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ABSTRACT

In as much as neurotransmitters and neuromodulators are known to
stimulate or inhibit eating behavior, we elected to examine the effects
of precursor amino acid loading and enkephalinase inhibition on com-
pulsive eating and weight loss in a controlled-diet clinical setting. In
the present 90-day open trial, we investigated the effect of the exper-
imental neuronutrient PCAL-103 on weight loss, uncontrollable car-
bohydrate binging, and relapse rates in 27 outpatients attending a
supervised diet-controlled treatment program. The patients were as-
signed, retrospectively, to two matched treatment groups: those re-
ceiving the neuronutrient (experimental group [E]; n = 16) and those
not receiving the neuronutrient (control group [C]; n = 11). E patients
exhibited facilitated withdrawal from carbohydrates compared with
the C patients. The E group lost an average of 26.96 + 2.7 pounds; the
C group only 10.0 + 2.1 pounds. Only 18.2% of the E group relapsed in
contrast to 81.8% of the C group. Use of the amino acid supplement
PCAL-103 by chronic carbohydrate bingers allowed overweight indi-
viduals to lose 2.7 times as much weight as patients without benefit of
this product.

INTRODUCTION

The specific causes of uncontrollable ingestive behavior for alcohol, drugs,
and food (in particular, carbohydrates) are incompletely understood. Nev-
ertheless, it is clear that these compulsive behaviors are a product of ge-
netic predisposition and environmental insult factors. Both the genetic and
environmental factors may be understood as operating through particular
alterations in brain neurochemical balance. These alterations appear to
induce compulsive-seeking behavior.

Previously, we proposed that a multi-neuronal cascade of events in the
reward system may play a role in the neuropharmacology of compulsive-
seeking behavior.”? Others have hypothesized that multiple brain neuro-
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transmitters play a significant role in the control of food intake, appetite
for specific macronutrients, and patterns of meal-taking behavior.
Leibowitz? summarized extensive evidence to support the role of a number
of brain monoamines and neuropeptides in the control of normal eating
behavior. These neurotransmitters operate at neuronal centers, which are
part of a complex integrative network known as the mesolimbic reward
system.? The medial and lateral portions of the hypothalamus, working in
conjunction with forebrain and hindbrain sites and with the peripheral
autonomic endocrine pathways, together carry and integrate signals for
hunger and satiety. Analyses of cerebrospinal fluid in both humans and
animals indicate specific disturbances in brain neurochemical function in
association with abnormal eating patterns.>¢ In animals these abnormal-
ities have been further localized to the hypothalamus.

The primary neurotransmitters involved in eating behavior include
the monoamines dopamine (DA), norepinephrine (NE), epinephrine (EPI),
and serotonin (5-HT); the amino acid gamma-aminobutyric acid (GABA);
and a variety of neuropeptides such as the pancreatic polypeptides, opioid
peptides, hormone-releasing factors, and various gut-brain peptides.

Substantial evidence based on direct application of these neurotrans-
mitters on neurons reveals four classes of eating-stimulatory neurotrans-
mitters, whereas a considerably larger number of substances are shown to
inhibit eating. '

The literature on eating is very complex. The same drug or neuro-
transmitter commonly will have different effects when administered in low
doses versus high doses, centrally versus peripherally, in short-term ver-
sus long-term experiments, in genetically predisposed versus nonpredis-
posed, in obese versus normal weight versus anorectic animals, as a func-
tion of paradigm, and so on. The following statements are not meant to be
a critical review but a consensus of the central effects of chronic adminis-
tration of neurotransmitters/neuromodulators on feeding behavior. De-
tailed reviews have been published.7"9

Eating-Stimulatory Neurotransmitters

The eating-stimulatory neurotransmitters include the catecholamine
NE, acting through noradrenergic receptors, GABA, and three classes of
neuropeptides: the opioids (endorphins, enkephalins, and dynorphins); the
pancreatic polypeptides (neuropeptide Y and peptide YY), and galanin.
These substances, when administered directly into the rat hypothalamus,
potentiate eating in satiated animals.>°

Furthermore, chronic administration of certain monoamines (NE) and
neuropeptides significantly alter daily food intake and weight gain. 12

Eating-Inhibitory Neurotransmitters

The eating-inhibitory neurotransmitters in the brain include the
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monoamines DA, NE, 5-HT, and gut-brain peptides cholecystokinin-8
(CCK-8), neurotensin, calcitonin, glucagon, and corticotropin-releasing
factor.!3-2!

The effects of these neurotransmitters on eating are characterized
primarily by a specific change in macronutrient selection, rather than an
increase or decrease in total food intake. Many peptides, including CCK-8,
bomesin, calcitonin, corticotropin-releasing factor, neurotensin, somato-
statin, glucagon, and methionine-enkephalin have selective inhibitory ac-
tions on macronutrients.®?*?3 Leibowitz and associates?*2® reported that
medial paraventricular nucleus (PVN) injections of NE in the rat induce a
selective increase in carbohydrate ingestion with little or no change in fat
and suppression of protein intake. Carbohydrate-craving behavior is con-
sistently observed with chronic stimulation of NE and neuropeptide Y.26:27
Certain brain monoamines also have selective actions on macronutrient
intake. DA-receptor blockade preferentially stimulates protein consump-
tion, whereas catecholamine-releasing drugs such as amphetamine de-
crease protein ingestion.?®?? In contrast, 5-HT, in the medial hypothala-
mus, may selectively suppress carbohydrate intake, while sparing protein
intake, 303!

Direct serotonergic agonists (eg, quipazine), indirect serotonergic ag-
onists (eg, (+)-fenfluramine), or selective inhibitors of 5-HT uptake into
serotonergic neurons (eg, fluoxitine) decrease food ingestion in laboratory
experiments.??~3* Borsini et al®® reported that (+)-fenfluramine strongly
reduced the consumption of a sucrose solution in nondeprived rats.

Leander®® demonstrated that fluxotinine suppresses the ingestion of
saccharin solutions in normal rats. A similar finding was true for alcohol
intake in preferring rat lines (animals genetically bred to prefer alcohol
over water).>” However, the motive to drink saccharin solutions depends
only upon its sweet taste, since it provides no calories. Both (+)-fenflur-
amine and quipazine, a direct serotonergic agonist, produce similar dose-
dependent suppression of cumulative consumption of a 5% sucrose solution
by rats with gastric fistulas. This indicates that direct and indirect sero-
tonergic agonists can strongly depress a feeding response activated by
sweet taste.

Opioid Peptides and Macronutrient Selection

Current evidence suggests that the pharmacology of the opioidergic
system on eating behaviors is very complex and it would therefore be
difficult to ascribe a generalized role, particularly in view of different
effects observed with specific opioid peptides or macronutrient selection.

In support of the above observation, both increases in food intake38-44
as well as decreases in food intake*®~*7 have been observed under a variety
of experimental conditions.
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Differences have also been observed with both opiate/opioid agonists
and opiate antagonists dependent on duration or administration. In short-
term experiments, administration of agonists, centrally or peripherally,
results in feeding increases. In contrast, peripheral administration of opi-
ate antagonists diminishes intake of sweet foods. The inference from these
studies is that long-term use of opioid/opiate antagonists would result in a
decrease in food intake.

The results have been far more complicated than expected. In general,
chronic administration of antagonists has been disappoirxting.38 Naltrex-
one caused some reduction in binge-eating in bulimics.*® However, it also
produced weight gain in anorectic patients.49 Shimomura et al®® observed
increased food intake with chronic naloxone treatment and decreased food
intake with chronic morphine. Dhatt et al?2 had similar observations with
chronic morphine administration.

These observations suggest that while in acute situations opioid ago-
nists increase and antagonists decrease food intake, in chronic situations
opposite effects prevail. ’

One important problem in attempting to discuss and assign a specific
pharmacological action of opiates/opioids appears to reside in obtaining
exact information on the types of foods (macronutrient selection—lipids,
proteins, and carbohydrates) consumed. In this regard, it is noteworthy
that the opioid peptides, as well as opiates acting through p, d, and x
receptors, augment ingestion of fat and protein, while actually suppressing
the relative proportion of carbohydrates ingested.%"r’l'52 The effects of opi-
oid peptides on carbohydrate intake were investigated in animals made
obese by neonatal monosodium glutamate (MSG) administration. This pro-
cedure results in reduced levels of brain endorphin.’® These obese rats,

compared with control animals, choose a greater percentage of their daily
calories as carbohydrates and lower percentages as fat and protein.®!

Furthermore, research on the importance of endogenous opioid pep-
tides in feeding behavior primarily focused on their stimulatory effects,
especially their role in genetic predisposition to impulsive food intake. In
comparison to lean littermates, increased levels of pituitary endorphin
were observed in genetically obese mice (Ob/Ob) and rats (Fa/Fa).?* How-

ever, it has been known for some time that diet choices made by genetically

obese mice are similar to the changed choice behavior after morphine
lect lower proportions of their

administration. Namely, that obese mice se
diets as protein and carbohydrate, and higher proportions as fat.5® Work by
Gosnell and associates® has concentrated primarily on the feeding effects
of central injections of opioid agonists. This resulted in an increased con-
sumption of both saccharin and salt solutions. Similarly a low dose of the
selective k-agonist U-50,488H was found to facilitate the acquisition of a

preference for a 20% sucrose solution.®”
Based on these and other studies, it appears that opioid agonists and
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antagonists, respectively, increase and decrease preferences for palatable
tastes. We argue that palatability is a different measure than macronu-
trient selection (eg, carbohydrates) thus preventing any definitive conclu-
sions with regard to feeding behavior.

The opioid peptides are not only involved in macronutrient intake, but
have been implicated in compulsive alcohol and drug-seeking,?®~%° as well
as brain self-stimulation behavior.!-62

In fact, Blum et al®® reversed alcohol-seeking behavior in genetically
preferring C57/6J mice with the chronic administration of an enkephali-
nase inhibitor.?® Heibreder et al®! showed that intracranial self-stimula-
tion by rats was reduced by nucleus accumbens microinjections of kelator-
phan, a potent enkephalinase inhibitor. In terms of food intake, Riviere
and Bueno® reported that central injections of the enkephalinase inhibi-
tor, thiorphan, also reduced daily food intake in sheep. Since deficits have
been found in neurotransmitter functions underlying craving behavior,
and since these deficits may be alleviated by facilitated neurotransmitter
release, consequent to use of drugs, alcohol, and food, the studies men-
tioned above indicate enkephalinase inhibition may similarly compensate
for neurotransmitter imbalance (ie, opioids, thereby attenuating craving
behavior). These results suggest that human carbohydrate binging might
be critically mediated by differences in patterns of endogenous peptides.

We believe that compulsive-seeking behavior is the response to one or
more neurotransmitter deficits. Attempts to alleviate this neurotransmit-
ter imbalance through drug-receptor activation (alcohol, heroin, cocaine,
and glucose) will only, substitute for the lack of reward, and will yield a
temporary sense of well-being.

We have shown that recovery from certain forms of uncontrollable
ingestive behavior (ie, alcohol, polydrugs, and cocaine) is significantly fa-
cilitated by the use of neuronutrients designed to restore brain chemical
deficits through the administration of both precursor amino acids and
enkephalinase inhibitors.®*~%¢ Thus we elected to evaluate the efficacy of
a neuronutrient approach to weight loss in carbohydrate bingers.

PATIENTS AND METHODS

In a 90-day open-trial retrospective study, we investigated the effect of the
neuronutrient PCAL-103 on weight loss and carbohydrate binging in out-
patients attending a supervised diet-controlled program at the Bariatric
Medical Clinic, West Monroe, Louisiana. PCAL-103 is an amino acid and
vitamin supplement consisting of DL-phenylalanine, L-tryptophan, L-
glutamine, and pyridoxal-5'-phosphate.

Patients were selected if they: (1) remained in the prescribed weight
reduction program for at least 90 days; (2) were over 21 years of age; (3)
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had a history of sugar binging; and (4) were overweight by standard
height-weight tables. All patients selected for the study agreed to partic-
ipate under standard informed consent procedures. Twenty-seven persons
were selected, only one of which was male. In this study, there were 16
experimental subjects (E) and 11 controls (C). Overweight populations are
typically 80% to 95% female. Demographic data are shown in Table L

Composition of PCAL-103 and Dosage

Each patient in the E group took six capsules of PCAL-103 daily. This
product is an experimental variant of SAAVE™ (Matrix Technologies, Inc.,
Houston, Texas), a product used to reduce craving in alcoholics and heroin
abusers. The ingredients, DL-phenylalanine, L-tryptophan, L-glutamine,
and pyridoxal-5'-phosphate have been described in detail elsewhere.®’

Diet Regimens

Randomly, all patients were placed on one of three dietary regimens:
(1) a low-fat and sugar-free diet; (2) six protein-fiber complex-carbohydrate
appetite suppressant cookies daily augmented with one low-fat sugar-free
meal; or (3) four or five protein-sparing, modified-fat liquid drink shakes
plus one small low-fat, sugar-free meal.

Females were assigned 800 calories total intake per day and males
1,000 to 1,200 calories. All were advised to discontinue the use of sugar
immediately upon entry into the program and were given full explanation
of sugar addiction and the withdrawal process. The subject of sugar addic-
tion was approached with these patients as a chemical dependency. All
were assessed with the same questionnaire to explore the types of binge-
eating patterns prior to entry into the program. Patients were followed

Table I. Demographic and other physiologic measures of outpatient carbohydrate bingers
treated with and without PCAL 103.

Family Sex
No. of Age Weight Hypoglycemic History
Treatment  Patients (yr) (Ih% Score Positive* Mt F
PCAL 103 16  41.8+27 2050120 1503 15/15(94%) O ?)%g 16 (100%)
No PCAL 103 11 373+25 2172 +17.4 1.6=0.6. 88 (100%) 1{(9%) 10 91%)

* |n the no PCAL103 group, only eight subjects knew their family history as-it related to eating disorders

and/or chemical dependence, . )
+ Randomized selection resulted in a higher proportion of female subjects. This is consistent for this bariatric

clinic whereby the total male population over a two-year period was only <10% of the overall patient
population. :
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weekly throughout a 90-day course of their weight reduction and occa-
sional missed visits. were recorded.

Measurements

Prior binge Index: A prior binge index was calculated based on an-
swers to the questionnaire. A normal binge index was rated as 0, a mild
sugar binge was rated +1, a moderate sugar binge rated +2, and a high
sugar binge rated +3. An average index was calculated for each group.

Glucose Tolerance Test: Almost every patient was given a three-hour
glucose tolerance test (GTT) upon entry into the program. Exceptions were
those who refused the test or those already known to be diabetic. The GTT
consisted of a fasting blood sugar followed by an oral 75-gm load of glucose
with subsequent blood sugar drawn at the one-, two-, and three-hour time
intervals. Normal blood sugar response was grade 0, slightly hypoglycemic
1+, moderately hypoglycemic 2+, and highly hypoglycemic 3 +. The av-
erage hypoglycemic score was calculated for each group.

Family History: Family histories were obtained on each patient spe-
cifically asking if eating disorders, alcoholism, or other chemical depen-
dencies existed in close genetic relatives. Percentages were calculated in
each group for those who responded positively or negatively to this ques-
tion. Three patients did not respond at all because of the lack of knowledge
concerning their blood relatives. 4

Initial Compliance

Each patient was seen approximately one week following entry into
the program for an evaluation. Weight reduction was recorded at that
time, and an initial compliance score was calculated based on apparent
positive withdrawal (ie, lack of binge eating), as evidenced by successful
weight reduction.

A score of 3+ was assigned to those who lost the most weight and had
apparently had the least difficulty with continued binge eating behavior
(four to five pounds), 2+ to those with moderate weight loss and moderate
resolution of binge eating (two to three pounds), and 1+ to those experi-
encing the most difficulty in reducing weight and greatest difficulty in
refraining from binge eating behavior (zero to one pound). An average
withdrawal score (initial compliance index) for each group was calculated.

Weight Measurements and Calculations

Weight lost during the 90-day trial was measured for each patient.
These data were assessed in three ways: (1) total weight lost; (2) loss of
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excess weight (defined by standard height-weight tables); (3) percent ex-
cess weight lost.

Program Compliance

Weight loss of 25 pounds or more at 90 days was assigned a program
compliance score of ten, representing successful abstinence from binge
eating; a 12.5-pound loss was given a score of five, representing moderate
abstinence from binge eating; and a loss of six pounds or less was given a
score of zero, demonstrating poor abstinence from binge eating behavior.
Using these assigned values, a compliance index was calculated and av-

eraged for each group.

Relapse

Patients losing less than 15 pounds over 90 days were considered to
have relapsed (noncompliant). The percentage of patients who did not par-
ticipate during the trial period was calculated for each group.

Statistical Methods

The E and C groups were tested for statistically significant differences
in each of the above measures using parametric ¢ tests and nonparametric
Mann-Whitney U tests. The nonparametric test was used to compensate
for possible problems caused by small sample sizes and non-normal distri-

butions of the measures.
RESULTS

No statistically significant group differences were found for measures of
age, weight, pounds overweight, hypoglycemia, or binge index using both
parametric and nonparametric tests. For family history of eating disor-
ders, the two groups were not significantly different, as tested by chi-

square test.

Initial Compliance

Initial compliance for the E and C groups differed significantly (P <
0.026, Mann-Whitney U test, Figure 1). Thus the E group lost more weight
in the first week than did the C group. Similary, long-term compliance
differed significantly (P < 0.001) for these two groups (Table II).
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P =0.026

Initial Compliance Index

Experimental (E) Controt (C)

Figure 1. Comparison of the initial compliance index between carbohydrate bingers in the
experimental group (E) and the control group (C). The number of subjects is indi-
cated in the brackets. Score ranged from 3 + for most weight lost to 1+ for least
weight lost. The vertical bars represent the standard error of the mean. P equals
significance as analyzed by one-tailed Mann-Whitney U test.

Weight Loss

The average weight loss in the E group was 26.96 + 2.7 (SEM) pounds,
while the C patients lost an average of 10.0 £ 2.1 pounds. Results were
statistically highly significant (P < 0.001) (Figure 2 and Table II).

Excess Weight Loss

Examination of percent target excess weight lost reveals a 2.7-fold
difference between the E and C groups. This means that the E group lost
approximately 2.7-fold more actual pounds over the 90-day test period
than the C group (Table II).

Table II. Comparison of the efficacy of treatment with and without PCAL 103 in outpatient
carbohydrate bingers.*

No. of Initial Weight Lost Percent Program
Treatment  Patients Compliance Index* ?Ib) Weight Lost Compliance Index§ Relapse

PCAL 103 16 2.6 = 0.13t 27.
No PCAL 103 11 2.0+ 0.28 10.

0+27% 48.9 = 5.0 9.0 £ 0.4% 12.5%"
0+21 18.0=x5.8 4209 81.8%

* Score ranged from 3+ for most weight lost to 1+ for least weight lost.

t P < 0.02 vs .0 PCAL; one-tailed Mann-Whitney U test.
P < 0.001 vs no PCAL; student’s t test.
Score ranged from 10 for weight loss of =25 pounds to 0 for <6 pounds lost.
P < 0.001 vs no PCAL; Pearson’s chi-square test.
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Figure 2. Comparison of pounds lost between carbohydrate bingers in the experimental

group (E) and the control group (C). The number of subjects i8 indicated in the
brackets. The vertical bars represent the standard error of the mean. The data were
analyzed by the Student’s ¢ test, and revealed that a significant difference (P <

0.001) was observed between groups.

Initial Weight Loss

3 + 5.0% of their excess weight,
0 + 5.78%. These differ-

3 and Table ID.

The E patients lost an average of 48.9
while the C patients lost an average of only 18.
ences were highly significant (P < 0.002) (Figure

Program Compliance

The E patients had an average score of 8.96 * 0.421, while the C
patients had an average score of 4.19 = 0.901. This represents almost a
2.0-fold overall improvement in the E group compared with the C group

(Figure 3 and Table 1D).

Relapse

The E and C groups were compared for frequency of noncompliance
ntly (P < 0.00032).

using Pearson’s chi-square test. They differed significa
Only 18.2% of patients who did not effectively participate (lost less than six

pounds) were in the E group. In contrast, 81.8% of the patients who failed
to participate were in the C group. The E group was almost 4.5 times more
likely to participate fully in the program and experience significantly

greater weight loss (Figure 3).

DISCUSSION

d in this open retrospective investigation suggest that

The data presente
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Figure 3. Comparison of relapse, percent weight lost, and program compliance index between
carbohydrate bingers in the experimental group (E) and the control group (C). The
number of subjects is indicated in the brackets. The vertical bars represent the
standard error of the mean. Both the program compliance index and percentage of
weight lost were analyzed by parametric and nonparametric tests for significance,
and Pearson’s chi-square test was used to test for significance for relapse rates.
Significant differences were observed between groups.

the neuronutrient PCAL-103 suppresses eating behavior in known carbo-
hydrate bingers participating in a 90-day controlled program in a medical
bariatric setting.

Numerous studies have implicated the interaction of opiates, opioid
peptides, CCK-8, glucagon, DA, and insulin in glucose utilization and
selective intake of carbohydrates.®3~"2

We believe that the apparent beneficial effects of PCAL-103 may be
explained by the action of both the precursor amino acids and enkephali-
nase inhibition operating on mesolimbic reward circuitry. We cannot at
this time provide an exact mechanism of action for this neuronutrient
mixture, nor can we pinpoint which ingredient or combination of ingredi-
ents best suppresses carbohydrate binging in our study.

However, an underlying presumption in the field is that a derange-
ment or imbalance of the actions of some or all of this neurochemistry is
responsible for eating disorders. Further, the principal candidate region
for such imbalance is in the mesolimbic area. Similar data and logic un-
derlies thinking about drug-dependent disorders. Thus alcohol, opiates,
cocaine, and glucose induce reward by activating the mesolimbic reward
multineuronal circuitry.

Blum and associates™? have developed a neurotransmitter reward-
cascade model that may play a role in the neuropharmacology of compul-
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