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Abstract

Human infants may be exposed to opiates through placen-
tal transfer from an opiate-using mother or through the di-
rect administration of such drugs to relieve pain (e.g., due 
to illness or neonatal surgery). Infants of many species 
show physical dependence and tolerance to opiates. The 
magnitude of tolerance and the nature of withdrawal differ 
from those of the adult. Moreover, the mechanisms that 
contribute to the chronic effects of opiates are not well un-
derstood in the infant but include biological processes that 
are both common to and distinct from those of the adult. 
We review the animal research literature on the effects of 
chronic and acute opiate exposure in infants and identify 
mechanisms of withdrawal and tolerance that are similar to 
and different from those understood in adults. These mech-
anisms include opioid pharmacology, underlying neural 
substrates, and the involvement of other neurotransmitter 
systems. It appears that brain circuitry and opioid receptor 
types are similar but that NMDA receptor function is im-
mature in the infant. Intracellular signaling cascades may 
differ but data are complicated by differences between the 
effects of chronic versus acute morphine treatment. Given 
the limited treatment options for the dependent infant pa-
tient, further study of the biological functions that are al-

tered by chronic opiate treatment is necessary to guide 
evidenced-based treatment modalities.

Key Words: dependence; glutamate; infant; morphine; opi-
ate; protein kinase; rodent model; tolerance; withdrawal

Introduction

Opiate tolerance to and withdrawal from opium and 
its derivatives have long been recognized, and re-
ports of the deleterious effects of opiates on in-

fants are over 100 years old (Happel 1892; Tate 1899). 
Today, infants may be exposed to opiates for medical rea-
sons; for example, iatrogenic induction of opiate depen-
dence is not uncommon in preterm infants in the neonatal 
intensive care unit (Anand et al. 2010). In addition, opiate 
use by pregnant women can result in dependence in the fe-
tus. The rates of such use are diffi cult to ascertain and esti-
mates vary widely, but some are as high as 2–4% of pregnant 
women (Keegan et al. 2010; Lester et al. 2001; Shannon 
et al. 2010). 

Most of the research on mechanisms underlying toler-
ance and dependence has used animal, and especially 
rodent, models, so we provide comparisons of the devel-
opmental stages of rats and humans. These comparisons 
are at best estimates and clearly depend on the metric 
compared. 

In terms of overall rates of protein synthesis in the brain, 
the rat is altricial and at birth is roughly equivalent to an 
early-third-trimester human fetus (Dobbing 1981); birth in 
the human would be equal to a 7-day-old pup (Figure 1). A 
more fi ne-grained analysis (Clancy et al. 2007) describes a 
range of developmental equivalencies depending on brain 
site. In this model, the birth of the rat infant “translates” to 
the human as the start of the second trimester for noncortical 
and limbic structures and the early third trimester for cortical 
structures. This places the rat at about 18 days of postnatal 
age when the human is born.

In this review we focus on mechanisms of tolerance and 
withdrawal after repeated or acute exposure of infants to opi-
ates (mostly morphine), building on the work of others who 
have addressed similar topics (Noda and Nabeshima 2004; 
Richardson et al. 2006). (For reviews of the long-term ef-
fects of in utero and neonatal opiate exposure, see Lester and 
Lagasse 2010; Schempf 2007; Vathy 2002; and Yanai et al. 
2003.)
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Effects of Chronic Opiate Exposure in 
the Infant

Tolerance 

Tolerance is defi ned as a decreased response to a drug after ad-
ministration of or exposure to the drug; empirically it is defi ned 
as a shift to the right in the dose-response curve with an in-
creased effective dose (ED50) or effective concentration (EC50) 
(Figure 2). The degree of tolerance may differ for different drug 
effects. It usually follows multiple administrations of the drug 
but can occur after a single injection (acute tolerance or tachy-
phylaxis). The mechanisms of tolerance to acute (single-dose) 
and chronic (repeated) exposure to the drug may differ. The 
maximum effect can also be reduced in some cases.

Numerous studies have shown that human and nonhu-
man infants become tolerant to the analgesic effects of opi-
ates (Anand et al. 2010; Barr et al. 1986; Barr and Wang 
1992; Ceger and Kuhn 2000; Richardson et al. 2006; Tempel 
et al. 1988; Thornton and Smith 1997; Thornton et al. 1997; 
Windh et al. 1995; Zissen et al. 2007). The degree to which 
tolerance develops is less for infants than that for adults for 
reasons that are not known but are likely to be pharmacoki-
netic and pharmacodynamic. 

In addition to tolerance to the drug’s analgesic actions, a 
variety of species (humans, rodents, sheep, and guinea pigs) 

exhibit tolerance to sedation, arousal changes in sleep state, and 
EEG and respiratory depression (Choe and Smith 2000; Eaton 
et al. 1992; Szeto et al. 1988, 1990). In contrast, there is no tol-
erance to morphine-induced suppression of distress vocaliza-
tions (Barr and Wang 1992). We are not aware of any data on 
the development of tolerance to the gastrointestinal effects (e.g., 
constipation) of morphine. Tolerance can also occur to drugs 
that target kappa-opioid receptors (Barr et al. 1986). 

There are no data suggesting that the age of the human 
infant infl uences the magnitude or rapidity of tolerance to 
opiates. Indeed, tolerance in the infant rat is typically of a 
lesser degree than that of the older pup or adult rat (van Praag 
and Frenk 1991; van Praag et al. 1993; Windh et al. 1995; 
Zhu and Barr 2003).

Studies of acute tolerance, in which the test dose of 
the opiate takes place shortly after an initial dose, are rare but 
show that it does occur in the older preweaning rodent 
(Huidobro and Huidobro 1973). In one study a single injection 
of morphine to 2-day-old rat pups resulted in tolerance re-
vealed by testing 3 weeks later (Bardo and Hughes 1981) but 
not when the initial injection was at 5, 9, or 13 days of age. This 
approach is not a test of “acute tolerance” in the strict sense, but 
it demonstrates long-term effects of opiate treatment in the in-
fant and can indicate whether there is a critical period for 
the development of long-term consequences, although to our 
knowledge this critical period has not been clearly defi ned.

Figure 1 Illustration of rough equivalent ages for a rat and human based on rate of protein synthesis in the brain (Dobbing 1981). Other 
schemes, based on other criteria, show slightly different age equivalencies (Clancy et al. 2007) and individual brain regions and physiological 
functions develop at individual rates. Despite slight differences the rat is altricial and is developmentally similar at birth to the human fetus at 
6 months. 
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Figure 2 Schematic demonstrating tolerance. When a drug that can 
induce tolerance is given repeatedly, the dose response curve shifts to 
the right. (Sensitization, not shown, would be a shift to the left.) The 
dose that affects 50% of the subjects (ED50) is then increased. 

Dependence and Withdrawal

Dependence and withdrawal can be physical or psychologi-
cal or both. Their intensity is a function of the drug, duration 
of use, dose, and the kinetics of the drug in addition to the 
age of the subject. 

Physical dependence entails the presence of physical signs 
when the drug is withdrawn or when an antagonist to the 
drug’s action is given. Such signs can be minor (e.g., a caf-
feine withdrawal headache) or life threatening (e.g., seizures 
from barbiturate or alcohol withdrawal). Physical signs of opi-
ate withdrawal in human and nonhuman adults include fl u-
like symptoms such as muscle aches, runny nose, abdominal 
pain and diarrhea, dilated pupils, and nausea and vomiting. 

Psychological dependence is a need to continue drug use 
and does not require physical signs. It can last well beyond 
the resolution of physical withdrawal signs. Humans have 
also described a state of dysphoria that exceeds in severity 
the actual physical symptoms.

Unconditioned Behaviors

The mechanisms by which opiates produce withdrawal in 
adults are well studied if not fully understood (e.g., Frenois 
et al. 2005a; Mao 1999; McClung 2006; Nestler et al. 1993). 
We focus here on mechanisms specifi c to the infant.

As mentioned above, very early studies demonstrated 
that a pregnant woman’s use of opiates can have deleterious 
effects on the infant (Happel 1892; Shute and Davis 1933; 
Tate 1899), who may become passively dependent through 
placental transfer and experience abrupt withdrawal at birth. 
Withdrawal can also occur in neonates that have received 
opiates for pain management. 

Upon withdrawal the infant experiences behavioral and 
state regulation disturbances, called the neonatal abstinence 
syndrome (NAS), which includes increased irritability, in-
creased movements and activity, sucking and swallowing dis-
turbances, sleep deprivation, and disorganized and fragmented 

sleep-wake states (Franck and Vilardi 1995; Gewolb et al. 
2004; Hutchings 1990; O’Brien and Jeffery 2002). Among 
infants whose dependence is due to maternal opiate use there 
is no strong relationship between the type or dose of opiate 
and the severity and duration of withdrawal (Coghlan et al. 
1999; Kuschel et al. 2004). In infants treated medically with 
opiates, withdrawal is measured by a recently validated psy-
chometric tool that takes into account the presence and in-
tensity of multiple withdrawal symptoms (Franck et al. 
2008).

Animal models of opiate withdrawal have been devel-
oped only in the past 30 years. Part of the diffi culty of defi n-
ing withdrawal in infants is that its manifestations are 
fundamentally different from those of the adult. Opiate with-
drawal in human or nonhuman adults includes, among other 
signs, activation of the sympathetic nervous system, but in 
the infant these processes are immature (Myers et al. 1992; 
Quigley et al. 1996); thus classic signs in the adult rodent, 
such as teeth chattering, jumping, diarrhea, “wet-dog 
shakes,” and ptosis (which cannot occur in infant rodents, 
whose eyes have not yet opened), do not occur between 14 
and 21 days of age in the rat (Jones and Barr 1995). 

Early rodent studies reported that infants in withdrawal 
show altered activity and sleep-wake rhythms (Hutchings 
et al. 1979, 1980; Kirby 1981). Subsequent work demon-
strated that, in addition to increased behavioral activation, 
there are clearly defi ned behaviors for the NAS in rodent 
infants, postweanlings, and indeed throughout development 
(Figure 3; Barr et al. 1998; Jones and Barr 1995; Thornton 
and Smith 1997; Thornton et al. 1997; Windh et al. 1995). 
Infant behaviors include increased ultrasonic vocalizations 
upon separation from the dam and littermates, head sway-
ing, paw movement, and rolling (Table 1; Barr et al. 1998; 
Jones and Barr 1995; Thornton and Smith 1997; Thornton 
et al. 1997; Windh et al. 1995). Administration of naloxone 
after a single opiate injection induces similar withdrawal 
signs (Jones et al. 2002; Perez-Saad et al. 1996). Some 
withdrawal behaviors also occur in the fetal rat after pre-
cipitated withdrawal when the dam has been treated with 
morphine (Ceger and Kuhn 2000; Jones and Barr 2000; 
Kirby 1981).

Sensitization

Hyperalgesia (heightened sensitization to pain) can occur 
during either chronic administration or withdrawal, but there 
is no consensus about the frequency or circumstances of its 
occurrence (for reviews, Bannister and Dickenson 2009; 
Bekhit 2010). In animal models only one laboratory has 
examined sensitization after opiate treatment in infants 
(Sweitzer et al. 2004a,b; Zhang and Sweitzer 2008; Zissen 
et al. 2007). Withdrawal induced mechanical allodynia and 
thermal hyperalgesia in rat pups as early as 7 days of age and 
in some cases lasted weeks (Zhang and Sweitzer 2008). The 
sensitization occurred after acute, chronic, or intermittent 
morphine treatment, although there were differences among 
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the treatment regimens (Sweitzer et al. 2004a; Zissen et al. 
2006, 2007). 

Sensitization may be the result of central or peripheral 
processes, and there is enhanced nociception during the sec-
ond phase of the formalin test (a measure of central and pe-
ripheral sensitization; Zissen et al. 2006) and enhanced slow 
ventral root potential (sVRP1), an electrophysiological cor-
relate of nociception in an ex vivo spinal cord preparation 
(Sweitzer et al. 2004b).

Affective Consequences

In adult humans and animals, opiate withdrawal is associ-
ated with a strong negative affect (Fendt and Mucha 2001; 
Handelsman et al. 1992; Kanof et al. 1993; Koob et al. 1989; 
Mucha et al. 1986). In the human infant, the interpretation of 
negative affective consequences of withdrawal is drawn from 
increased fussiness, increased crying, and a decreased abil-
ity to be soothed. With opiates that have a short half-life 

Figure 3 Examples of behaviors that are unique to infant rats 
(7 days old), occur only in older rats (21+ days old), or occur 
throughout the lifespan (adapted from Jones and Barr 1995). See 
Table 1 for defi nitions of the behaviors. Numbers after morphine 
are the chronic doses (3 or 10 mg/kg 2x/day) begun 7 days before 
testing. Sal, saline

1Abbreviations that appear ≥3x throughout this article: NMDA, N-methyl-
d-aspartate; PAG, periaqueductal gray of the midbrain; PK, protein kinase; 
PND, postnatal day; sVRP, slow ventral root potential 

(e.g., heroin, fentanyl), it is possible that the human fetus 
undergoes withdrawal after exposure to the opiate. It is not 
known whether withdrawal induces a negative affective state 
in the fetus (Handelsman et al. 1992; Kanof et al. 1993). If 
so, the fetus, which can learn in utero (e.g., DeCasper and 
Fifer 1980; Smotherman 2002; Stickrod et al. 1982; for re-
view, Moon and Fifer 2000), could associate maternal cues 
(e.g., odors) with that aversive state. That association might 
affect later attachment to the mother, although to our knowl-
edge there are no data that bear on this speculation.

The question of whether opiate withdrawal in the infant 
is aversive has been the subject of animal studies. In the in-
fant rodent, withdrawal from a variety of dysphoric drugs 
increases ultrasonic vocalizations, a behavior normally ex-
pressed under stressful conditions such as cold ambient tem-
perature. At 7 days of age, pups spontaneously withdrawn 
from chronic morphine cry more than controls 6 hours after 
the last injection and show altered ultrasonic vocalization 
patterns 3 days later (Barr and Wang 1992). 

It is not clear, however, that the aversive properties of 
withdrawal can be conditioned in infant rats, in part because, 
unlike older pups and adults, they are resistant to learning to 
associate cues with aversive stimuli (Sullivan et al. 2009): in 
a conditioned odor aversion paradigm, pups in precipitated 
withdrawal did not learn to avoid an odor associated with 
withdrawal at 7 days of age, but did so at 14 days (Barr and 
Goodwin 1997). This is not due to an inherent inability to 
learn aversions since younger pups can learn these associa-
tions under certain circumstances (Barr et al. 1994; reviewed 
by Sullivan et al. 2009). Thus, although conditioned aver-
sions are not learned early (7 days of age), unconditioned 
responses associated with an aversive state are present quite 
early and show the negative affective component of opiate 
withdrawal.

Mechanisms of Opiate Tolerance and 
Withdrawal in the Infant

There are multiple possible reasons for different withdrawal 
syndromes in the neonate and the adult. Given the immaturity 
of the central nervous system (CNS) in the infant, it is likely 
that the neural mechanisms that mediate tolerance and with-
drawal in the infant differ from those of the adult in at least 
two ways. First, there may be age-related differences in cel-
lular mechanisms that mediate withdrawal, including changes 
in receptor populations, their ability to be internalized, intra-
cellular messengers, and/or transcription factors. Second, dif-
ferent neural circuitry may mediate withdrawal in the infant 
and the adult. In their most simple form, the CNS circuits 
may be similar across ages, whereas the output mechanisms—
the autonomic nervous system, for example—may differ. As 
discussed in the following sections, the literature suggests 
that the anatomical circuits are at least similar and that the 
opioid receptor involved is the same. In contrast, the role of 
intracellular signals, in particular those related to glutamate 
N-methyl-d-aspartate (NMDA1) receptors, appears to differ. 
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Opiate Receptor Development

Because opioid receptors develop at different stages (Leslie 
and Loughlin 1993)—for example, in rats the delta opioid 
receptor does not appear until the second week of life, com-
parable to early childhood in humans (De Vries et al. 1990; 
Leslie et al. 1982; Spain et al. 1985)—it is possible that dif-
ferent classes of opioid receptors mediate withdrawal in in-
fants and adults. Indeed, studies have shown that the effects 
of chronic morphine treatment on receptor dynamics are 
age dependent. When pups are treated with morphine start-
ing at postnatal day (PND1) 1, there is a downregulation of 
mu opioid receptor numbers at PND 4 that is not seen at 
PND 8 or older, even with continued treatment (Stoller et al. 
2002; Tempel 1991; Tempel et al. 1988). This downregula-
tion may be because of unique properties of opioid recep-
tors shortly after birth, but what those properties may be is 
not known. 

Withdrawal is mediated by similar opioid receptor 
types: delta (DOR), kappa (KOR), and mu (MOR). In 
young pups (less than a week old) mu opioid receptors are 
the major receptor type involved in withdrawal (McPhie 
and Barr 2000), although the animals may develop toler-
ance to drugs that prefer the kappa opioid receptor (Barr et 
al. 1986). Antagonists to the delta or kappa opioid receptor 
did not precipitate behavioral withdrawal in the 7-day-old 
pup, whereas an antagonist to the mu opioid receptor did; 
similarly, in adults, mu opioid receptors regulate mor-
phine-induced tolerance and dependence (Dumas and Pol-
lack 2008; Raehal and Bohn 2005). In pups treated from 
PND 14 to PND 17 with morphine, the kappa agonist 
U50,488 is less effective than in controls, suggesting that 
chronic morphine exposure alters kappa receptor function 
(Stoller et al. 2007). Although the mu opioid receptor den-
sity and affi nity are unaltered in the older pups, they still 
exhibit tolerance and withdrawal (Stoller et al. 2002; Tem-
pel et al. 1988).

Changing Neural Circuitry

One possible reason for differences in the withdrawal behav-
iors of infants and adults is differential involvement of neural 
circuits: the periaqueductal gray (PAG1), locus coeruleus 
(LC), amygdala, ventral tegmental area, nucleus accumbens, 
hypothalamus, and spinal cord (for adult circuitry see Chieng 
et al. 1995; Druhan et al. 2000; Frenois et al. 2005b; Mal-
donado et al. 1992). It appears, however, that similar neural 
circuits are involved at both stages of life. Direct injection of 
an opiate antagonist into either the PAG or the LC precipi-
tated withdrawal in a morphine-dependent 7-day-old pup, 
whereas injections into the amygdala did not (Jones and Barr 
2001). This latter fi nding is not necessarily inconsistent with 
the adult literature. The amygdala mediates the aversive 
properties of opiate withdrawal in the adult (Maldonado et 
al. 1992) but learned aversions to opiate withdrawal are not 
present in the infant rat at PND 7 (Barr and Goodwin 1997). 

Late maturation of the ability to learn a conditioned aver-
sion is not limited to opiate withdrawal as the immaturity of 
amygdala function limits it ability to regulate other learned 
aversions (Sullivan et al. 2009). Moreover, withdrawal acti-
vates the same brain circuits—in the olfactory bulb, nucleus 
accumbens, hypothalamus, PAG, LC, medulla oblongata, 
and spinal cord (assessed by Fos protein or messenger RNA 
expression)—in both the infant and the adult (Maeda et al. 
2002; McPhie and Barr 2009). However, there are develop-
mental differences in activation patterns between the infant 
and adult medulla (Maeda et al. 2002).

Role of Glutamate Neurotransmission

NMDA Receptors: Chronic Opiate Exposure

In the adult animal, NMDA blockers reduce the develop-
ment and expression of opiate withdrawal and tolerance 

Table 1 Precipitated withdrawal behaviors in the infant rat

Behavior Defi nition

Burrowing Sliding the body under shavings in the observation chamber

Head swaying Lateral and/or rotary motion of the head

Paw movement Continuous movement of the hind paws without walking

Quiet “Sedated” appearance without movement

Rolling Turning the body over at least one full rotation

Ultrasonic vocalization Vocalizations in the ultrasonic range (typically ~40 kHz) that imply distress in infant rodents

Together Bodily contact with one or more littermates

Walking Moving forward at least one step

Wall climbing Putting both forepaws on the wall of the observation chamber, typically with movement

Adapted from Zhu and Barr (2004).
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(Noda and Nabeshima 2004; Trujillo 2000), whereas in the 
infant these blockers are less effective in alleviating either 
tolerance or withdrawal until the animal begins weaning (for 
review, Noda and Nabeshima 2004; Zhu and Barr 2001). 

Tolerance and withdrawal can be defi ned by behavioral 
changes or by changes in the sVRP after dorsal root simulation 
in the isolated spinal cord (Yanagisawa et al. 1984). One advan-
tage of the in vitro spinal cord preparation is that it bypasses 
changes that might be due to other physiological systems. 

In pups younger than 8 days of age, coadministration of 
the NMDA antagonists MK-801 or dextromethorphan with 
morphine does not reduce tolerance or withdrawal but rather 
can exacerbate both (Bell and Beglan 1995a,b; Zhu and Barr 
2000, 2003). In older animals NMDA blockers become ef-
fective in reversing behavioral tolerance or withdrawal—
they are somewhat effective at PND 14 and fully effective at 
PND 21 in reducing both tolerance and withdrawal (Zhu and 
Barr 2000, 2003). In pups 12 to 17 days of age, 3 days of 
twice-daily morphine treatment downregulated glutamate 
transporter activity and may thus have increased NMDA re-
ceptor activation because of the resulting higher levels of 
extracellular glutamate (Thomson et al. 2006). Further re-
search is necessary to determine whether this mechanism oc-
curs in younger animals, when NMDA antagonists do not 
have the ability to prevent withdrawal. 

Acute treatment with MK-801 affects the expression (but 
not the development) of withdrawal in older animals but is 
mostly ineffective in the 6- to 7-day-old pup. Although it de-
creased head moves, it increased walking, wall climbing, and 
overall locomotor activity (Zhu and Barr 2000). In contrast, it 
reduced behavioral tolerance in older pups (14 days of age), 
reduced the sVRP in the isolated spinal cord preparation (likely 
by a synergistic action with morphine; Bell and Beglan 1995b), 
and inhibited excitatory postsynaptic currents (EPSCs) in 
voltage-clamped cells in spinal slices (Zeng et al. 2006).

Fos expression in the olfactory bulb, hypothalamus, and 
medulla of the infant rat is stimulated during withdrawal 
(Maeda et al. 2002). This heightened level of expression was 
reduced by concurrent treatment with MK-801 and mor-
phine from PND 2 to PND 7 in the olfactory bulb and hypo-
thalamus but not in the medulla (Maeda et al. 2002). 

In a different approach, we used two strains of mice to 
assess the role of the NMDA glutamate receptor in tolerance 
to morphine during early development. Adult mice of the 
129 strain display little or no analgesic tolerance to 
morphine, whereas other strains such as CD-1 and Swiss-
Webster mice become tolerant (Crain and Shen 2000; Kest 
et al. 2002; Kolesnikov et al. 1998; Liang et al. 2006). It has 
been hypothesized that the mouse strains differ in functional 
NMDA receptor function (Kolesnikov et al. 1998) and that 
defi ciencies in GM1 ganglioside regulate excitatory opioid 
receptor function (Crain and Shen 2000). Thus the 129 strain 
either lacks or has an impaired receptor. 

If the NMDA receptor is not important in tolerance in 
the infant then the lack of its functionality should have no 
consequence—the 129 and CD-1 infant mice should respond 
the same to chronic morphine exposure; in older mice, for 

which the NMDA receptor is important, the strains should dif-
fer. To assess this hypothesis we injected CD-1 and 129S6 pups 
with morphine starting on either PND 2 or PND 16 for 7 days 
and tested for analgesic tolerance. At PND 8, both types of mice 
showed tolerance in a tail fl ick test, whereas by PND 22 the 
129S6 pups no longer did (Figure 4). The data are consistent 
with adult data showing that there is no role for the NMDA re-
ceptor in tolerance in the 8-day-old mouse but a necessary in-
volvement at PND 21 (Perez and Barr, unpublished). 

NMDA Receptors: Acute Opiate Exposure

A single injection of morphine can induce tolerance and es-
tablish dependence, and a subsequent injection of an NMDA 
blocker reduces withdrawal, tolerance, and Fos expression 
(Jones et al. 2002). Acute morphine treatment does not in-
duce many of the neuroplastic changes—for example on re-
ceptors or second messenger systems (for review, Zhang et 
al. 2009)—that chronic treatment would. In the fi rst week of 
life in the rat, these changes, induced by chronic morphine 
exposure, are not NMDA dependent. NMDA antagonists are 
effective, however, when given either after or with chronic 
treatment with morphine after PND 21. 

Non-NMDA Glutamate Receptor Effects

We are aware of only one study that examined non-NMDA 
glutamate receptor effects after chronic opiate exposure dur-
ing early development (Zhu and Barr 2004). Use of both a 
behavioral model and the isolated spinal cord preparation 
showed that an acutely administered group II metabotropic 
glutamate agonist and/or an AMPA (!-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid) blocker reduced withdrawal 
in 7-day-old rat pups. Whether they would block neuroplastic 
changes if given concurrently with morphine is not known. 

Nitric Oxide

The production of nitric oxide via activation of the NMDA 
receptor may facilitate the development and expression of 
morphine-induced tolerance and dependence (Elliott et al. 
1995; Inturrisi 1997; Thorat et al. 1994; Trujillo 1995; Vaupel 
et al. 1995a,b). Very little is known about nitric oxide and its 
effects on withdrawal in infants but the one existing study 
showed that acute inhibition of nitric oxide synthase by either 
L-NAME (NG-nitro-L-arginine methyl ester) or 7-nitroinda-
zole blocked withdrawal behaviors (Zhu and Barr 2000). 

Other Neurosubstrates: Substance P

There is a single study on the role of substance P (SP) in 
tolerance in infants (Thomson et al. 2008). The data, from 
12- to 17-day-old pups, show a downregulation of the neuro-
kinin-1 (NK1) receptor and a loss of SP effects in lamina 1 
of the spinal cord, but not in the dorsal root ganglia, after 
twice-daily morphine treatment (Thomson et al. 2008). This 
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Figure 4 The development of tolerance in CD-1 and 129S6 mice. Pups were injected twice daily for 6½ days starting at either 1 or 15 days 
of age (N = 3–9 per condition). At 8 or 22 days of age, respectively, they were tested for analgesia in a cumulative dose response paradigm 
with morphine using the tail immersion test. At 8 days of age, both strains showed tolerance, but at 22 days only the CD-1 mice were tolerant. 
Thus the defi cit in the 129S6 mouse—whether a lack of functional NMDA receptors or defi ciencies in GM1 ganglioside–regulated excitatory 
opioid receptor function—has no infl uence on tolerance in the infant. In the older pup, the defi cit has functional consequences (Perez and 
Barr, unpublished data). BL, baseline; NMDA, N-methyl-d-aspartate; veh, vehicle 

result is the opposite of that found in adults, in which continu-
ously infused morphine increased NK1 receptor internaliza-
tion (King et al. 2005). Thomson and colleagues attributed 
the results mostly to differences in the treatment protocol 
(twice daily injection vs. continuous infusion), but they may 
also be age dependent because SP has a late-developing role 
in nociception in the infant (King and Barr 2003; King et al. 
2000a,b). More research is necessary to improve understand-
ing of the role of substance P in opiate tolerance. 

Protein Kinase Signaling Cascades

Withdrawal from Acute Morphine Exposure

In the adult animal, morphine alters intracellular signaling 
pathways (Figure 5; reviewed by Chen and Sommer 2009; 

Zhai et al. 2008; Zhang et al. 2009), but few studies have 
examined these cascades in early development. We summa-
rize those here.

A broadly acting protein kinase (PK1) C antagonist blocked 
spontaneous or precipitated withdrawal after a single injec-
tion of morphine both in vivo in rats and in vitro (sVRP in 
isolated rat spinal cord) at PND 7 (Sweitzer et al. 2004b). 
Calcium-independent PKC antagonists (but not calcium-de-
pendent PKC" antagonists) blocked precipitated thermal 
hyperalgesia and the increased sVRP response; antagonists 
to both PKCs blocked spontaneous withdrawal (Sweitzer et al. 
2004b). Sweitzer and colleagues (2003) also examined the 
role of PKC" and PKC# in naloxone-precipitated withdrawal, 
which induced both allodynia and withdrawal behaviors at 
7 and 21 days of age. When withdrawal was precipitated 
shortly after acute morphine (30 minutes), PKC# but not 
PKC" contributed to withdrawal at PND 7. Both isoforms 
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Figure 5 Schematic diagram of protein kinase (PK) A and PKC intracellular signaling pathways by which G protein–coupled receptors 
(GPCRs) activate cAMP and other signaling molecules and thus affect gene expression. Adapted from SABiosciences/Protein Lounge. 
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Figure 6 Rat pups were made tolerant to morphine by 13 twice-
daily injections (10 mg/kg) from postnatal day (PND) 1 to PND 7, 
after which we used a cumulative dose-response paradigm to test 
for tolerance to the drug’s analgesic effect. We injected H-7, chel-
erythrine, and KT5720—broadly acting protein kinase (PK), PKC, 
and PKA antagonists, respectively—before the tolerance test (a 
thermal tail immersion test of nociception). None of these drugs 
reduced tolerance at any dose (McPhie-Lalmansingh and Barr, un-
published data). Morph, morphine; nmol, nanomole

were involved at PND 21. With later withdrawal (120 min-
utes after morphine administration), both isoforms contrib-
uted to withdrawal at both ages. 

Because PKC# is located in dorsal root ganglia and PKC" 
is concentrated in the spinal cord, both of which are imma-
ture at PND 7, these effects point to the need to consider 
age-related anatomical changes in the circuits that regulate 
the effects of morphine. 

Withdrawal from Chronic Morphine Exposure

In experiments with rodents that examined the role of PKC 
and PKA, we found little evidence for their involvement in 
either tolerance or withdrawal at PND 7 after repeated twice-
daily morphine treatment (Figure 6; McPhie and Barr, un-
published). Acute injection of a general PK blocker or of 
specifi c PKC or PKA antagonists did not reduce tolerance 
after 13 twice-daily morphine injections (administered over 
6½ days; Figure 6). These drugs also do not reduce behav-
ioral withdrawal signs (data not shown). Concurrent block-
ade of protein kinases during the establishment of tolerance 
and dependence might be effective but those experiments 
have not been conducted. 

In a different set of experiments, we examined changes in 
levels of other signaling molecules. These protein kinases—
pAkt, pERK,2 pCREB,3 and pCaMKIIa4—are regulated by 
opioid signaling and also modulate neuronal plasticity, tran-
scription, and cell survival in the adult. We injected pups 
twice daily starting at PND 1 or PND 14 and assayed them 
either 4 hours after the last morphine injection (to assess tol-
erance) or after precipitated withdrawal. We then performed 
immunohistochemistry and counted cells stereologically in 
the PAG and spinal cord; we present the PAG data here 
(Riley and Barr, unpublished). Fos expression in both groups 
of animals was increased by chronic morphine and aug-
mented further after the administration of naltrexone to pre-
cipitate withdrawal (data not shown). pAkt and pERK were 
increased by chronic morphine but not further enhanced in 
withdrawal (Figure 7). pCREB was unaltered in the PAG 
(Figure 7) but enhanced in the spinal cord (not shown). 

These differences in intracellular signaling molecules do 
not easily map to age-dependent differences in behavior. 
Perhaps the levels of activated phosphorylated proteins are 
less important than the dynamics that stabilize their absolute 
levels even as their functional activity is altered. For exam-
ple, basal activity of the isoforms PKC! and PKC" remains 
unchanged by prenatal heroin exposure, whereas the cholin-
ergic receptor–induced translocation and activation of PKC" 
and PKC$II were lost (Shahak et al. 2003; Yaniv et al. 2004). 
Unfortunately, the only studies on PK isoforms are on acute 
withdrawal, so their role in the longer-term effects of chronic 
morphine is not known. 

2pERK, phosphorylated extracellular-signal-regulated kinase 
3pCREB, phosphorylated cyclic adenosine monophosphate (cAMP) 
response element binding [protein]
4pCaMKII, calcium (Ca2+)/calmodulin-dependent protein kinase II
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Figure 7 pAkt, pCREB, and pERK in the periaqueductal gray. Rat 
pups were treated as described in Figure 6. At postnatal day (PND) 
7 and 21, pAkt and pERK were enhanced by chronic morphine but 
not further increased in withdrawal (Riley and Barr, unpublished 
data). There were no changes in pCREB at either age for any treat-
ment. pCREB, phosphorylated cyclic adenosine monophosphate 
(cAMP) response element binding [protein]; pERK, phosphory-
lated extracellular-signal-regulated kinase

Endothelin

Endothelins are strong vasoconstrictors. Endothelin-1 is re-
leased at the site of tissue injury, interacts with its receptors, 
and enhances pain in both adults and infants (McKelvy et al. 
2007; McKelvy and Sweitzer 2008). Endothelin-1 injection 
in a rat’s rear paw in infancy, on PND 7 or PND 11, de-
creased morphine-induced analgesia (i.e., tolerance) at PND 
21 (McKelvy and Sweitzer 2009) in a sex-dependent man-
ner, and the treatment on PND 7 reduced mu opioid receptor 
expression in the hindpaw skin (McKelvy and Sweitzer 
2009).

Acetylcholine

Cholinergic neurotransmission has been suggested to play a 
role in morphine withdrawal in the infant rat. Acute with-
drawal (head shaking) precipitated in 9-day-old pups by 
naloxone or nalorphine can be blocked by spiroperidol, clo-
nidine, and scopolamine (Perez-Saad et al. 1996). However, 
only scopolamine shifted dose-response curves without al-
tering maximum effect, showing that it is specifi c and the 
others are not. The authors argue for a specifi c role of cholin-
ergic neurotransmission in morphine withdrawal in the in-
fant rat. Unfortunately, we are not aware of any follow-up 
studies to confi rm or extend these data.

Treatment

There is no strong evidence of effectiveness for any treat-
ments of human neonatal abstinence syndrome other than 
the use of opiates for tapering (for recent thorough reviews 
on treatment of infants for opiate dependence, Osborn et al. 
2010a,b). Environmental manipulations such as dimming 
lights or reducing noise are typically unsuccessful. The care-
ful administration of opiates likely reduces both the time to 
regain lost birth weight and the duration of required support-
ive care, although such use may lengthen hospital stays. 

Opiates are also likely superior to clonidine, phenobarbi-
tone, and diazepam in reducing infant withdrawal syndrome. 
Osborn and colleagues (2010a,b) recommend initial opiate 
treatment for NAS infants but point to methodologic limita-
tions in most studies and suggest that further research is 
needed to address many questions, including, for example, 
the effects of adding barbiturates or clonidine to opiates.

Summary

It is clear that human and nonhuman infants can become toler-
ant to opiates and experience withdrawal. The pattern of with-
drawal differs and tolerance is less profound than in adults, 
likely because of the immaturity of neural systems that medi-
ate both experiences. Although the nature of that immaturity is 
not known, there is reason to believe that it includes glutamate 
neurotransmission. The mechanisms underlying acute and 
chronic tolerance and dependence differ, and the latter proba-
bly involve neuroplastic changes that are not associated with 
acute tolerance or dependence. However, there have been 
leads not followed; for example, the roles of acetylcholine, 
substance P, and the endothelins remain to be clarifi ed.

Further research in all these areas will enhance under-
standing of the mechanisms underlying opiate-induced neu-
ral changes.
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