of studies indirectly examining the 
ability of dextromethorphan to attenuate or prevent 
expression of OIH or analgesic tolerance in patients on 
opioid therapy. Galer et al (155), in 3 large random-
ized, double-blinded, placebo-controlled multicenter 
trials of MorphiDex (morphine and dextromethorphan 
mixture in a 1:1 ratio) in chronic non-cancer patients, 
were unable to find any significant difference be-
tween MorphiDex and morphine alone in the outcome 
measures. The study showed analgesic superiority for 
MorphiDex.

6.2.4 Propofol 
Some evidence suggests propofol might have some 

modulatory effect on OIH, possibly through interactions 
with γ-aminobutyric acid (GABA) receptors at the supra-
spinal level (156,157). However, the clinical significance 
of propofol in chronic pain management is not known.

6.2.5 COX-2 Inhibitors 
Because of the sensitization of pronociceptive path-

ways in the CNS through various mechanisms of which 
NMDA receptors have been largely implicated and the 
prostaglandins have also been shown to modulate no-
ciceptive processing (158), and are able to stimulate the 
release of excitatory amino acid glutamate in spinal 
cord dorsal horns (159), COX inhibitors have also been 

shown to antagonize NMDA receptor function in the 
CNS (160,161). COX inhibitors also have been shown to 
attenuate development of opioid tolerance in animals 
(162,163). Thus, it has been hypothesized that inhibi-
tion of prostaglandin synthesis in the spinal cord might 
attenuate or inhibit expression of OIH by modulating 
NMDA receptor function. 

Evidence suggests a role for COX-2 inhibitors in the 
modulation of OIH in humans (50,51,105). Thus, it is sug-
gested that there is a possible role for prostaglandins 
in sensitizing the nociceptive system before pathologic 
activation, and that although OIH is modulated by Cox-
2 activity, it probably has a less important role than the 
NMDA receptor system, at least in human experimental 
pain models after acute opioid exposure (15).

6.2.6 α2 receptor Agonists 
Some studies have examined the role of α2 re-

ceptor agonists in modulating OIH. Koppert et al (51) 
showed that the α2 agonist clonidine attenuated opi-
oid-induced post-infusion antianalgesia and abolished 
opioid-induced post-infusion secondary hyperalgesia. 
These data suggest a possible role for α2 agonists in 
OIH modulation. Further, this effect was seen in pa-
tients where coadministration of NMDARA S-ketamine, 
during acute opioid exposure, abolished opioid-in-
duced post-infusion secondary hyperalgesia, but had 
no effect on post-infusion antianalgesia (51). However, 
a study by Quartilho et al (52) found that a single in-
jection of clonidine produced transient antinociception 
with delayed thermal hypersensitivity after 24 to 30 
hours in rats. In addition, these effects were prevented 
with coadministration of the α2 antagonist idazoxan. 
In contrast, Davies et al (53) failed to report hyperalge-
sia after cessation of chronic administration of the α2 
agonist dexmedetomidine in mice.

Overall, animal studies provide contradictory evi-
dence for the ability of α2 agonists. α2 agonist might 
or might not directly cause hyperalgesia. However, hu-
man studies provide direct evidence in support of the 
ability for these drugs to attenuate expression of OIH 
in human experimental pain models after acute opioid 
exposure. 

6.3  Treatment Strategies
While the pain practitioner has several options 

when confronted with a demonstrated lack of opioid ef-
ficacy and the diagnosis of OIH is established, the treat-
ment can be time-consuming and, at times, impractical. 
In managing these patients, weaning from high doses of 
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opioids usually requires time and patience, along with 
understanding on the part of the patient and the fam-
ily. While reducing the opioid dose, patients might ex-
perience transient increases in pain or mild withdrawal 
which can exacerbate the already exacerbated pain. Fur-
ther, the hyperalgesic effect might not be mitigated until 
a certain critical dose of opioid is reached. During this 
process, patients and physicians become frustrated and 
develop differences in philosophy, which could require 
multiple office visits or could even sever the relationship 
between the patient and physician. These patients often 
seek opioid treatment elsewhere. 

The treatment includes rational polypharmacy 
with non-opioid medications, minimizing opioid us-
age and reducing the adverse events of withdrawal 
and OIH. However, certain pain conditions, including 
neuropathic pain, tend to preferentially respond to 
non-opioid medications such as antidepressants and 
anticonvulsants. Rotation to a different class of opioid 
might yield improvement in analgesia. Interventional 
pain management can reduce the need for pharmaco-
therapy or eliminate it altogether (3,164-205). Further, 
behavioral management can accomplish some or all of 
the goals (206-208). 

However, if these options are not feasible, then the 
practitioner is faced with several choices to diagnose 
and treat OIH:
1.  Increase the dose of opioid and evaluate for in-

creased efficacy (tolerance)
2.  Reduce or eliminate the opioid and evaluate OIH.
3.  Utilize opioids with unique properties that might 

mitigate OIH
4.  Utilize specific agents that are NMDA receptor 

antagonists
5. Provide combination therapy with COX-2 

inhibitors
The third option has become particularly attrac-

tive with the use of methadone and buprenorphine. 
Methadone, although a pure µ-receptor agonist, has 
properties that might prevent or reduce OIH (209). It is 
a racemic mixture in which the d-isomer is an NMDA re-
ceptor antagonist. Methadone also displays incomplete 
cross-tolerance properties unique from other µ-recep-
tor agonists which might create a niche role for it in the 
treatment of OIH and other forms of intractable pain, 
especially neuropathic pain. Anecdotal reports exist of 
patients who have been thought to have OIH and been 
treated with combinations of option 2 and option 3, 
i.e., reducing the dose of opioid (by 40% to 50%) and 
adding “low-dose” methadone (210). 

Buprenorphine has been used to treat chronic 
pain (211). It is a partial opioid agonist with antag-
onist properties which has been used for decades in 
anesthesia and for the treatment of pain. The intra-
venous/intramuscular (IV/IM) formulation (Buprenex) 
is available in the United States for the treatment 
of pain and in Europe is available as a transdermal 
preparation. Most recently, it has been used for the 
treatment of opioid dependence in its sublingual form 
(Suboxone, Subutex).

Buprenorphine has been shown to be intermediate 
in its ability to induce pain sensitivity in patients main-
tained on methadone and control patients not taking 
opioids (21). Buprenorphine showed an enhanced abil-
ity to treat hyperalgesia experimentally induced in vol-
unteers compared to fentanyl (212). In addition, spinal 
dynorphin, a known kappa receptor agonist, increases 
during opioid administration, thus contributing to OIH. 
Buprenorphine is a kappa receptor antagonist. For 
these reasons, buprenorphine might be unique in its 
ability to treat chronic pain and possibly OIH.

6.4 Practical Considerations 
The treatment of OIH can be time-consuming and 

at times, impractical. Weaning patients from high dose 
opioids usually requires time and patience (for both the 
physician and patient). While reducing the opioid dose, 
patients might experience transient increases in pain 
or mild withdrawal which can exacerbate pain. The hy-
peralgesic effect might not be mitigated until a certain 
critical dose of opioid is reached. Patients often become 
frustrated and managing the appropriate dose reduc-
tions often requires multiple office visits. This can be 
extremely impractical in a managed care environment. 
Consequently, many patients simply give up and seek to 
resume opioid therapy elsewhere (17).

7.0  conclusion

As with any therapy, side effects and complications 
can occur. An exit strategy should exist when utilizing 
opioids to treat chronic pain because of the potential 
complications in managing these patients such as opi-
oid dependence, addiction, and abuse. OIH is a less 
recognized side effect of chronic opioid therapy. How-
ever, it is becoming more prevalent as the number of 
patients receiving opioids for chronic pain increases (1-
5). OIH should be considered in the differential when 
opioid therapy fails. Prior to instituting treatment with 
opioids, OIH should be addressed with patients as part 
of a comprehensive informed consent/agreement.
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