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The intimate interplay between immune system, metabolism, and gut microbiota plays an

important role in controlling metabolic homeostasis and possible obesity development.

Obesity involves impairment of immune response affecting both innate and adaptive

immunity. The main factors involved in the relationship of obesity with inflammation have

not been completely elucidated. On the other hand, gut microbiota, via innate immune

receptors, has emerged as one of the key factors regulating events triggering acute

inflammation associated with obesity and metabolic syndrome. Inflammatory disorders

lead to several signaling transduction pathways activation, inflammatory cytokine,

chemokine production and cell migration, which in turn cause metabolic dysfunction.

Inflamed adipose tissue, with increased macrophages infiltration, is associated with

impaired preadipocyte development and differentiation tomature adipose cells, leading to

ectopic lipid accumulation and insulin resistance. This review focuses on the relationship

between obesity and inflammation, which is essential to understand the pathological

mechanisms governing metabolic syndrome.
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GUT MICROBIOTA ROLE IN OBESITY

Obesity has increased alarmingly worldwide, promoting mortality and morbidity (Mitchell and
Shaw, 2015). Overweight and obesity are commonly associated with accumulated abdominal
visceral fat and can be related to psycho-sociological behavioral disorders (Burdette and Hillb,
2008; Jauch-Chara and Oltmanns, 2014). Fat gain and adipose tissue inflammation, resulted from
excessive caloric intake and reduced energy expenditure, lead to positive energy balance and can
contribute to metabolic syndrome (Trayhurn, 2005; Emanuela et al., 2012; DeMarco et al., 2014).
Besides, chronic stress and gut microbiota deregulation can affect obesity development (McGill,
2014).

Humanmicrobiota, made up of bacteria, archaeas, viruses and unicellular eukaryotes, represents
more than 1014 microbial cells/humam, which live peacefully in our body (Sekirov et al., 2010).
These microbes are found in our skin, genitourinary, respiratory and gastrointestinal tracts. Gut
microbiota represents over than 7×1013 microbial cells/human, but its composition can be altered
throughout life, including changes in gene expression (Walsh et al., 2014).
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There are over 50 bacterial phyla, but the human gut
microbiota is dominated mostly by the Bacteroidetes and the
Firmicutes (Schloss and Handelsman, 2004; Sekirov et al., 2010).
Gut specific microbial phyla, species and strains of humans and
other animals are related to gene expression alterations observed
in obesity (Ley et al., 2005; Turnbaugh et al., 2008; Fujimura
et al., 2010; Clarke et al., 2012; Cotillard et al., 2013; de Theije
et al., 2014). It has been demonstrated that obesity is associated
with reduced bacterial diversity and modified representation of
bacterial genes and metabolic pathways (Turnbaugh et al., 2009).
Furthermore, Turnbaugh et al. (2006) provide evidences that gut
microbiota in obese mice have an increased ability for energy
harvest from the diet. In this work, colonization of germ-free
mice with caecal microbiota harvested from obese donors results
in a significant total body fat gain.

Probiotics (e.g., many bacterial strains of the Lactobacillus
and Bifidobacterium genera), when administered in adequate
amounts, induces health-beneficial effects, representing a novel
anti-obesity mechanism (Raoult, 2009; Aronsson et al., 2010;
Kadook et al., 2010). Studies demonstrated that Lactobacillus
treatment reduces fat accumulation and pro-inflammatory
cytokines in adipose tissue (Park et al., 2013; Yoo et al., 2013;
Miyoshi et al., 2014; Ukibe et al., 2015). Lactobacillus strain
(L. plantarum) anti-inflammatory effect was also observed in
intestinal inflammation rat model, mostly by NF-κB (nuclear
factor kappa-light-chain-enhancer of activated B cells) inhibition
(Štofilová et al., 2015). Similar results were also observed in
endotoxin- and metabolic-related inflammatory process in rats
(Vilahur et al., 2015). However, in diabetic and non-diabetic
individuals, oral supplementation with another Lactobacillus
strain (i.e., L. acidophilus) did not affect systemic inflammatory
response (Andreasen et al., 2010). These opposite results could be
related to differences in Lactobacillus strains or even to different
experimental models.

Lactobacillus effect on fat storage may involve upregulation
of circulating lipoprotein lipase inhibitor, angiopoietin-like 4
protein (ANGPTL4), which controls triglyceride deposition
into adipocytes (Aronsson et al., 2010). In addition, probiotics
treatment can modulate gut flora composition, which in turn
enhance metabolic functions to prevent overweight and obesity
(Park et al., 2013; Yadav et al., 2013). Moreover, obese mice
antibiotics treatment is also capable to reduce adiposity and
adipose tissue inflammation, which reinforce the benefits of gut
microbiota regulation (Tremaroli and Bäckhed, 2012).

Gastrointestinal microbiota also interferes with carbohydrate,
lipid and amino acid metabolism (Hooper et al., 2002),
complementing our own human metabolic apparatus (Bäckhed
et al., 2004, 2007; Cani and Delzenne, 2009; Rabot et al.,
2010). Thus, human gut microbiota can regulate many metabolic
pathways, including bile acids biotransformation, which involves
deconjugation, dehydroxylation, and reconjugation reactions
(Ridlon et al., 2014). Gut microbiota components, such as
bacterial bile salt hydrolases and bacterial 7α-dehydroxylase, can
control these reactions and, thus, maintain bile acids pool size
and composition (Ridlon et al., 2006). It has been demonstrated
that bile acids have both direct antimicrobial effects on
gut microbes and indirect effects through FXR (farnesoid X

receptor)-induced antimicrobial peptides (Inagaki et al., 2006).
This antimicrobial effect promoted by bile acids prevent mucosal
injury in the small intestine and other injuries caused by excessive
bacterial proliferation (Hofmann and Eckmann, 2006; Merritt
and Donaldson, 2009). It was also described that reduced bile
acid levels in the gut are associated with bacterial overgrowth
and inflammation. However, some bacteria, such as Alistipes,
Bilophila, and Bacteroides, are bile acids tolerant, which could
lead to other symbiotic microbes suppression (David et al., 2014).

Bile acids can also regulate adiposity and glucose homeostasis.
Studies demonstrated that nuclear receptor FXR deficiency leads
to mass adipose tissue reduced levels (Cariou et al., 2006; Prawitt
et al., 2011). On the other hand, FXR absence has different effects
on glucose homeostasis in lean and obese mice. FXR−/− lean
mice presents impaired glucose tolerance and insulin resistance
(Cariou et al., 2006; Ma et al., 2006), while obese mice (murine
models of genetic and diet-induced obesity) presents glucose
homeostasis improvement (Prawitt et al., 2011). This difference
can be explained by bile acids action in other receptors, such
as TGR5 (also known as G protein bile acid receptor-1), since
Thomas et al. (2009) showed that TGR5 activation results in the
maintenance of glucose homeostasis and insulin sensitivity in
obese mice.

Furthermore, gut microbiota plays a physiological role in
host immune system development [e.g., gut-associated lymphoid
tissue (GALT) development] (Bäckhed et al., 2005; Willing
et al., 2010; Guinane and Cotter, 2013) and immune tolerance
modulation (Bailey et al., 2005; Vael and Desager, 2009;
Martin et al., 2010; Belkaid and Hand, 2014). In addition, gut
microbiota modulates other important intestinal functions such
as angiogenesis and epithelium function (Hooper et al., 2001).
Epithelial (e.g., enterocytes and goblet cells) and endocrine cells
provide an interplay between the host and its own gut microbiota
via receptors such as toll-like receptors (TLRs; Lotz et al., 2003;
Kelly et al., 2004; Hornef and Bogdan, 2005; Shibolet and
Podolsky, 2007; Wells et al., 2011; Pott and Hornef, 2012). After
TLR activation, pro-inflammatory molecules can be produced in
the gut microbiota and impair host metabolism, which in turn
can further cause adipose inflammation and obesity (Sanz and
Moya-Pérez, 2014).

Additionally, gut homeostasis is related to other innate
immune receptors, such as nucleotide-binding oligomerization
domain (NOD) like receptors (NLR; Zambetti and Mortellaro,
2014). This family of cytosolic receptors includes NOD1/2
and NLRPs (NLR family, pyrin-domain-containing proteins).
After activation, NLRP forms signaling complexes called
inflammasomes, which generate active forms of the inflammatory
cytokine IL-1β and IL-18. Some different inflammasome subtypes
have been described such as NLRP1, NLRP3, NLRP6, NLRC4,
AIM2 (Latz et al., 2013). Studies have demonstrated that
NLRC4 inflammasome is involved in mucosal protection
against infections (Sellin et al., 2014; Nordlander et al., 2014),
while NLRP6 and NLRP3 are associated with gut microbiota
homeostasis (Elinav et al., 2011; Hirota et al., 2011; Wlodarska
et al., 2014). Inflammasomes and gut homeostasis interaction is
substantially detailed by Sellin et al. (2015) and Zambetti and
Mortellaro (2014).
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INTERPLAY BETWEEN INFLAMMATION
AND OBESITY

Inflammation is a tightly controlled physiological process that
is orchestrated by immune system (Ashley et al., 2012), but
is also regulated by other systems, such as endocrine (de
Vasconcelos et al., 2011; Leite et al., 2015; Ren et al., 2015) and
nervous system (Martelli et al., 2014; Bassi et al., 2015). Despite
the protective body response represented by inflammation,
deregulated, or excessive immune response can lead to several
chronic diseases such as hypertension (Mirhafez et al., 2014),
Alzheimer (Takeda et al., 2014), and obesity (Khan et al.,
2014). The classical acute inflammatory process includes five
cardinal signals: redness, heat, swelling, pain, and, eventually,
loss of function (Medzhitov, 2010). These macroscopic signals
are reflex of vascular (e.g., vascular permeability) and cellular
(e.g., leukocytes migration) alterations during inflammation
(Medzhitov, 2008). However, inflammatory response in obesity
has some particular features (Gregor and Hotamisligil, 2011).
Obesity involves immune response impairment affecting both
innate and adaptive immunity. However, the mechanisms
involved in the relationship between obesity and inflammation
have not been completely elucidated (Sanz and Moya-Pérez,
2014).

Obesity is related to inflamed adipose tissue and increased
local cell infiltration (Gregor and Hotamisligil, 2011). Different
cell types contribute to adipose tissue inflammation, among
these cells monocytes/macrophages play a critical role in this
process (Cinti et al., 2005; Subramanian and Ferrante, 2009;
Ferrante, 2013). Yoshimura et al. (2015) demonstrated that
obese young adults have increased number of leukocytes, mostly
monocytes, when compared with non-obese individuals. Also,
elevated monocytes level is positively correlated with visceral
subcutaneous fat as well as with body fat mass. Peripheral
blood of obese women presents an elevated inflammatory
monocytes amount (Ziegler-Heitbrock, 2007; Krinninger et al.,
2014). In addition, Poitou et al. (2011) also demonstrated that
inflammatory monocytes are increased in obese individuals and
fat body loss is associated with significant decrease of these cells.

Once within tissues, monocytes differentiate in M1 or M2
polarized macrophages (Dalmas et al., 2011). The first type is
classified in pro-inflammatory cell which expresses inducible
nitric oxide synthase and pro-inflammatory cytokines (e.g., IL-
6 and TNF-α), while M2 macrophages express arginase (Arg1)
and the anti-inflammatory cytokine IL-10. In lean individuals,
M2 macrophage predominates in adipose tissue unlike in
obese individuals; wherein M1 macrophages are mostly present
(Kraakman et al., 2014). Macrophages of high-fat diet fed mice
display autophagy impairment, a cytoprotective response to
different stimulus, which leads to M1 polarization (Liu et al.,
2015).

In obese individuals, monocytes up-regulate chemokine
receptor type 2 (CCR2) and thus they migrate toward adipose
tissue. Despite the natural ligand of this receptor, the chemokine
CCL2 (also as known as MCP-1), plays an important role in
adipose tissue macrophage recruitment (Kanda et al., 2006),
other studies demonstrated that CCL2 is not critical for

macrophage infiltration into adipose tissue (Inouye et al., 2007;
Kirk et al., 2008). These findings can be related to macrophage
recruitment toward adipose tissue by other chemokine, such
as CXCL12 and CXCL14, as demonstrated by Kim et al.
(2014) and Nara et al. (2007), respectively. Furthermore, the
chemokine CCL5 (also as known as RANTES) and its receptors
CCR5 are also important in this macrophage migration process
(Keophiphath et al., 2010; Kitade et al., 2012).

Additionally, CCR2 modulates other parameters than
macrophage recruitments. High-fat diet fed mice with genetic
CCR2 deficiency present food intake reduction and lower
obesity development (Weisberg et al., 2006). In addition, obese
CCR2−/− mice have an increased adipose tissue eosinophil
number and high levels of IL-4 and IL-13, cytokines which lead
to M2 macrophage polarization (Bolus et al., 2015).

Not only migration, but also macrophage proliferation
contributes to adipose tissue inflammation. Amano et al. (2014)
showed that obese mice increased macrophage proliferation,
especially in visceral adipose tissue. Moreover, they showed that
CCL2 stimulates adipose tissue macrophage proliferation.

Adipose tissue macrophages are source of inflammatory
cytokines in obese individuals. Between these cytokines, IL-
6 displays pleiotropic role in metabolism and obesity. Sárvári
et al. (2015) demonstrated that macrophages engulf portions
of adipocytes in vitro leading to NF-κB activation and IL-
6 secretion. In addition, Kraakman et al. (2015) related pro-
inflammatory action to IL-6 trans-signaling, a process where IL-6
binds a soluble receptor to trigger inflammation. In this work,
they demonstrated that this IL-6 signaling induces macrophage
recruitment to adipose tissue.

IL-6 can also induce C reactive protein (CRP) liver
production, which is associated to complement activation,
phagocytosis and cytokines production (Deban et al., 2009; Du
Clos, 2013). In obese individuals, CRP is elevated, demonstrating
a state of active immune response and inflammation in these
subjects (Shaharyar et al., 2015; Yoshimura et al., 2015). On
the other hand, Ma et al. (2015), using a different model,
showed that sustained IL-6 gene expression in obesemice reduces
body weight loss, fatty liver and insulin resistance. Additionally,
it was evidenced that IL-6 supports M2 polarization, an
anti-inflammatory cell, by sensitizing macrophages to IL-4
(Mauer et al., 2014). Despite its variable effects, these findings
demonstrate IL-6 critical role of in obese individuals.

Although macrophages infiltration is considered a hallmark
of adipose tissue inflammation, other cells of the immune system
display a fundamental role (Sell et al., 2012). In fact, some studies
demonstrated that neutrophil migration into adipose tissue, as
well as in classical acute inflammation, occurs after 3 days of
high-fat diet in mice (Elgazar-Carmon et al., 2008; Talukdar et al.,
2012). In addition, Xu et al. (2015) demonstrated an increased
peripheral blood neutrophil percentage in obese young male.

Several types of lymphocytes interact with other cells in
adipose tissue environment to enhance or decrease inflammatory
response. Interactions between macrophages and CD4+ T cell
via MHC class II is required for adipose tissue inflammation
and for obesity-induced insulin resistance (Cho et al., 2014).
CD4+ T cell could polarize to different subtypes of lymphocytes,
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TABLE 1 | Role of lymphoid origin cells in obesity-related inflammation.

Lymphoid subsets

cells

Role in obesity

Th17 Increased in obese individuals (Winer et al., 2009).

IL-17A, a Th17 key cytokine, up-regulates IL-6, IL-8, and

PGE2 levels in adipocytes (Shin et al., 2009).

Th22 Increased in obese individuals (Zhao et al., 2014).

Unclear role.

NK cell Contributes to M1 macrophage polarization (Wensveen

et al., 2015).

iNKT Induce M2 macrophage polarization and control Treg

proliferation (Lynch et al., 2015).

ILC2s (group 2 innate

lymphoid cells)

Control obesity development by inducing caloric

expenditure (Brestoff et al., 2014).

namely Th1, Th2, Th17, regulatory T (Treg) cells, and other
types of cells (Luckheeram et al., 2012). Despite all these subtypes
of cells are related to obesity and metabolic syndrome, pro-
inflammatory Th1 and Th17 predominate over Treg and Th2
during adipose tissue inflammation (Sell et al., 2012; McLaughlin
et al., 2014).

High-fat diet fed mice present Th1 polarized and IFN-γ
production predominance, which occurs after macrophage
recruitment (Strissel et al., 2010). IFN-γ expression displays a
regulatory role in adipose tissue inflammation, since its absence
reduces TNF-α and CCL-2 mRNA expression and macrophage
adipose tissue accumulation (Rocha et al., 2008). Interestingly,
T-box transcription factor (T-bet) absence, a key factor to
development of Th1 cell, leads to obesity possibly by IL-6 up-
regulation (Kim et al., 2013). In Table 1, we summarize other
types of lymphoid cells involved in obesity-related inflammation.

Immune cells need to sense foreign structures to develop
an immunological response. Particularly, innate immune cells
use pattern recognition receptors (PRR) to recognize specific
pathogen or damaged molecules (Janeway andMedzhitov, 2002).
Between these receptors, toll-like receptors are structurally and
functionally well-defined (Kawai and Akira, 2010), and are
related to obesity.

TOLL-LIKE RECEPTORS (TLR) AND
OBESITY

TLRs (toll-like receptors) can recognize pathogen-associated
molecular patterns (PAMPs) of microorganisms, which are not
conserved in eukaryotes. This recognition triggers immune
system activation, setting up innate immune response (Kawai
and Akira, 2010). These receptors were initially identified in
the fruit fly Drosophila melanogaster, first being associated with
its embryonic development. Later on, its role on pathogens
detection and immune response was described (Lemaitre et al.,
1996; Williams et al., 1997). Janeway and his collaborators
identified the first toll homolog in humans, the TLR4 (Medzhitov
et al., 1997). In mammals, there are 12 members from TLRs
family, but only TLR1-TLR10 function is known (Akira et al.,
2006).

TLRs location is important to grant the access to the ligand.
The majority of plasma membrane TLRs recognizes microbial
membranes components, such as proteins, lipoproteins and
lipids; while intracellular TLRs are able to recognize nucleic
acids of microorganism (Werling and Jungi, 2003). TLRs can
recognize a broad variety of PAMPs derived from many classes
of microorganisms such as parasites, fungi, viruses and bacteria
(Medzhitov, 2007). These PAMPs include many molecules
including β-glucan, found on fungus, both viral RNA and
DNA, and also a huge quantity of elements derived from
bacteria (e.g., lipopeptides, peptidoglycan, lipoteichoic acid, and
lipopolysaccharide (LPS; Aderem and Ulevitch, 2000).

Despite the fact that TLRs recognize a variety of PAMPs,
each TLR can only recognize a limited group of patterns and,
therefore, has a determined specificity for their ligands (Beutler,
2003). TLR4 is the LPS receptor (Poltorak et al., 1998a,b). TLR2
was found to recognize bacterial peptidoglycan and lipopeptide
(Takeuchi et al., 1999). TLR5 is able to recognize flagellin, a
protein derived from bacterial flagella (Hayashi et al., 2001).
TRL3 is associated to the identification of double-stranded
RNA molecules (Alexopoulou et al., 2001). TLR7 can recognize
RNA molecules, especially small interfering RNAs (Hornung
et al., 2005). TLR8 is similar to TLR7 and recognize viral
ssRNA. Finally, TLR9 is associated with the recognition of
non-methylated bacterial DNA (Hemmi et al., 2000). Together,
all these receptors are able to recognize a broad variety of
microorganisms and promote activation of the NF-κB, which is
responsible for synthesis of inflammatory mediators (Lee et al.,
2012).

TLRs are specially expressed in hematopoietic cells, including
immune system cells. However, its expression was already
confirmed in other kind of cells such as adipocytes (Kanczkowski
et al., 2008). Therefore, these receptors can act promoting
interplay between the innate immune system and metabolism
(Fresno et al., 2011). Studies conducted on the role of TLRs
on adipose tissue suggest that all subtypes of TLRs can be
found in this tissue. (Hwa et al., 2006; Pietsch et al., 2006;
Poulain-Godefroy and Froguel, 2007; Vitseva et al., 2008).
Nevertheless, initially only TLR2 and TLR4 were functional in
human adipocytes (Bès-Houtmann et al., 2007), but lately TLR5
activation was evidenced (Pekkala et al., 2015). It was described
that TLR2, TLR4, or TLR5 deficiency have a major role on obesity
development (Fresno et al., 2011).

It was described that TLR2 activation can be triggered by
saturated fatty acids (SFAs; Lee et al., 2001, 2003). During
endotoxemia, TLR2 is also activated by bacterial peptidoglycan
from the intestines (Cani et al., 2008). Moreover, TLR2
absence decreases expression of inflammatory mediators and
macrophages infiltration in white adipose tissue (WAT). Also,
other studies demonstrated that TLR2 reduced levels protects
against obesity and inflammation (Himes and Smith, 2010; Davis
et al., 2011). Together, these data reveal a certain importance
regarding TLR2 role in obesity. In addition, the role played by
TLR5 in obesity is not well-established. It was recently found that
TLR5 signaling in adipose tissue could corroborate to obesity,
inflammation and metabolic alterations. Additionally, it was
reported that TLR5 activation leads to ERK1/2 (extracellular
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signal-regulated kinase) phosphorylation and adipocytes insulin
signaling inhibition (Pekkala et al., 2015).

Both obesity and metabolic syndrome are characterized by
inflammatory responses, triggered by adipose tissue disruption
mediated TLR signaling (Pekkala et al., 2015). After activation,
individual TLRs recruit TIR (Toll/IL-1 receptor) domain-
containing adaptors members such as MyD88 (Myeloid
differentiation primary response gene 88), TRIF (TIR-domain-
containing adapter-inducing interferon-β), TIRAP/MAL
(Toll-interleukin 1 receptor domain containing adaptor protein/
MyD88 adapter-like) or TRAM (TRIF-related adaptor molecule).
However, MyD88 is used by all TLRs to activate NF-κB and
MAPKs (mitogen-activated protein kinases) for the induction of
inflammatory cytokine genes (Kawasaki and Kawai, 2014).

TLR4 AND CELL SIGNALING PROTEINS:
TARGETS TO OBESITY AND ITS
COMPLICATIONS

Obese patients express high levels of TLR4 (Reyna et al., 2008).
TLR4 activation, which occurs in obesity, can be activated by
gut microbial patterns, such as LPS, to promote inflammatory
mediators production (Kim et al, 2012). In addition, TLR4
can also mediate the pro-inflammatory effect of SFAs, often

found at high levels in plasma of obese individuals (Lee et al.,
2001; Shi et al., 2006; Dasu and Jialal, 2010). Many studies
demonstrated that decreased TLR4 expression protects from
obesity development, adipose tissue inflammation and insulin
resistance (Shi et al., 2006; Suganami et al., 2007; Tsukumo et al.,
2007; Davis et al., 2008; de Mello et al., 2008). A similar effect
was observed using anti-TLR4 antibodies (Milanski et al., 2009).
In TLR4 deficient mice, adipose tissue inflammation reduction
could be explained by M2 macrophage polarization (Orr et al.,
2012).

Studies suggest that obesity TLR4 signaling essentially
depends on MyD88 expression and up-regulated NF-κB activity,
with IL-6 and TNF-α pro-inflammatory cytokines increased
expression (Fresno et al., 2011). Despite this classical signaling
pathway, new insights about TLR4 signaling are emerging. In
fact, Luo et al. (2014) demonstrated that small GTPase Rab8a
and phosphatidylinositol 3-kinase γ (PI3Kγ) act as regulators
of cytokines production, decreasing pro-inflammatory cytokines
and increasing anti-inflammatory cytokines. These effects are
mediated by Akt/mTOR signaling. The protein kinase mTOR
restrains the pro-inflammatory cytokines production by NF-κB
inhibition, while the anti-inflammatory cytokine (i.e., IL-10) are
enhanced by STAT3 activation (Weichhart et al., 2008). Thus,
the TLR4 signaling can regulate the inflammatory response by
modulating different transcriptions factors.

FIGURE 1 | TLR4 signaling in obesity. TLR4 activation (i.e., after LPS stimulus) leads to signal transduction, which involves IKK-β–NF-κB classical pathway. After

stimulation, MyD88 is recruited to TLR4 receptor to mediate downstream signaling, including IKK-β phosphorylation. Once activated, IKK-β phosphorylates IκB

protein, which, in turn, release NF-κB complex. Besides this pathway, TLR4 signaling also results in PI3Kγ and JNK activation. Taken together, these signaling proteins

play a fundamental role in inflammation, obesity and insulin resistance relationship. Note: dashed arrows indicate that other signaling intermediates are required.
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FIGURE 2 | Adipocytes-infiltrating immune cell profile in lean and obese individuals and relationship between gut microbiota, insulin sensitive organs,

and inflammation. In lean individuals, adipocytes cells (yellow circles) are infiltrated by anti-inflammatory cells (e.g., M2 macrophage and regulatory T cell [Treg]) and

helper T lymphocyte 2 (Th2). On the other hand, obese individuals have hypertrophied adipocytes associated with pro-inflammatory cells (e.g., M1 macrophage and

neutrophils [Nt]), NK and Th1 lymphocyte, which altogether induces pro-inflammatory mediators release. This inflammatory cell infiltration is influenced by the

cytokines produced locally and also by host-gut microbiota interactions (e.g., bile acids and LPS influence), which in turn are directly associated to obesity and its

complications (i.e., insulin resistance).

Obesity leads to an increase in IKK-β–NF-κB signaling,
a primary regulator of inflammatory response, in the liver.
This phenomenon is related to fatty liver accumulation,
which activates IKK-β–NF-κB, resulting in pro-inflammatory
cytokines and insulin resistance (Cai et al., 2005). In addition,
myeloid cells IKK-β absence improves systemic insulin sensitivity
(Arkan et al., 2005). Hypothalamic neurons IKK-β–NF-κB
axis is also involved in obesity and insulin resistance (Zhang
et al., 2008). This pathway is a target to non-acetylated
salicylates drugs, which can emerge as a new treatment to
glucose reduction in diabetic patients (Rumore and Kim,
2010). Furthermore, the IKKε deficiency protects from obesity,
inflammation and insulin resistance (Chiang et al., 2009; Olefsky,
2009).

Other signaling protein is related to obesity (Hirosumi
et al., 2002) and insulin resistance is cJun NH2-terminal kinase
(JNK; Nguyen et al., 2005), a stress-responsive MAPK. Han
et al. (2013) demonstrated that high-fat diet fed mice with
JNK-deficient macrophages remains insulin-sensitive. However,
these animals still develop obesity. On the other hand, Solinas
et al. (2007) showed that JNK absence in non-hematopoietic
cells reduces fat gain, possibly by increasing metabolic rate,
besides insulin sensitivity improvement. JNK is also important
to obesity induced-inflammation, since its deletion reduces
M1 macrophage polarization, adipose tissue infiltration by
macrophages and inflammatory cytokines levels (Solinas et al.,
2007; Han et al., 2013). Between these cytokines, IL-6 is

implicated to insulin resistance. Perry et al. (2015) demonstrated
that macrophage IL-6 production via JNK pathway promotes
lipolysis in white adipose tissue, which in turn are related to
hepatic glucose increase production. Besides JNK peripheral role
in obesity, studies provide evidences that JNK deficiency in the
central nervous system, mostly of hypothalamic–pituitary axis,
improves insulin sensitivity and reduces body mass (Belgardt
et al., 2010; Sabio et al., 2010).

Between signaling proteins involved in inflammation and
obesity, PI3K has emerged as an obesity treatment target
(Wymann and Solinas, 2013; Perino et al., 2014). This class of
enzymes catalyze the phosphorylation of inositol phospholipids
to generate molecular messengers (Hawkins and Stephens, 2015).
PI3Kβ and PI3Kγ isoforms inhibition are implicated in fat mass
reduction by promoting increased energy expenditure in mice
(Perino et al., 2014). Additionally, blockade of PI3Kγ reduces
pro-inflammatory macrophages infiltration into adipose tissue
(Kobayashi et al., 2011). In fact, different receptors stimulation
(e.g., G protein-coupled or tyrosine kinases receptors) induces
PI3Kγ activation, which promotes integrin α4β1 activation in
myeloid cells, a fundamental step in cell migration (Schmid et al.,
2011).

Furthermore, PI3Kγ inhibition is also related to ameliorate
obesity complications, mostly improving systemic insulin
sensitivity (Becattini et al., 2011; Kobayashi et al., 2011). In this
regard, TLR4/PI3Kγ axis is important not only for immune cells,
but also for non-immune cells. Hepatocytes TLR4 absence, but

Frontiers in Physiology | www.frontiersin.org 6 November 2015 | Volume 6 | Article 341

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Cavalcante-Silva et al. Gut Microbiota, Inflammation and Obesity

not in myeloid cells, improved glucose tolerance and enhanced
insulin sensitivity. Besides that, it also attenuates inflammatory
response (Jia et al., 2014). Becattini et al. (2011) showed that
PI3Kγ activity within non-hematopoietic cells promotes insulin
resistance in high-fat diet fed mice. However, the relationship
between TLR4 and cell signaling proteins (summarized in
Figure 1), obesity and metabolic syndrome is not completely
established.

CONCLUSIONS AND PERSPECTIVES

Although several pathophysiological studies of metabolic
syndrome and obesity were reported, little has been done about
translational research in this field. In this regard, gut microbiota

emerges with a key role in these disorders by interacting
with host metabolism (i.e., bile acid biotransformation) or by
promoting immune responses (i.e., TLR activation and cytokines
production). Hence, gut microbiota-driven inflammation
may promote the activation of the signal transducers IKKβ,
JNK, and PI3Kγ which in turn control obesity development,
adipose tissue inflammation and insulin resistance. Further
studies may consider the relationship between gut microbiota,
immune system and obesity (Figure 2) as a novel scope
for disorders prevention and health maintenance. This
comprehension will allow the development of new specific
targets and integrated strategies to modulate gut microbiota
in order to improve or even treat metabolic syndrome and
obesity.
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