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Metabolome of human gut microbiome is
predictive of host dysbiosis
Peter E. Larsen1,2* and Yang Dai1

Abstract

Background: Humans live in constant and vital symbiosis with a closely linked bacterial ecosystem called the
microbiome, which influences many aspects of human health. When this microbial ecosystem becomes disrupted, the
health of the human host can suffer; a condition called dysbiosis. However, the community compositions of
human microbiomes also vary dramatically from individual to individual, and over time, making it difficult to
uncover the underlying mechanisms linking the microbiome to human health. We propose that a microbiome’s
interaction with its human host is not necessarily dependent upon the presence or absence of particular bacterial
species, but instead is dependent on its community metabolome; an emergent property of the microbiome.

Results: Using data from a previously published, longitudinal study of microbiome populations of the human gut, we
extrapolated information about microbiome community enzyme profiles and metabolome models. Using machine
learning techniques, we demonstrated that the aggregate predicted community enzyme function profiles and modeled
metabolomes of a microbiome are more predictive of dysbiosis than either observed microbiome community
composition or predicted enzyme function profiles.

Conclusions: Specific enzyme functions and metabolites predictive of dysbiosis provide insights into the molecular
mechanisms of microbiome–host interactions. The ability to use machine learning to predict dysbiosis from microbiome
community interaction data provides a potentially powerful tool for understanding the links between the human
microbiome and human health, pointing to potential microbiome-based diagnostics and therapeutic interventions.

Keywords: Dysbiosis, Gut microbiome, Human microbiome, Machine learning, Metabolome modeling, Metagenomics,
Microbial communities

Background
Humans exist, not as individuals, but as superorganisms
comprised of human cells that live in an inseparable
symbiotic relationship with a vast ecosystem of microor-
ganisms. These human-associated communities are col-
lectively referred to as the human microbiome. Largely
invisible, only recent advances in high-throughput sequen-
cing [1–3] have rendered these vital communities observ-
able to scientific research, revealing the importance of the
life-long relationships between our microbiome and our
health and well-being. The human microbiome provides
many crucial services to their human hosts, including
defense against colonization by harmful or pathogenic

organisms [4, 5], aid in digesting food and provision of
essential vitamins and nutrients [6–9], and maintenance
of a healthy immune system [10–13]. Conversely, perturba-
tions in these symbiotic communities can have a negative
effect on the host’s health, termed dysbiosis [14], which can
lead to a variety of human disease states, such as irritable
bowel syndrome (IBS) [15–19], autoimmune disorders
[20, 21], increased vulnerability to cancers [22, 23],
and obesity [24–27]. Dysbiosis of the gut microbiome
has been shown to coincide with increased risk of
depression [28], and to affect other aspects of the
human host’s mental health [29, 30]. Understanding
the relationships between human health and the associ-
ated microbiome provides a new and valuable tool for
diagnostics and potential mechanisms for human thera-
peutic interventions. Already, microbiome transplants
have proven a powerful tool for curing otherwise intract-
able diseases such as IBS [31–33] or antibiotic resistant
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Clostridium difficile infections [34, 35]. One mechanism
by which the microbiome interacts with its host is
through the microbiome’s community metabolism [36–38].
Community metabolism, however, can be independent of
community structure [39], making the relationships be-
tween the microbiome and host health complex.
Large-scale studies for identifying and characterizing

microbiome communities, such as the Metagenomics of
the Human Intestinal Tract (MetaHIT) [40] project and
the Human Microbiome Project (HMP) [41], have con-
tributed to our understanding of the relationships be-
tween microbiome community composition and the
host. They have also highlighted that the tremendous
diversity of the microbiome presents a significant
challenge for analysis of human microbiome data. An in-
dividual’s microbiome has a specific community structure,
which is defined as the type and relative abundance of all
the bacteria present in the microbiome community. A
human host’s microbiome is dynamic; changing in re-
sponse to host behavior, environment, and diet [42–44].
Human microbiomes are also highly divergent from host
to host. It has even been proposed that individuals might
have unique microbiome community structures [45]. Host
environment, diet, and genetics have been implicated in
driving this diversity, although many of the variations
between human microbiomes remain unexplained. The
dynamic nature of these communities impedes our ability
to make generalizations applicable across microbiomes.
To leverage the microbiome community for the bene-

fit of human health, analysis approaches will have to
explore more than just the community structures of
microbiomes to find biologically relevant patterns. It has
been reported that relevant patterns do exist and can be
found among the highly varied microbiome communi-
ties. For example, a study of the microbiomes of a cohort
of 4,788 samples taken from 242 adults revealed that
although community structures varied, specific metabolic
pathways were found across multiple microbiome meta-
genomes [46]. In another study, it was reported that
although the microbiome community structures of indi-
viduals and various sampled regions were distinct from
one to another, the community structures from one part
of the body of an individual were predictive of the com-
munity structure of other body regions on the same indi-
vidual [47]. An individual’s microbiome community
structure is also dependent on the environment and the
people, animals, and surfaces with which they interact
[48]. However, observing that there is a correlation between
microbiome community structure and human health does
not identify the underlying molecular mechanisms driving
this relationship.
We hypothesize that the dysbiotic state of the human-

associated gut bacterial community is not caused by the
presence or relative abundance of individual bacterial

species, but that dysbiosis is an emergent property of the
metabolome of the entire microbiome community. A
highly relevant, longitudinal study of a microbiome dynam-
ics dataset from a recent study by David et al. [49] was used
to test this hypothesis, using the analysis approach outlined
in Fig. 1. From the observed microbiome community struc-
tures, and using a previously published methodology for
inferring metabolomic data from microbial community
structures [50], we predicted the metagenomes of micro-
biomes, expressed as community enzyme function profiles.
From the predicted enzyme function profiles, we generated
models of community metabolomes (similar to approach
used in [51]) . Support vector machines (SVMs) were
trained to predict host status, dysbiotic or non-dysbiotic,
using one of four possible microbiome feature types: ob-
served microbiome community structures, predicted com-
munity enzyme function profiles, and modeled total and
secondary community metabolomes. Given a set of training
microbiomes, with each microbiome marked as belonging
to one of two categories, non-dysbiotic or dysbiotic, an
SVM training algorithm builds a model that assigns new
microbiomes into one category or the other. This approach
has the advantage of not only generating a model capable
of predicting dysbiosis from microbiome data, but also
identifying the specific enzyme activities or metabolites that
can serve as molecular targets for human host therapeutic
interventions, or as metabolic markers for human health
diagnostics.

Data description
In a recent longitudinal microbiome study by David
et al. [49], two volunteers, identified as Donor A and
Donor B, collected stool samples on an approximately
daily basis for one year in order to track the dynamics of
their respective gut microbial communities. This data
set is unique among microbiome studies in that it fol-
lows the same, healthy individuals over time; observing
their microbiomes before a perturbation and following
the recovery of the microbiomes after the disturbance
has passed. We used the data generated by this study in
our analysis. In the David et al. study, it was observed
that gut microbiome community structures for an indi-
vidual host are generally stable over time, although the
microbiomes of the two donors were found to differ sig-
nificantly from one another. Perturbations to the hosts,
however, were found to drive the gut microbiome into a
dysbiotic state. During the course of the study, both do-
nors experienced perturbations that profoundly altered
their microbiomes: Donor A traveled abroad for an ex-
tended period, and Donor B suffered from an intestinal
illness. In both cases, after the perturbation the dysbiotic
microbiomes returned to a stable, non-dysbiotic struc-
ture, although in the case of Donor B, the post-illness
microbiome community structures were significantly
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different from the pre-illness ones, as several bacter-
ial phyla had been driven to extinction during the
period of illness. The days for which the microbiomes
were in a dysbiotic state are greatly outnumbered by the
days for which the microbiomes were in a non-dysbiotic
state. The microbiome of Donor A was dysbiotic for
37 days, while that of Donor B was dysbiotic for 7 days.
The data from these experiments were generously made
available by the authors, providing bacterial taxonomy at
the genera level.
Of the 442 bacterial genera reported as detected in

the data, only the top 81 most abundant genera,
accounting for more than 99.5 % of total microbiome
populations by normalized operational taxonomic unit
(OTU) counts, were selected for use in the subse-
quent analyses. The low-abundance, rarely observed
taxa making up the lower 0.5 % of the population
were disregarded as having a negligible effect on com-
munity enzyme profile and metabolome, as previously
done using similar methods [50–52]. For each obser-
vation, microbiome population abundances were nor-
malized to sum to 100. All microbiome community
structure data are available as Additional file 1.

Analyses
In this study, we used microbiome community structure
data to infer the possible enzymatic and metabolic
molecular mechanisms underlying dysbiosis. The overall
analysis approach is summarized in Fig. 1.

Microbiome community structures vary by donor and by
host dysbiosis state
To quantify how microbiome communities differ by in-
dividual (Donor A and B) and by host dysbiosis state
(before dysbiosis, dysbiosis, and after dysbiosis), the
Bray-Curtis (BC) dissimilarity index was calculated and
visualized between all pairs of microbiome samples
(Fig. 2). The BC dissimilarity index [53] compares two
microbiomes and quantifies the differences between
them. A BC index equal to 100 indicates perfect similar-
ity in species identity and abundance between two
microbiomes, and a BC index equal to 0 indicates that
there are no species in common between the micro-
biomes. In the matrix of BC scores, it can be seen that
similarity within a donor’s samples is higher than simi-
larity between donors. For Donor B, the change in com-
munity structure after dysbiosis can also be seen.

Fig. 1 Outline of experimental design. (A) 16S rRNA microbiome data, previously reported by David et al. [49], followed the microbiome community
structures of two human donors over the course of a year at nearly daily intervals. Microbiome samples can be grouped into dysbiotic states
and non-dysbiotic states from observed shifts in microbiome community structures, and knows changes in donors’ health and activities. Using
collected sequences and annotated bacterial genomes (B), metagenomic enzyme profiles were predicted from reported 16S rRNA community
structures (C). Using the predicted relative metabolic turnover (PRMT) method (D), metabolic models were generated from enzyme function
profiles (E). All three data types (A, C, and E) were divided into training and validation subsets (F). Two approaches were used to divide data
into training and validation subsets. The first combined data from donors and selected training and validation subsets to contain an approximately
equal number of samples from each donor. In the second approach, training data were selected from a subset of one donor, and all data
from the alternate donor were used for the validation set. (G) Support vector machines (SVMs) were used to build predictive models from
training data sets for each data type. Models predicted whether samples were collected from a donor with a non-dysbiotic or dysbiotic
state. (H) SVM models were validated on data subsets selected in (F). Using features identified as highly predictive for dysbiosis in validated SVM from
(G), the molecular mechanisms underlying dysbiosis can be proposed (I)
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Predicting enzyme function profiles and generating
metabolome models from microbiome community
structures
Using 16S rRNA metagenomic data and computational
approaches that have been previously presented [50, 51],
it is possible to extrapolate metagenomic and metabolo-
mic features of the microbiome community (Fig. 3). From
taxonomic relative abundance (i.e. community structure)
data (Fig. 3a) and a taxonomic average enzyme function
count matrix (Fig. 3b), community enzyme function
profiles can be extrapolated [50]. The average enzyme
function count matrix contains the average number of
genes annotated with a specific enzyme function in all
annotated genomes for a given bacterial taxon. The com-
munity enzyme function profile for a particular micro-
biome sample is defined as the relative abundance of
genes that code for specific enzyme functions in a micro-
bial community’s metagenome. From the community
enzyme function profile, the community metabolome,
which is defined as the complete set of possible metabolic
reactions that can occur in a bacterial community, can be
modeled (Fig. 3c). Note that in this definition, the pres-
ence and relative abundance of a particular enzyme
function indicates that the capacity for a particular
metabolic reaction is present in the community, but
cannot determine with any certainty that the reaction is

actually occurring. The community metabolome was
modeled using the predicted relative metabolic turn-
over (PRMT) scoring metric (Fig. 3c) [51]. PRMT is a
computational analysis tool that uses the changing rela-
tive abundance of functional genes in metagenomic
data between samples to predict the changing capacity
of that community to consume or generate metabolites.
The community secondary metabolome is a subset of
the community metabolome from which core metabolic
pathways (e.g. the citrate cycle, glycolysis/gluconeogen-
esis, fatty acid metabolism, biosynthesis of amino acids,
and carbohydrate metabolism) have been removed.

Enzyme function profiles and metabolic models are better
characteristics than community structure to distinguish
dysbiotic samples from non-dysbiotic samples
Two methods were used to determine how well dysbio-
tic samples are distinguished from non-dysbiotic sam-
ples for multiple possible data types: multidimensional
scaling (MDS) plots and BC dissimilarity indices. These
approaches are complimentary. While MDS plots, based
on Euclidian distances, globally visualize how similar
samples are within a potentially very large dataset, BC
indices [53] provide a quantifiable metric for similarity
between specific pairs of samples.

Fig. 2 Bray-Curtis dissimilarity indices between all microbiome community structures. BC indices between all pairs of metagenomic samples are
indicated for Donor A and Donor B. Samples identified as dysbiotic are indicated in red in left and top borders. Colors in heat map are relative to
BC index, with red indicating higher BC indices, green lower indices, and yellow intermediate values. The minimum BC index in the matrix is 54
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Multidimensional scaling plots
The MDS plots for taxonomy, community enzyme func-
tion profiles, and total and secondary community metab-
olome demonstrate that the four types of microbiome
feature data group donors, and donor microbiomes cluster
differently (Fig. 4). When plotted by taxonomic community
structure, then donor appears as the microbiome’s most
distinguishing characteristic. The microbiomes of Donor A

and Donor B group separately and Donor B’s post-illness
microbiome groups more closely to the dysbiotic micro-
biomes than to Donor B’s microbiome pre-illness. When
grouped by enzyme profile or by metabolome, then the
most distinguishing characteristic of microbiomes becomes
donor microbiome state: non-dysbiotic or dysbiotic. Non-
dysbiotic microbiomes cluster closest, with the most over-
lap in total community metabolome.

Fig. 3 Outline of enzyme function profile prediction and metabolome modeling from microbiome community data. In a, data from multiple
observations from the microbiome are collected in the form of 16S rRNA abundances. For each observation in each dataset, where a single
observation is denoted in the cartoon by red box, the microbiome population is described as a vector of normalized bacterial abundances, p. In
this cartoon example, the microbiome is composed of four taxa, T 1–4. In b, the microbiome population is used to predict the enzyme function
profile using a matrix of average enzyme function counts for all bacterial taxa, E. Matrix E is generated from analysis of published and annotated
bacterial genomes. In this cartoon, there are six possible enzyme functions, EC 1–6. In the matrix presented, for example, the average genome of
taxa 1 contains two genes annotated with enzyme function EC-4. The result of this step is a matrix for the microbiome’s enzyme function profile,
g. In c, the normalized enzyme function profile g’ is used to calculate a model of the community metabolome as a vector of PRMT scores. This
uses an interaction matrix M of enzyme functions and metabolites. In the cartoon example, M is comprised of the six enzyme activities in g and
seven possible metabolites, m 1–7. Matrix M is generated from available databases of all possible bacterial metabolic reactions for all enzyme activities
found in enzyme function profile
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These results support the hypothesis that dysbiosis of
the microbiome is best described as an emergent property
of the community metabolome, and is less dependent on
the presence or absence of specific bacteria. While com-
munity structure alone is not enough to reliably cluster
non-dysbiotic from dysbiotic, metabolome can do this.
For example, the pre- and post-illness microbiomes for
Donor B are very distinct when plotted by community
structure (Fig. 4). When clustered by metabolome, pre
and post-illness communities are more similar. This sug-
gests that there may be a characteristic metabolome for
particular human health states, and that a specific metabo-
lome may be assembled by many possible individual
microbiome community structures.

Bray-Curtis dissimilarity indices
From David et al.’s previously reported investigation of
these data [49], as well as from analysis of Fig. 2, it is
observed that non-dysbiotic microbiome community
structures are stable, but fluctuate substantially when
the host experiences a significant perturbation. After
perturbation, they then resume a steady state that is po-
tentially novel. We calculated BC dissimilarity indices
[53] between the average taxonomic community structure,

community enzyme function profile, and community me-
tabolome for Donors A and B for the following host states:
before dysbiosis, dysbiosis, and after dysbiosis (Fig. 5).
By BC dissimilarity, dysbiotic samples are always more

similar than non-dysbiotic samples across donors and
for all data types. For Donor A, pre and post-dysbiosis
states are always most similar to one another for all data
types. For both enzyme function profile and metabolic
model, dysbiotic samples are more similar across donors
than dysbiotic and non-dysbiotic within the same donor.
While similarity between dysbiotic samples is higher in
enzyme function profile than metabolic model, the dif-
ference in similarity between cross-donor dysbiotic
and cross-donor non-dysbiotic is greater for metabolic
models than for enzyme function profiles. These re-
sults indicate that there is similarity between dysbiotic
samples across donors, and that similarity is enhanced
when considering predicted enzyme profiles or meta-
bolic models as opposed to considering community
structure data.

Predicting dysbiosis from microbiome features
SVMs were generated to predict dysbiotic state from
microbiome features. Two approaches to training and

Fig. 4 Multidimensional scaling plots for microbiome feature data types. In multidimensional scaling (MDS) plots, each point represents
one microbiome sample for two donors (Donors A and B) and three conditions (before dysbiosis, dysbiosis, and after dysbiosis). Four microbiome data
features are considered: taxonomic population structures (Taxa), community enzyme function profiles (Enzyme Profile), community total metabolome
(Metabolism), and community secondary metabolome (2ndary Metabolism). Points that cluster nearer to one another in an MDS plot are more similar
to one another
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validating SVMs were taken. For the first approach, all
donor data were combined and the training data set was
drawn equally for Donors A and B from both dysbiotic
and non-dysbiotic samples. The validation data set was
the remaining Donor A and B data not used in the train-
ing set. In the second approach, the highly predictive
features identified by combined microbiome data were
used in a cross-donor validation experiment. In the cross-
donor experiment, training data were drawn entirely from

one donor and the resulting SVMs were validated on the
entire dataset from the other donor. The cross-donor
approach also removes the possibility of over-fitting by
SVM. For both methods, prediction accuracy on valid-
ation sets is presented as an F-score, a combination of
precision and recall of a SVM model.

SVM trained with the combined donor microbiome data are
strongly predictive of host dysbiosis for all microbiome
feature types
The randomly selected training set for the combined
donor data is comprised of 60 non-dysbiotic samples and
20 dysbiotic samples. Non-dysbiotic samples are equally
composed of 15 microbiomes each from Donor A and
Donor B, pre and post-dysbiotic samples. The dysbiotic
training set is comprised of 15 dysbiotic samples from
Donor A and five dysbiotic samples from Donor B. The
validation set is the remaining data, comprised of 375
non-dysbiotic samples and 22 dysbiotic samples.
As ranked by Fisher score, SVMs were trained on the

top scored 100, 90, 80, 70, 60, 50, 40, 30, 20, and
10 % of features (i.e. taxonomic community structure,
community enzyme function profile, total community
metabolome, and secondary community metabolome).
For SVM models with enzyme function profile and
total metabolome, the features were further divided
into sets of the top 5, 2.5, 1.25, and 0.625 % ranked
by Fisher score. The smallest subset for all feature
types was about 10 features.
All SVMs yielded good, predictive models for identifying

dysbiotic samples from microbiome feature data (Fig. 6).
When trained on data combined from both donors, SVM
performs well using all microbiome features: taxonomic
community structure (best F-score 0.97), community

Fig. 5 Bray-Curtis dissimilarity between average bacterial populations,
grouped by donor and dysbiotic state. Sample data from community
structure, enzyme function profile, and community metabolic model
were averaged, and grouped by donor and by dysbiosis status. BC
indices between all pairs of averaged communities for each data type
are presented. Colors in heat map are relative to BC index, with red
indicating higher BC indices, green lower indices, and yellow
intermediate values

Fig. 6 Predicting host status on four types of microbiome information:
combined donor results. Each point on the graph shows the results of
an SVM trained on a subset of community structure, enzyme function
profile, and community total and secondary metabolism. The X-axis is
the percent of features, selected from top-ranked Fisher score, used to
train SVMs. Y-axis is the F-score for the prediction accuracy of the SVM
model. Red ‘Xs’ identify the training data subsets that produced the
most predictive models
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enzyme function profile (best F-score 0.95), total commu-
nity metabolome model (best F-score 0.97), and secondary
metabolome (best F-score 0.96).
Combined donor analysis does not well support the

hypothesis that microbiome community function is best
described as an emergent property of community struc-
ture. All microbiome data types are found to be roughly
equivalently useful for predicting dysbiosis. To look dee-
per into this dataset and seek potentially biologically
relevant molecular mechanisms of dysbiosis, we turn to
the more stringent cross-donor analysis.

SVM trained using cross-donor validation demonstrates
significant differences between the predictive powers of
different microbiome feature types
A significant challenge in microbiome analysis is that it is
difficult to apply results across individuals given the inher-
ent variation between individual microbiomes. To address
this, we have chosen a validation scheme to train SVM
models on only one donor, and then validate on the other.
A model that is successful in identifying patterns spanning
individual variation can be more confidently assumed to
have identified underlying biological principles in micro-
biome–host interactions, and not microbiome characteris-
tics that may be unique to a specific individual.
The set of microbiome features used in the cross-donor

analysis is taken from the most predictive feature subsets
from the previous results, based on the combined Donor
A and B data (Fig. 6). The most predictive subsets identi-
fied in the combined donor data are 24 genera, 380
unique enzyme functions, 36 metabolites from total com-
munity metabolome, and 24 secondary metabolites from
secondary community metabolome. For the SVM trained
on Donor A and validated on Donor B, there are 30
randomly selected non-dysbiotic samples and 12 dysbiotic
samples. For the SVM trained on Donor B and validated
on Donor A, there are 30 randomly selected non-dysbiotic
samples and 7 dysbiotic samples. Validations were per-
formed on the entire set of alternate donor data.
Unlike the results for the combined donor data, cross-

donor validated SVM results differed significantly by
microbiome feature types (Fig. 7). In the cross-donor vali-
dated SVM, microbiome community structure is the least
predictive, with SVM trained on Donor B data and vali-
dated on Donor A data performing very poorly (F-scores
0.545 and 0.03 for Donor A and Donor B training sets
respectively). Microbiome total community metabolome
feature data performs best in the cross-donor validation
(F-scores 0.92 and 0.74), with results for community
enzyme function profile (best F-scores 0.61 and 0.83) and
secondary community metabolome (F-scores 0.67 and
0.70) roughly equivalent to one another.
Cross-donor analysis supports the hypothesis that micro-

biome community function is an emergent property of

community structure. Community metabolome is much
more predictive of dysbiosis than the underlying micro-
biome community structure.

Highly predictive features identified by SVM provide
insights into molecular mechanisms of dysbiosis
In the previous sections, microbiome features have been
demonstrated to be predictive of dysbiotic states. While this
provides evidence that analysis of the microbiome might be
diagnostic for host health, it does not provide the informa-
tion required to suggest the mechanisms by which micro-
biome is predictive of host dysbiosis, or propose possible
interventions by which the microbiome could be success-
fully manipulated to influence host health. To investigate
possible molecular mechanisms by which microbiome ac-
tivity and host health may be related, we consider the meta-
bolic pathways that are statistically significantly enriched for
the sets of genera (Table 1), community enzyme function
profile (Table 2), total community metabolome (Table 3)
and secondary community metabolome (Table 4).
While not definitive without additional biological ex-

perimental confirmation, these pathways and metabolites
are strong candidates for hypothesis-driven biological
experiments to deepen understanding of the relationship
between human health and its symbiotic microbiome.

Dysbiosis leads to changes in microbiome vitamin
metabolism
One important function of the gut microbiome is the
biosynthesis of vitamins that are important to the host

Fig. 7 Predicting host status on four types of microbiome information:
cross-donor validation results. F-scores for cross-donor SVM predictions
are given by black (model trained on Donor A data and validated on
donor B data), and gray (model trained on Donor B data and validated
on Donor A data) bars. F-scores for SVM trained on mixed-model data
are displayed as red ‘Xs’; values were taken from the most predictive
SVM parameters and training sets identified from Fig. 7
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[1, 38]. Affected pathways “Pantothenate and Co biosyn-
thesis” (vitamin B) (Table 3), “Ascorbate and aldarate
metabolism” (vitamin C) (Table 2), and “Carotenoid bio-
synthesis” (antioxidants) (Table 2) indicate that dysbiosis
may interfere with the microbiome’s ability to provide
these vitamins to its host.

Dysbiosis affects host’s digestion
Protein degradation and digestion are affected in dys-
biosis, as indicated by the enrichment of pathways
“Biosynthesis of phenylpropanoids”, “Phenylpropanoid
biosynthesis” [54] (Table 4), and “Protein digestion
and absorption” (Table 4). Amines such as putrescine

Table 1 Bacterial genera most predictive of dysbiosis
Phylum Class Order Family Genus

Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Parabacteroides

Firmicutes Bacilli Gemellales Gemellaceae Gemella

Lactobacillales Carnobacteriaceae Granulicatella

Enterococcaceae Enterococcus

Streptococcaceae Lactococcus

Clostridia Clostridiales Clostridiaceae Clostridium

Lachnospiraceae Coprococcus

Epulopiscium

Lachnobacterium

Roseburia

Veillonellaceae Veillonella

Fusobacteria Fusobacteria Fusobacteriales Fusobacteriaceae Fusobacterium

Proteobacteria Epsilonproteobacteria Campylobacterales Campylobacteraceae Campylobacter

Gammaproteobacteriaa Enterobacterialesa Enterobacteriaceaea Enterobacter

Erwinia

Escherichia

Klebsiella

Morganella

Pantoea

Plesiomonas

Serratia

Tatumella

Trabulsiella

Pasteurellales Pasteurellaceae Haemophilus

Taxonomies (class, order, or family) that are significantly enriched (p-value <0.05) in the set of genera highly predictive of dysbiosis, relative to all genera found to
be present in microbiomes, are identified with ‘a’. Genera that are more abundant in dysbiotic microbiomes are highlighted with in bold text

Table 2 Enriched pathways in most predictive community enzyme function profile features
KEGG ID Pathway Unique enzyme function p-val

map00121 Secondary bile acid biosynthesis 1.-.-.- | 4.2.1.- | 6.-.-.- 0.00

map01053 Biosynthesis of siderophore group
nonribosomal peptides

1.3.1.28 | 3.3.2.1 | 2.7.7.58 | 6.3.2.- 1.08×10−2

map00540 Lipopolysaccharide biosynthesis 2.4.1.56 | 2.4.-.- | 3.6.1.- | 2.7.1.- | 5.1.3.20 | 3.1.3.- | 5.-.-.- | 2.3.1.- | 6.-.-.- | 2.4.1.44 1.65×10−2

map00904 Diterpenoid biosynthesis 1.14.11.- | 1.14.13.- | 2.3.1.- 3.06×10−2

map00053 Ascorbate and aldarate metabolism 4.2.1.42 | 4.1.1.85 | 4.2.1.40 | 3.1.1.- | 4.1.2.20 | 3.7.1.- | 5.1.3.22 | 1.1.1.122 | 1.1.1.130
| 3.1.3.- | 5.1.3.4 | 2.7.1.53

3.45×10−2

map00480 Glutathione metabolism 3.5.1.78 | 3.4.11.23 | 4.1.1.17 | 6.3.2.3 | 1.8.1.7 | 1.17.4.1 | 2.5.1.18 | 2.3.2.2 | 6.3.1.8 | 3.5.2.9 3.76×10−2

map00906 Carotenoid biosynthesis 1.-.-.- | 2.5.1.- | 1.14.13.- | 5.-.-.- | 2.3.1.- 4.68×10−2
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and spermidine (Table 4) are also associated with the
breakdown of proteins [55]. Changes in fatty acid di-
gestion and absorption are suggested by enrichment
for the pathways “Glycerolipid metabolism” (Table 3)
and “Secondary bile acid biosynthesis” (Table 2). Sec-
ondary bile acids are those resulting from bacterial
metabolism in the gut. These results suggest that
dysbiosis changes the way in which the host digests
and absorbs food.

Virulence factors in the dysbiotic microbiome
Both the iron-scavenging metabolite aerobactin (Table 3)
and the enriched pathway for “Biosynthesis of sidero-
phore group nonribosomal peptides” (Table 2) can be
virulence factors [56, 57], and both are predictive of a
dysbiotic gut microbiome. Enterobacteriacae are statisti-
cally enriched and found in increased abundance in the
set of predictive genera relative to the complete set of
bacterial species identified in the complete gut microbiome

communities (Table 1). Enterobacteriacae includes potential
pathogen species in the genera Enterobacter, Klebsiella, and
Plesiomonas. While not directly associated with virulence,
the pathways “Aminobenzoate degradation “and “Benzoate
degradation” (Table 3) are implicated in IBS [58, 59].

Prediction of community enzyme function profile and
metabolome is robust against the effects of possible
annotation errors in bacterial genomes
A significant concern of predicting community metagen-
omes and metabolomes from community structure data
is the presence of possible annotation errors present in
the body of sequenced and annotated bacteria genomes.
In this case, ‘errors’ at the level of annotated genomes
might be due to erroneous or missing gene annotations.
At the taxonomic level of genera, the average enzyme
function abundance for a specific enzyme’s activity
might be biased towards the specific distribution of
sequenced organisms, and not necessarily representative

Table 3 Enriched pathways in most predictive total community metabolome model features
KEGG ID Pathway Metabolites p-val

map00770 Pantothenate and CoA
biosynthesis

CoA | Pantetheine_4′-phosphate | Apo-_acyl-carrier-protein_ 2.86×10−4

map00561 Glycerolipid metabolism Phosphatidate | Diglucosyl-diacylglycerol | Glycerophosphoglycoglycerolipid 5.16×10−4

map00030 Pentose phosphate pathway 5-Phospho-alpha-D-ribose_1-diphosphate | D-Ribose_1,5-bisphosphate |
2-Dehydro-3-deoxy-6-phospho-D-gluconate

6.71×10−4

map00361 Chlorocyclohexane and
chlorobenzene degradation

2-Maleylacetate | 2,4-Dichlorophenol | cis-2-Chloro-4-carboxymethylenebut-2-en-1,4-olide |
2-Chloromaleylacetate

2.57×10−3

map00240 Pyrimidine metabolism | 5-Phospho-alpha-D-ribose_1-diphosphate | Thymine 4.72×10−3

map00362 Benzoate degradation 2,3-Dihydroxybenzoate | S-Benzoate_coenzyme_A | 2-Maleylacetate 6.56×10−3

map00627 Aminobenzoate degradation 2,3-Dihydroxybenzoate | S-Benzoate_coenzyme_A | 2-Maleylacetate 6.56×10−3

map01120 Microbial metabolism in
diverse environments

5-Phospho-alpha-D-ribose_1-diphosphate | 2,3-Dihydroxybenzoate | S-Benzoate_coenzyme_A |
2-Maleylacetate | 2,4-Dichlorophenol | 5,10-Methenyltetrahydromethanopterin |
5,10-Methylenetetrahydromethanopterin | 2-Dehydro-3-deoxy-6-phospho-D-gluconate |
cis-2-Chloro-4-carboxymethylenebut-2-en-1,4-olide | Aerobactin | Ectoine |
2-Chloromaleylacetate | 2-Hydroxy-cis-hex-2,4-dienoate | 4-Fluoromuconolactone |
2-Chloro-5-methylmaleylacetate

1.57×10−2

Table 4 Enriched pathways in most predictive secondary community metabolome model features
KEGG ID Pathway Secondary metabolites p-val

map01061 Biosynthesis of
phenylpropanoids

L-Tryptophan | p-Coumaroyl-CoA | Coniferyl_alcohol | 4-Coumarate | Caffeate | Ferulate |
Coniferyl_aldehyde | 4-Hydroxycinnamyl_aldehyde | 5-Hydroxyferulate | 5-Hydroxyconiferaldehyde

7.93×10−7

map01120 Microbial metabolism in
diverse environments

5-Phospho-alpha-D-ribose_1-diphosphate | 2,3-Dihydroxybenzoate | S-Benzoate_coenzyme_A |
2-Maleylacetate | 2,4-Dichlorophenol | 5,10-Methenyltetrahydromethanopterin |
5,10-Methylenetetrahydromethanopterin | 2-Dehydro-3-deoxy-6-phospho-D-gluconate |
cis-2-Chloro-4-carboxymethylenebut-2-en-1,4-olide | Aerobactin | Ectoine | 2-Chloromaleylacetate |
2-Hydroxy-cis-hex-2,4-dienoate | 4-Fluoromuconolactone | 2-Chloro-5-methylmaleylacetate

1.57×10−2

map00940 Phenylpropanoid
biosynthesis

p-Coumaroyl-CoA | Coniferyl_alcohol | 4-Coumarate | Caffeate | Ferulate | Coniferyl_aldehyde |
4-Hydroxycinnamyl_aldehyde | 5-Hydroxyferulate | 5-Hydroxyconiferaldehyde |
5-Hydroxyconiferyl_alcohol | N1,N5,N10-Tri-_hydroxyferuloyl_-spermidine

1.47×10−6

map04974 Protein digestion
and absorption

L-Tryptophan | L-Leucine | Tyramine 1.26×10−2
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of the distribution of organisms present in the micro-
biome. While improving the accuracy of the available
collection of annotated bacterial genomes is beyond the
scope of this work, we estimated the possible effect of
erroneous gene annotations by adding random noise to
the gene function counts in the bacterial genomes used
to predict community enzyme function profiles.
Random noise was added to genera average enzyme

function counts as a multiple n of the standard deviation
of enzyme function counts across all sequenced bacterial
genomes. Noisy genera-level average enzyme function
counts were generated for n equal to 0.05, 0.25, 0.5, 1,
and 2, with five replicates each n for a total of 25 noise-
added genera-level average enzyme function counts. The
noise-added enzyme function counts were used to gen-
erate predicted community enzyme function profiles and
metabolic models as described above for a total of 298,750
samples each of noise-added predicted enzyme function
profiles and PRMT-score-based metabolic models. The
Pearson’s correlation coefficients between matrices for
noise-added samples and initial data were calculated
(Fig. 8).
Predicted community enzyme function profiles were

found to be less vulnerable to random noise than the
genera-level enzyme function profiles for annotated ge-
nomes. Community metabolome models are most sensi-
tive to the addition of random noise. Both noise-added
predicted community enzyme function profiles and
metabolic models correlate with the initial observation
with a correlation greater than 0.9, even with a noise of ±
0.5 SD to every enzyme function count for every genus.

While it is impossible to say with certainty to what degree
the predicted enzyme function profiles or metabolic
models accurately reflect the true biological states of the
microbiome communities, it is evident from this analysis
that those predictions are stable to substantial variations
in the set of annotated genomes. We can be confident that
our analysis will address our desired hypothesis, and is not
likely to be skewed by quirks of the available database of
sequenced organisms.

Discussion
The microbiome community and its human host are in-
timately bound together in symbiosis. Actions of the
host can affect the microbiome community, and in turn,
the microbiome community has a powerful influence on
host health. In a recent longitudinal study, the micro-
biome of two donor volunteers was tracked over the
course of a year. Microbiome community structures
were observed to be in one of two possible states: non-
dysbiotic or dysbiotic. After a perturbation, community
structure quickly became stabilized to a non-dysbiotic
state. Using metabolic modeling with SVM, we have
identified the characteristic metabolomes of these two
states, and have shown that these states are less dependent
upon specific host or particular microbiome community
structure. Rather, they are better described as an emergent
property of the microbiome and its aggregate community
metabolome.
When data from Donors A and B are combined, there

is very little difference in the predictive capacity of com-
munity structure data, predicted enzyme function pro-
file, or metabolic model. However, when the far more
challenging cross-donor validation is attempted, strong
differences become apparent between the predictive
powers of different feature types. The ability of commu-
nity structure feature data to predict dysbiosis drops
precipitously on the cross-donor validation scheme. In
particular, when the SVMs are trained on data from
Donor B, the ability to predict dysbiosis in Donor A is
worse than random. Feature types of community enzyme
function profile and metabolic model, however, are able
to effectively predict dysbiosis, even in the cross-donor
validation scheme. Total metabolome model has a slight
advantage over enzyme function profile and secondary
metabolic model in the cross-donor validation.
The most significant advantage of SVM trained on

metabolic model feature types, however, is not a better
ability to predict dysbiosis, but rather the ability of meta-
bolic models to propose possible molecular interactions
that drive dysbiosis, although biological validation of
these predictions is beyond the scope of this work. Path-
ways for vitamin biosynthesis [1, 6], protein and fatty
acid digestion [54, 55, 60], and potential virulence factors
[56–59] were found to be significantly enriched for the

Fig. 8 Determining the effect of gene annotation errors on the
prediction of community enzyme function profile and community
metabolism. On the X-axis, the amount of noise added to genera-level
average enzyme function counts is given as a factor of n standard
deviations. Y-axis is the Pearson’s correlation coefficient between the
noise-added dataset and original data. Error bars are ± one standard
deviation from five experimental replications
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predictive microbiome features. These features propose
specific mechanisms of microbiome–host interactions that
will form the basis of additional, hypothesis-driven bio-
logical experiments.
While this analysis successfully demonstrated that, for

the cross-donor analysis, emergent properties of micro-
biome community are more predictive than the community
structures themselves, there is much additional work that
can be anticipated. While the accuracy of predictions for
dysbiosis was strong, it is very possible that a mixed-model
SVM might be more predictive than using a single micro-
biome feature type. However, a mixed-model approach was
not useful in the current study, in which the biological hy-
pothesis is that metabolomic model data is more predictive
than microbiome population structure. In addition, while it
provided an excellent opportunity for demonstrating the
potential power of a microbiome metabolome-based pre-
dictor of dysbiosis, a predictive model that was constructed
on only two otherwise healthy adult donors cannot likely
be generalized to the full range of possible host phenotypes
and dysbiosis types. We anticipate the opportunity to ex-
pand this approach to a wider range of host phenotypes
and dysbioses as additional microbiome data becomes
available. While prediction of metagenomic data from com-
munity structures is a useful tool, further experiments in
which the metagenome is directly sequenced and the me-
tabolome is directly observed, are needed to validate com-
putational predictions. Also, while SVM was the predictive
tool used here, in future studies where optimizing predic-
tion accuracy is the goal for use in patient diagnostics, add-
itional machine tools such as random forest or logistic
regression should be considered. Fortunately, investigations
into host–microbiome interactions are becoming more
common, providing additional opportunities to study the
impact of the microbiome on human health and making
analysis approaches like the one we present here an in-
creasingly important tool in driving future experiments.

Methods
Predict community enzyme function profiles from
community structure
To extrapolate microbiome enzyme function profiles, we
followed the protocol outlined in [50], which is summa-
rized here and outlined in Fig. 8b. Enzyme commission
(EC) annotations [61] were used for our ontology of pos-
sible enzyme functions. The method used here has simi-
larity to the PiCRUST method [62], which generates
metagenomic predictions using the closest 16S rRNA
similarity to published genomes, and uses an alternative
gene function annotation ontology. The enzyme function
profile for microbiome x is calculated as:

gx
→

¼ px
→
E

Where:

" px
→

is a vector denoting microbiome community
structure x, with length T, px

→
¼ px1; p

x
2;…pxT

! "
, and

T is the total number of taxa represented in the
microbiome.

" E is a taxonomic average enzyme function count
matrix for genomic enzyme function counts of size
EC x T, where EC is the number of all possible
represented EC annotations for unique enzyme
activities, and T is the number of all bacterial taxa
under consideration. Each entry Eec,t is the average
number of genes with specific annotation ec for all
genomes of a particular taxa, t. This matrix was
previously presented in [50].

" gx
→

is the resulting vector for the enzyme function profile
of microbiome x, of length EC, gx

→
¼ gx1; g

x
2…gxEC

! ".

All predicted microbiome community enzyme func-
tion profiles are available in Additional file 2.

Generate community metabolome models from
community enzyme profiles
Using PRMT scores, it is possible to generate a predic-
tion of microbiome meta-metabolome from enzyme
function profiles. PRMT is described in [63], outlined in
Fig. 8c, and summarized briefly below. PRMT scores are
calculated as:

PRMT
→

¼ ð g 0x
→

− g
0ave
→

ÞM

Where:

" g
0x
→

is the log-transformed vector of enzyme func-
tion profile gx

→
for microbiome x, as calculated in the

previous section.

" g
0ave
→

is the log-transformed vector of the average of
all enzyme function profiles for all microbiomes in
the experimental set.

" M is an enzymatic reaction matrix of size L x EC,
where L in the number of ligands in all possible
enzymatic reactions by the set of EC enzyme
functions. As described in [44], this matrix is
normalized by network topology and not by
reaction stoichiometry.

" PRMT
→

is the resulting vector of PRMT scores of
length L. A positive PRMT score indicates an
increased relative capacity for the production of a
compound in the metabolome encoded by
microbiome x, relative to the average of all observed
microbiomes. A negative PRMT score indicates an
increased relative capacity for the consumption of a
compound in the metabolome encoded by
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microbiome x, relative to the average of all observed
microbiomes. PRMT scores do not indicate rates of
reaction or predict quantities or concentrations of
compounds in a metabolome.

Two types of community metabolomes were calcu-
lated using the PRMT method: total community metab-
olome, and secondary community metabolome. Total
metabolome PRMT scores used all possible KEGG reac-
tion pathways [54, 55]. Secondary community metabo-
lome PRMT scores restricted metabolic predictions to a
subset of secondary metabolism KEGG networks, com-
prised of pathway KEGG ID numbers 01110, 00940,
00945, 00941, 00944, 00942, 00943, 00901, 00403, 00950,
00960, 01058, 0023, 00965, 00966, 00402, 00311, 00332,
00331, 00521, 00524, 00231, 00401, and 00254. Secondary
community metabolome is a subset of total community
metabolome.
The complete, predicted community metabolic net-

work (‘M’ in Fig. 3b) is comprised of 2,830 metabolites
connected by 4,285 enzymatic transformations and 1,901
unique enzyme functions, and is available in Additional
file 3. In PRMT-based metabolomic predictions, as a con-
sequence of the metabolic network topology in which
some enzyme functions interact with multiple possible
metabolites, many sets of metabolites in the model share
the exact same patterns of PRMT scores across all sam-
ples. For example, many metabolites in the fatty acid
biosynthesis pathway (KEGG map00061) interact with the
same set of enzyme functions, making their relative me-
tabolism identical to one another. Some metabolites have
PRMT scores of 0 for all samples. Prior to any subsequent
analysis of PRMT scores, all sets of metabolites with iden-
tical PRMT scores were combined into a single metabolite
name (e.g. Hexanoyl-[acp], Octanoyl-[acp], Decanoyl-[acp],
Dodecanoyl-[acp], etc. are indistinguishable by PRMT
score, so they are combined under a single metabolite
name). All metabolites with PRMT scores always equal to
zero were removed. After this consolidation of non-unique
metabolites, the number of metabolites in the total com-
munity metabolome was reduced from 2,830 metabolites
to 1,492, and in the secondary community metabolome
from 209 to 122. The complete set of community metabo-
lome model PRMT scores is available in Additional file 4.
A graphical network visualization that integrates commu-
nity metabolic network topology, secondary metabolism,
and PRMT score is available in Additional file 5.

Adding noise to genomic enzyme function counts
For each count of average enzyme function in each genus,
random noise was added using the following formula:

EC noisegi ¼ MAX 0;ECg
i þ nSDi 2RND−1ð Þ

# $

Where:
• EC_noisei

g is the enzyme function count adjusted by
the addition of random noise for enzyme activity i in
taxonomic group g.

• ECi
g is the observed enzyme function count for activity

i in taxonomic group g.
• SDi is the standard deviation of enzyme function counts
for activity i over all annotated bacterial genomes.

• n is a multiplier applied to the standard deviation.
• RND is a function that returns a random number
between 0 and 1.

• MAX is a function that returns the maximum of two
values.
All of the noise-added taxa enzyme function count

tables are available in Additional file 6.

Multidimensional scaling
Multidimensional scaling (MDS) plot is a graphical
approach for comparing similar features in highly com-
plex datasets. For generation of MDS plots, R-project
(v 3.0.3) was used [64]. MDS plots for microbiome
community structures, log-transformed community en-
zyme profiles, and total and secondary community metab-
olome models were generated. MDS plots were calculated
using Euclidian distances.

Support vector machines
To test the hypothesis that emergent properties, such as
enzyme function profile or metabolome, are more pre-
dictive of host dysbiosis, SVMs were used. For gener-
ation of an SVM, R-project and package ‘e1071’ v1.6-1
[65] were used. SVMs were trained on training sets
using a 10-fold cross-validation procedure and linear
kernels based on total accuracy.
SVMs were trained on multiple subsets of data using

features selected based on Fisher score. Fisher score for
each taxonomic abundance, enzyme function count, or
PRMT-scored metabolic feature i is calculated as:

FisherScorei ¼
Average non dysbioticið Þ−Average dysbioticið Þj j

SdDev Allið Þ

Where:
• Average(non_dysbiotici) is the average of all genera
abundance, enzyme function profile, or PRMT scores
of non-dysbiotic samples for feature i.

• Average(dysbiotici) is the average of all genera abun-
dances, enzyme function profile, or PRMT scores of
dysbiotic samples for feature i.

• SdDev(Alli) is the standard deviation of all genera
abundances, enzyme function profile, or PRMT scores
for feature i.
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Prediction accuracy as F-score
Accuracy of SVM predictions on validation sets were
calculated as F-scores; a combination of the precision
and recall:

Fscore ¼ 2
precision & recall
precisionþ recall

Where

precision ¼ truepositives
truepositivesþ falsepositives

and

recall ¼ truepositives
truepositivesþ falsepositives

Enrichment of KEGG pathways
Features highly predictive of dysbiosis are potentially
lengthy lists of genera, enzyme functions, or metabolites.
To understand how these lists of features relate to a
system-scale understanding of metabolism, we identified
specific KEGG pathways that are enriched for the sets of
predictive features. Enrichment is calculated using the
cumulative hypergeometric distribution as:

Enrichment'KEGGk ¼ 1'HypgeoDistðk; n;K ;NÞ

Where:
• HypgeoDist is the cumulative hypergeometric distribution.
• k is the number of enzymes or metabolites identified as
highly predictive by SVM and also associated with
KEGG pathway p. Enrichment is only considered
possible if k is greater than or equal to 3.

• n is the total number of enzymes or metabolites identi-
fied as highly predictive by SVM.

• K is the number of enzymes or metabolites in the
complete metabolic model and also associated with
KEGG pathway p.

• N is the total number of enzymes or metabolites in the
complete metabolic model.

• Enrichment_KEGGk is expressed as a p-value. Significance
is considered at a p-value less than or equal to 0.05.

Availability of supporting data
All data used in this analysis can be found in the
Additional files, as well as archived in the GigaScience
GigaDB repository [66].

Additional files

Additional file 1: All normalized microbiome community structures
for Donors A and B, presented at the taxonomic level of genera
and comprising at least 99.5 % of the population observed OTU
abundances. Last row in table is Fisher scores, used to identify most
predictive features. (TXT 309 kb)

Additional file 2: Community enzyme function profiles, predicted
from microbiome community structures. Last column in table is Fisher
scores, used to identify most predictive features. (TXT 16394 kb)

Additional file 3: Metabolomic network for microbiome community
metabolome is presented as a list of reaction in the format Reactant,
Enzyme Function (as EC annotation), and Product. (TXT 228 kb)

Additional file 4: All metabolome model predictions, calculated as
PRMT scores from community enzyme function profiles, for all
microbiome community samples. Last column in table is Fisher scores,
used to identify most predictive features. (ZIP 10034 kb)

Additional file 5: Metabolic network for microbiome community is
presented as a graphical network. In the graphical representation,
nodes are metabolites and directed edges are enzyme-mediated
metabolite transformations. The sizes of nodes and the widths of
edges are proportional to their Fisher score for dysbiotic state compared to
non-dysbiotic sate. Nodes highlighted with a green border are in the
Secondary Metabolism network. Nodes highlighted in red are the 36
features most predictive by Total Metabolism, and nodes highlighted
in blue are the 24 features most predictive by Secondary Metabolism.
Network image was generated using ‘Cytoscape’ [67, 68]. Figure was
generated using network information in Additional file 3 and data in
Additional file 4. (PDF 547 kb)

Additional file 6: All noise-added taxonomic average enzyme function
count matrices. (ZIP 14369 kb)
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