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Abstract

Honokiol (poly-phenolic lignan from Magnolia grandiflora) is a Sirtuin-3 (SIRT3) activator

which exhibit antioxidant activity and augment mitochondrial functions in several experimen-

tal models. Modern evidence suggests the critical role of SIRT3 in the progression of several

metabolic and neurodegenerative diseases. Amyloid beta (Aβ), the precursor to extracellu-

lar senile plaques, accumulates in the brains of patients with Alzheimer’s disease (AD) and

is related to the development of cognitive impairment and neuronal cell death. Aβ is gener-

ated from amyloid-β precursor protein (APP) through sequential cleavages, first by β-secre-

tase and then by γ-secretase. Drugs modulating this pathway are believed to be one of the

most promising strategies for AD treatment. In the present study, we found that Honokiol

significantly enhanced SIRT3 expression, reduced reactive oxygen species generation and

lipid peroxidation, enhanced antioxidant activities, and mitochondrial function thereby re-

ducing Aβ and sAPPβ levels in Chinese Hamster Ovarian (CHO) cells (carrying the amyloid

precursor protein-APP and Presenilin PS1 mutation). Mechanistic studies revealed that

Honokiol affects neither protein levels of APP nor α-secretase activity. In contrast, Honokiol

increased the expression of AMPK, CREB, and PGC-1α, thereby inhibiting β-secretase

activity leading to reduced Aβ levels. These results suggest that Honokiol is an activator of

SIRT3 capable of improving antioxidant activity, mitochondrial energy regulation, while

decreasing Aβ, thereby indicating it to be a lead compound for AD drug development.

Introduction

Alzheimer’s disease is a neurodegenerative disease characterized by a decline in cognition due

to morphological and functional alterations to neurons. Pathologically, it is characterized by

abnormal accumulation of extracellular senile plaques consisting of amyloid beta (Aβ), and

intracellular neurofibrillary tangles consisting of hyperphosphorylated tau protein [1]. Epide-

miological evidence shows that patients with type 2 diabetes mellitus have an increased risk of

developing Alzheimer’s disease. This can be attributed to altered glucose metabolism, impaired

insulin signaling, and insulin resistance [2–4]. Insulin resistance (IR) results in reduced
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glucose uptake and utilization, which compromises cell energy and homeostatic functions,

thereby promoting oxidative stress and mitochondrial dysfunction. This energy deficiency

results in the disruption of the neuronal cytoskeleton and synaptic connection [5,6]. Interest-

ingly, brain insulin resistance has been known to accelerate the accumulation of Aβ and plaque

formation in the brain by enhancing amyloidogenic processing of the amyloid precursor pro-

tein [7]. In addition, high insulin levels tend to inhibit Aβ degradation, thereby increasing

amyloid accumulation which leads to neurodegeneration and irreversible cognitive dysfunc-

tion [8].

Mitochondria play a crucial role in the normal functioning of neurons and synapses by sup-

plying constant energy in the form of ATP. Deficits in energy metabolism lead to increased

oxidative stress and endoplasmic reticulum stress thereby promoting mitochondrial dysfunc-

tion. Oxidative stress results in the generation of excessive reactive oxygen species (ROS) and

reactive nitrogen species (RNS) [9–12], which promotes the formation of lipid peroxides and

damages the RNA, DNA, and proteins. Moreover, ROS can up regulate the expression of APP,

β and γ-secretase to generate Aβ deposition, and fibrilization [5, 13, 14]. This Aβ in turn inter-

acts with various mitochondrial proteins, disrupting the electron transport chain and increas-

ing reactive oxygen species, thereby decreasing the levels of ATP [15–17]. Therefore, oxidative

stress and mitochondrial dysfunction may be significantly implicated in the development and

progression of Alzheimer’s disease [18].

Sirtuins are a family of proteins that act predominantly as nicotinamide adenine dinucleo-

tide (NAD)-dependent deacetylases, causing post-translational modifications in target pro-

teins to regulate their function. Seven sirtuin family members exist, out of which SIRT3,

SIRT4, and SIRT5 localize exclusively within mitochondria while the reminder of the sirtuins

are localized within the cytoplasm and nucleus [19]. Acetylation causes proteins required for

proper mitochondrial function to malfunction which leads to oxidative stress. These abnor-

malities are prevented by SIRT3 due to its deacetylating properties [20–23]. In addition, SIRT3

has been shown to act as a pro-survival factor that plays an essential role in protecting neurons

experiencing excitotoxicity [24]. Until recently, the only means to achieve high intracellular

levels of SIRT3 was through calorie restriction and endurance exercise [25–28]. However,

Honokiol [2-(4-hydroxy-3-prop-2-enyl-phenyl)-4-prop-2-enyl-phenol] has recently been con-

sidered to be a pharmacological activator of SIRT3 and known to modulate the pathologies of

AD [29]. Honokiol, by binding to SIRT3 causes increased expression of AMPK-5’ adenosine

monophosphate-activated protein kinase, which plays a crucial role in cellular energy homeo-

stasis. Additionally, it is known to increase the expression of PGC-1α. Furthermore, SIRT3 is a

downstream target gene of PGC-1α and SIRT3 mediates the PGC-1α effects on cellular ROS

production and mitochondrial biogenesis [30]. Honokiol has also been shown to possess non-

adipogenic partial PPAR-γ agonistic activity [31]. PPAR-γ activity is known to promote glu-

cose and lipid metabolism, oxidative phosphorylation, and mitochondrial biogenesis by

increasing the expression of PGC-1α, a master regulator of mitochondrial biogenesis [32, 33].

PGC-1α decreases Aβ generation and increases non-amyloidogenic sAPPα levels by reducing

the β-APP cleaving enzyme (BACE1 or β-secretase) gene transcription via PPAR-γ-dependent

mechanism and directly through SIRT3 [34, 35].

Aβ is a proteolytic product of the amyloid-β precursor protein (APP) and is generated

through sequential cleavages by enzymes called β- and γ-secretases. During this amyloidogenic

processing, β-secretase first cleaves the type I transmembrane APP protein to generate an

extracellular fragment known as sAPPβ and a membrane-associated carboxyl terminal frag-

ment known as APP β-CTF. APP β-CTF is then cleaved by γ-secretase to release Aβ. Alterna-

tively, APP can be subjected to a non-amyloidogenic processing and cleaved by α-secretase

within the Aβ domain. α-secretase-mediated cleavage precludes Aβ generation and generates
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an extracellular domain of APP known as sAPPα instead [36,37]. β-cleavage of APP is the first

and rate-limiting step in Aβ production. The transmembranous aspartic protease β-site APP

cleaving enzyme 1 (BACE1) has been identified as the essential β-secretase in vivo [38]. The

level and activity of BACE1 are found to be elevated in postmortem brain of sporadic AD

patients [39, 40], suggesting a causative role of BACE1 in AD.

In this study, we hypothesize that Honokiol, a SIRT3 activator suppress oxidative stress,

enhance mitochondrial functions and modulate Aβ levels by inhibiting BACE1 activity. PS70

cell lines (Chinese Hamster Ovarian cells expressing Swedish mutant APP (APPswe) and wild

type human PSEN1 were used in this study. The swedish mutant APP (APPswe) has been

shown to induce early AD-like histopathology with dispersed deposits of Aβ and aberrant tau

protein expression [41, 42]. The PSEN1 gene and its protein are part of the γ-secretase complex

which play a crucial role in processing APP and is known to increase Aβ levels [43]. The net

effect of these two genes is increased secretion of Aβ by the cell which aids in studying the

effect of Honokiol on the amyloidogenic pathway. Various other studies have employed APP--

CHO cells to study and validate the amyloidogenic pathway [44–46]. Therefore, this study

aimed at elucidating the molecular mechanisms and signaling pathways by which Honokiol

modulate Aβ levels in PS70 cells.

Materials and methods

Cell culture

PS70 cell lines (Chinese Hamster Ovary cells–CHO expressing Swedish mutant APP (APPswe)

and wild type human PSEN1) was a kind gift from Dr. Raj Amin. Cells were grown in DMEM

(VWR, USA) supplemented with 10% fetal bovine serum (FBS; Biosciences, USA), 100U/ml

penicillin (Corning, USA) and 100μg/ml streptomycin (Corning, USA) in a humidified atmo-

sphere of 5% CO2/95% air at 37˚C. The cells were cultured in the presence of G418 (200 μg/

ml, Invitrogen) and puromycin (7.5 μg/ml, ThermoFischer Scientific) to maintain selection

for the expression plasmid. The cells were plated at an appropriate density according to each

experimental scale.

Treatment strategies

Honokiol was purchased from Cayman chemicals, USA. Regarding the cell viability assay, dif-

ferent doses of Honokiol (0.5, 1, 2, 5, 10 and 20μM) were incubated with PS70 cells for 2 differ-

ent times (24 and 48 hours) periods in the presence of insulin 10nM and serum. However,

based on cell viability results and to elucidate the molecular mechanisms of action, PS70 cells

were treated with Honokiol (5 and 10μM) for 24 and 48 hours. Insulin (10nM) was used as a

positive control. To establish insulin resistance (IR) in PS70 cells, we used high concentrations

of insulin (10nM) for both 24 and 48 hours [47]. Insulin-degrading enzyme (IDE) is involved

in clearance of Aβ in the brain as both insulin and Aβ are catabolized by IDE [48]. In presence

of high insulin, IDE is diverted to degrade insulin, consequently allowing APP-Aβ accumula-

tion [49, 50]. IDE is thought to be a link connecting hyperinsulemia, IR, and AD [51, 52].

Cell viability assay

PS70 cells were seeded in 96-well plates with 1000 cells/well in culture medium and following

their fixation, cells were treated with Honokiol (0.5, 1, 2, 5, 10 and 20μM concentrations) for

24 and 48 hours. Cell viability was assessed using the PrestoBlue1 assay (Invitrogen, Carlsbad,

CA, USA) according to manufacturer’s instructions. Absorbance was measured by a spectro-

photometer (BioTek, Winooski, VT, USA). The results were evaluated as percent of control
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and calculated as mean±SEM. Furthermore, microscopic imaging was performed on the PS70

cells to validate the cell viability and study the morphological changes seen at various

concentrations.

Determination of ROS generation

Reactive oxygen species generation was estimated spectrofluorometerically by conversion of

the non-fluorescent chloromethyl-DCF-DA (20,70-dichlorofluorescin diacetate, DCF-DA,

VWR, USA) to fluorescent DCF at an excitation wavelength of 492 nm and an emission wave-

length of 527 nm. The generation of ROS was measured, normalized to total protein content

and reported as relative fluorescence intensity/mg protein. The fluorimetric reading was mea-

sured with BioTek Synergy HT plate reader (BioTek, VT, USA). Results were expressed as per-

centage change from the control [53].

Measurement of mitochondrial ROS levels

Mitochondrial ROS levels were measured using mitochondrial specific dihydro- 244 rhoda-

mine (DHR) indicator purchased from Biotium. DHR is an uncharged non-fluorescent ROS

indicator that accumulates in the mitochondria and becomes oxidized to the cationic rhoda-

mine123, which exhibits a green fluorescence. The PS70 cell lines were stained according to

the manufacture’s protocol. Fluorescence was measured using a multispectral-fluorescent

plate reader (Bio-Tek) at excitation/emission wavelengths (λEx/ λEm) at 505/ 534 nm. [54].

Estimation of lipid peroxidation

Colorimetric assay procedure using thiobarbituric acid was used to quantify the lipid peroxide

content. The index of lipid peroxidation was estimated by measuring the malondialdehyde

(MDA) content in the form of thiobarbituric acid reactive substances (TBARS). TBARS was

measured in the plate reader at 532 nm and calculated as TBARS formed per mg protein.

Results were expressed as percentage change from the control [55, 56].

Assay of superoxide dismutase (SOD) activity

SOD activity was measured spectrophotometrically following the Marklund and Marklund

method, using pyrogallol as substrate at 420 nm. Results were expressed as percentage control

[57].

Estimation of catalase activity

Catalase activity was determined spectrophotometrically where the degradation of hydrogen

peroxide is measured at 240 nm [58, 59]. Results were expressed as percentage control.

Glutathione peroxidase assay

Spectrophotometric estimation of glutathione peroxidase was performed according to the

method of Lawrence and Burk [60]. The activity was calculated as glutathione (μmol) oxi-

dized/mg total protein.

Glutathione reductase activity

Glutathione Reductase assay was performed spectrophotometrically using glutathione reduc-

tase assay kit (Cayman Chemicals, no. 703202). Values were based on a standard curve and cal-

ibrated to the total levels of protein concentrations.
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Mitochondrial Complex-I activity

Mitochondrial Complex-I activity (NADH dehydrogenase activity) was assessed based on the

NADH oxidation. Oxidation of NADH by the NADH dehydrogenase was measured spectro-

photometrically at 340nm. Results were expressed as percentage control [61].

Mitochondrial Complex-IV activity

Complex-IV activity was based on the Cytochrome-c oxidation. The Cytochrome-C oxidation

was measured spectrophotometrically at 550 nm and the Complex IV activity was expressed as

cytochrome-C oxidized/mg protein [62].

Mitochondrial membrane potential assay

The mitochondrial membrane potential through microplate assay was measured in 96 well

plate utilizing tetramethylrhodamine ethyl ester (TMRE) according to the manufacturer’s

instructions (TMRE; Biotium, no.70016). TMRE florescent intensity (Ex: 549nm, Em: 575nm)

was measured by a BioTek Synergy HT plate reader (BioTek, VT, USA). The results were

expressed as percentage change from the control. In addition, imaging of the mitochondrial

membrane potential was evaluated using fluorescence microscope with the fluorescent dye tet-

ramethylrhodamine methyl ester TMR.

Western blot analysis

Conditioned media from treated cells were assayed for sAPPα, sAPPβ and secreted Aβ by

Western blot. PS70cells were lysed in RIPA buffer (Roche, USA) and equal protein amounts of

cell lysates were analyzed by Western blot. Each sample was denatured at 95˚C for 5minutes

before loading onto freshly prepared 10% SDS-PAGE gel for protein separation. Separated

proteins on SDS-PAGE were transferred onto polyvinylidene fluoride membrane. Non-spe-

cific binding sites on the membranes were blocked with 5% fat-free milk in Tris-buffered

saline plus 0.1% Tween-20 (TBST) at pH 7.4. The membranes were incubated overnight at

4˚C with specific antibody constituted in 5% BSA in TBST. Primary antibodies used in this

study included: AMPK (#2532), phospho-AMPK Thr172 (#2535), CREB (#4820) from CST;

Anti-SIRT3 antibody (ab86671), Anti-PGC1α (ab54481), Anti-beta Amyloid 1–42 antibody

(ab12267), Anti-beta Amyloid 1–40 antibody [BDI350] (ab20068), Anti-beta Actin antibody

(ab8227), Anti-GAPDH (ab8245), Anti-ADAM10 antibody [EPR5622] (ab124695) from

abcam; APP C-terminal antibody pAb751/770 (EMD Biosciences, La Jolla, CA, USA); Anti-

BACE1 monoclonal antibody (MAB5308), anti-ADAM10 polyclonal antibody and Anti phos-

pho-CREB (pAb06-519) from Merck Millipore; 6E10 (against sAPPα and β-CTF) and anti-

sAPPβ antibodies from Covance. Membranes were then washed with TBST (3X, each for 10

min) and incubated with species dependent Goat Anti-Rabbit (H+L) IgG DyLight550 conju-

gated secondary antibodies (Invitrogen™) for 60 min at room temperature. Membranes were

again washed three times for 10 minutes with TBST after incubation with each antibody. After

washing, membranes were analyzed in FluorChem1 system Imaging. Band densities for each

sample were normalized to their respective β-actin or GAPDH signal and reported as percent-

age control.

α-secretase activity assay

The activity of α-secretase in cells was measured by using InnoZyme TACE Activity Kit (Milli-

pore), following the manufacturer’s protocols.
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β-secretase activity assay

β-site-APP cleaving enzyme (BACE) or β-Secretase activity was determined fluorimetrically

with a commercially available β- Secretase activity kit (Biovison, California, USA) according to

the manufacturer’s instructions. Beta-secretase activity was represented as relative fluorescence

unit per mg of total protein.

Aβ ELISA assay

After treatment, conditioned media from the treated and untreated cells were collected to

detect secreted Aβ1–40 and Aβ1–42. The Aβ1–40 and Aβ1–42 concentrations were quantified

using ELISA kits following the manufacturer’s protocol. The optical densities of each well at

450 nm were read on a microplate reader (Biotek FLx800, USA)] and the sample Aβ1–40 and

Aβ1–42 concentrations were determined by comparison with the Aβ1–40 and Aβ1–42 stan-

dard curves. All readings were in the linear range of the assay.

Protein estimation

Protein quantification was determined using the Thermo Scientific Pierce 660 nm Protein

Assay reagent kit (Pierce, Rockford, IL).

Statistical analysis

All data are expressed as means ± SEM. Statistical analyses were performed using one-way

analysis of variance (ANOVA) followed by an appropriate post-hoc test including Tukey’s and

Dunnett’s method (p< 0.05 was considered to indicate statistical significance). All statistical

analyses were performed using the Prism-V software (La Jolla, CA, USA).

Results

Effect of Honokiol on PS70 cell viability

The effect of Honokiol treatment on the PS70 cell viability was assessed using Prestoblue1

assay: PS70 cells were treated with various concentrations of Honokiol (0.5, 1, 2, 5, 10 and

20μM) for 24 and 48 hours. The control cells were treated with DMSO. As shown in (Fig 1A),

when exposed to Honokiol concentrations of up to 10μM, there was no statistically significant

change in the viability of PS70 cells as compared to the control (n = 12: p< 0.05). However, a

significant decrease in cell viability was observed with 20μM Honokiol treatment (n = 12:

p< 0.05). The microscopic images further validated the above findings by clearly showing

(Fig 1B) no cell death up to 10μM concentrations of Honokiol. Similar to the Prestoblue1

assay, cells treated with Honokiol (20μM) showed a relatively higher proportion of dead cells

as compared to the control. Moreover, there were significant morphological changes observed

with 20μM treatment. Honokiol (20μM) induced extensive shrinkage and fragmentation of

PS70 cells, suggesting extensive cell death. Interestingly, we found both time dependent and

concentration dependent effects of Honokiol on cell viability. Consequently, based on the

results obtained, two highest concentrations of Honokiol (5 and 10μM) at which no cell death

was noted were used in the subsequent experiments to elucidate the molecular mechanisms of

Honokiol.

Honokiol increases the activity of antioxidant enzymes in PS70 cells

A defense mechanism of the cell is to promote antioxidant expression and activity, which pro-

tects against highly reactive oxy or nitro radicals and their harmful toxic effects. We therefore
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investigated the effect of Honokiol on the activities of superoxide dismutase (SOD), glutathi-

one peroxidase (GPX), catalase (CAT) and glutathione reductase (GR). These are the key anti-

oxidant enzymes that play a significant role in scavenging toxic free radicals. Honokiol (5 and

10μM) significantly increased the activity of SOD (1.2 and 1.6- fold, Fig 2A), GPX (1.1 and

1.4-fold, Fig 2B), CAT (1.3 and 1.5-fold, Fig 2C) and GRX (1.2 and 1.4-fold, Fig 2D) as com-

pared to the control at 24 hours (n = 6, p< 0.05). Honokiol had similar effect on the activity of

antioxidant enzymes at 48 hours. Insulin (10nM) significantly decreased the activity of SOD,

Fig 1. Effect of honokiol on PS70 cells. (A) PS70 cells were treated with various concentrations of honokiol (0, 1, 2, 5, 10 and 20μM) for 24 hours and 48 hours and

then analyzed by Prestoblue cell viability assay. DMSO (0.1%) was used as the vehicle for honokiol. Data are expressed in terms of percent of control cells (non-

honokiol-treated) as the means ± SE. ���P< 0.001 vs. vehicle-treated (control) cells. (B) Morphological changes in PS70 cells at 24h and 48 h following treatment with

Honokiol (0, 1, 2, 5, 10 and 20μM). Scale bar = 100μm.

https://doi.org/10.1371/journal.pone.0190350.g001
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CAT, GPX and GRX at 24 hours (Fig 2A–2D, n = 6, p< 0.05). At 48 hours, Insulin (10nM)

significantly decreased the activity of SOD, and CAT only (Fig 2A–2D, n = 6, p< 0.05).

Honokiol scavenges reactive oxygen species and inhibits lipid peroxidation

in PS70 cells

The generation of reactive oxygen species (ROS) triggers oxidative stress and induces irrevers-

ible oxidation of lipids and proteins, which has lethal effects on cells viability leading to cell

death. Therefore, ROS-induced lipid peroxidation was also investigated in the present study.

With respect to the DCF based ROS assay, Honokiol (5 and 10μM) significantly decreased the

ROS generation at 24 hours by (14% and 40%) and 48 hours by (29% and 56%) as compared to

the control (Fig 3A, n = 6, p<0.05).Insulin (10nM) significantly increased the generation of

ROS (43% and 52%) at both the time point (Fig 3A, n = 6, p< 0.05). DHR fluorescent dye was

used to further validate the effect of Honokiol and insulin on ROS generation. DHR fluores-

cent assay yielded similar results as compared to the DCF assay on the ROS generation (Fig

3B, n = 6, p< 0.05). Due to the increase in ROS at 24 and 48 hours, insulin (10nM) signifi-

cantly increased lipid peroxidation (33 and 52%) as compared to the control (Fig 3C, n = 6,

Fig 2. Honokiol increases antioxidant enzymes on PS70 cells. Effect of Honokiol (5 and 10 μM) and Insulin (10nM) on the activities of the antioxidant enzymes were

assessed on PS70 cells over a 24 and 48 hours. Activity of (A) SOD, (B) GPx (C) CAT and (D) GR activity were determined as described above. The results are expressed

as mean ± SEM (n = 6, #/�p<0.1, ##/��p<0.01, and ###/���p< 0.001 compared with the control). Data with multiple comparisons were analyzed using ANOVA with

Dunnett’s Multiple Comparison Test. [SOD, superoxide dismutase; GPx, glutathione-peroxidase; CAT, Catalase; GR, Glutathione Reductase].

https://doi.org/10.1371/journal.pone.0190350.g002
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p< 0.05). Since, Honokiol (5 and 10μM) significantly scavenged the ROS; it resulted in

decreased lipid peroxide formation by (29% and 36%) at 24 hours and by (30% and 40%) at 48

hours (Fig 3C, n = 6, p< 0.05).

Honokiol improves mitochondrial bioenergetics

To explore the effects of Honokiol on mitochondrial bioenergetics and to understand the

molecular processes of mitochondrial function, we evaluated the effects of Honokiol on Com-

plex-I, Complex-IV activity and mitochondrial membrane potential. Honokiol (5 and 10μM)

notably improved mitochondrial bioenergetics, as demonstrated by significant increase in

Complex-I (29% and 45%) and Complex-IV (43% and 74%) at 24 hours. Similar results with

Complex I (52% and 57%) and with Complex IV (61% and 86%) were noted at 48 hours (Fig

4A and 4B, n = 6, p< 0.05). Likewise, Honokiol (5 μM and 10μM) also increased the mito-

chondrial membrane potential significantly (13% and 39%) at 24 hours and (21% and 35%) at

48 hours. (Fig 4C, n = 6, p< 0.05). Insulin (10nM) significantly inhibited Complex-I activity

at 24 and 48 hours (24% and 25%) and Complex-IV activity by (32% and 33%) (Fig 4A–4C,

n = 6, p< 0.05). Similar results were noted with insulin (10nM) on MMP activity at both 24

and 48 hours.

Honokiol treatment reduces Aβ secretion

To study whether Honokiol can affect Aβ generation, we measured total Aβ levels by western

blot and the results showed that Honokiol (5 and 10μM) significantly decreased total intracel-

lular Aβ (48% and 61%) at 24 hours (Fig 5A). At the same concentration range, Honokiol also

reduced total secreted Aβ. Insulin (10nM) showed significantly increased levels of Amyloid-

beta levels compared to control. Next, we performed the concentration-response effect of

Honokiol (0, 0.2, 0.5, 1, 2, 5, 10 and 15μM) on the generation of Aβ-42. As shown in Fig 5B,

there was a dose-dependent decrease in the generation of Aβ-42 in the media by Honokiol.

Lower doses (0.1–1μM) of Honokiol had no significant effect. However, there was a significant

decrease at 2μM (28%) and a robust decrease at 5 and 10μM Honokiol (40% and 60% respec-

tively). These results clearly confirm that Honokiol can dose dependently decrease Aβ-42 pro-

duction in this cell-based model. Furthermore, to validate our findings, previous other studies

using Honokiol have shown the cytoprotective and neuroprotective effects at 5 and 10μM dose

[63]. When PS70 cells were treated with Honokiol (5 and 10μM) for 24 h, levels of Aβ40 and

Aβ42 (Fig 5C) in conditioned media were markedly decreased in a dose-dependent manner.

On the contrary, Insulin 10nM increased the levels of both Aβ40 and Aβ42 respectively.

Fig 3. Honokiol scavenges ROS and inhibits lipid peroxidation in PS70 cells. PS70 cells were incubated with Insulin (10nM) and Honokiol (5 and 10 μM). ROS

generation was assayed using DCF dye and measured with a spectrophotometer (A) and mitochondrial ROS was measured using DHR assay(B). Lipid peroxidation was

measured with a spectrophotometer using the TBARS method (C). The results are expressed as mean ± SEM (#/�p<0.1, ##/��p<0.01, and ###/���p< 0.001 compared

with the control). Data with multiple comparisons were analyzed using ANOVA with Dunnett’s Multiple Comparison Test (n = 6).

https://doi.org/10.1371/journal.pone.0190350.g003

Honokiol attenuates Amyloid beta

PLOS ONE | https://doi.org/10.1371/journal.pone.0190350 January 11, 2018 9 / 23

https://doi.org/10.1371/journal.pone.0190350.g003
https://doi.org/10.1371/journal.pone.0190350


Honokiol modulates amyloidogenic pathway

Because β-secretase-mediated APP processing is the first step leading to Aβ generation, we

studied whether Honokiol affects β-secretase. To ascertain this possibility, we carried out a

cell-based assay to measure the β-secretase activity and found that Honokiol dramatically

inhibited β-secretase activity by (26% and 44%) at 24 hours and (37% and 60%) at 48 hours

(Fig 6A).These results indicate that Honokiol at 10μM exhibited IC50 activity towards β-secre-

tase. Western Blot analysis to detect protein expression showed significantly decreased expres-

sion of β-secretase at both the doses (Fig 6B). Since there is another possibility that Honokiol

inhibits APP β-processing and Aβ generation through promoting α-secretase activity, we also

assayed the activity of TACE, a major α-secretase in PS70 cells treated with Honokiol. We

found that Honokiol did not affect TACE activity (Fig 6E), suggesting that Honokiol does not

affect α-secretase activity. Honokiol treatment dose-dependently decreased the secreted level

of sAPPβ, an amino-terminal fragment of APP generated by β-secretase cleavage by 48% and

40% respectively (Fig 6C). Consistently, the level of APP β-CTF (a carboxyl-terminal fragment

of APP generated by β-secretase cleavage) was also decreased upon Honokiol treatment by

23% and 40% (Fig 6D). These results suggest that Honokiol inhibits β-cleavage of APP. In

addition, Honokiol (10μM) increased the level of secreted sAPPα, the major extracellular frag-

ment of APP released by α-secretase cleavage (Fig 6C). Moreover, we found that Honokiol

Fig 4. Honokiol improve mitochondrial bioenergetics. Cell lysate analyzed for activities of mitochondrial electron transport chain complex -I and Complex IV

activity. The specific activities of complexes I and IV were normalized with respect to specific activities in their corresponding control groups (A and B). All samples are

averages ± SEM (n = 6) and (��p<0.01, and ���p< 0.001 compared with the control. Mitochondrial membrane potential measured at 24 and 48 hours (C) following

staining of cells with TMRE dye and detected using a fluorescence microscope. Magnification, ×20. Average fluorescence intensity.

https://doi.org/10.1371/journal.pone.0190350.g004
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treatment did not affect protein levels of APP, and α-secretase ADAM10 (Fig 6D). These

results suggest that Honokiol reduces APP amyloidogenic processing not through affecting α
but through β-secretase levels [64].

Honokiol increases SIRT3 and activates AMPK-CREB-PGC1α pathway

To confirm that high insulin levels predispose to increased Aβ formation, we used increasing

concentrations of Insulin (0, 1, 5 and 10nM) on PS70 cells and found that Aβ levels (normal-

ized to β-actin) increased significantly (1.12-, 1.28- and 1.46-fold) compared to control (Fig

7A). Both doses (5 and 10μM) of Honokiol increased SIRT3 levels by nearly twofold and opti-

mum SIRT3 activation was found to be at 24h (Fig 7B). Furthermore, we explored the molecu-

lar signaling pathway related to the reduction of Aβ levels by Honokiol. Honokiol (5μMand

10μM) increased the phosphorylation of AMPK by (1.37- and 1.5- fold) compared to total

AMPK at 24 hours. Similarly, phosphorylation of CREB was increased by (1.42- and 1.61-fold)

with respect to total CREB (Fig 7C). These phosphorylation changes of AMPK and CREB in

turn are found to increase the levels of PGC1α. Similarly, we found a statistically significant

increase in the levels of PGC1α (1.75) fold at 10μM normalized to GADPH, but no effect was

noticed at 5μM (Fig 7C, n = 3, p< 0.05). Insulin (10nM) decreased but did not show a statisti-

cally significant change in the phosphorylation of AMPK, CREB and PGC1α.

Fig 5. Honokiol treatment reduced Aβ secretion. PS70 cells were treated with DMSO (negative control), Insulin (10nM) or indicated doses of Honokiol for 24h. (A)

TsAβ (Total secreted Aβ) and TiAβ (total intracellular Aβ) levels were then analyzed by WB using respective antibodies. The Western blots shown are representative of

at least three independent experiments. Densitometric quantification was performed and expressed as percentage change. (B) Concentration response curve of

Honokiol shows a dose dependent reduction of Aβ42 production by Honokiol. (C) ELISA measurements of secreted Aβ40 and Aβ42 in conditioned-medium collected

from DMSO, Insulin and Honokiol treated PS70 cells. The Aβ results are represented as the mean±SEM of nanograms of Aβ40 or Aβ42 normalized to the amount of

total protein [mg] extracted from the cells in the corresponding well. These results are representative of four independent experiments with n = 3 for each condition.

(One-way ANOVA followed by Dunnett’s post hoc test, n = 3, ��: p< 0.01, ���: p< 0.001).

https://doi.org/10.1371/journal.pone.0190350.g005
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Discussion

In this study, we report that Honokiol, an activator of SIRT3 attenuated oxidative stress and

beta amyloid secretion in PS70 cells, in addition to improving mitochondrial function. High

dose insulin treatment caused increased ROS levels, decrease in mitochondrial functions and

increased formation of beta amyloid. Honokiol counteracted these effects by activating SIRT3

and by increasing in AMPK, CREB and PGC1α protein levels thereby causing reduction in

beta-secretase activity. Compelling evidence has shown that Honokiol, a SIRT3 activator,

expresses many beneficial effects in neurodegenerative diseases [65]. However, there are very

few studies that have elucidated the novel mechanisms of SIRT3-mediated decrease in Aβ pro-

duction. To the best of our knowledge this is the first report describing an activator of SIRT3

capable of improving mitochondrial function, and blocking the beta secretase activity thereby

decreasing beta amyloid secretion.

Insulin resistance (IR) is an important risk factor for Alzheimer’s disease and causes an

increase in age-related memory impairment [66, 67]. Presence of insulin receptors in the

hippocampus and the medial temporal cortex indicate that insulin is known to influence mem-

ory and learning [68]. Optimal cerebral insulin levels augment memory and synaptic plasticity

in the hippocampus and areneuroprotective [68, 69]. On the contrary, insulin resistance

Fig 6. Honokiol treatment reduces amyloidogenic pathway by inhibits β-secretase activity and reducing APP β-CTF and sAPPβ levels. PS70 cells were treated with

DMSO (negative control), Insulin (10nM) or indicated doses of Honokiol for 24h. (A) Cell lysates were assayed for β-secretase activity by using a commercial kit from

Biovision and subjected to comparison. (B) Cell lysates were processed and examined for BACE expression in Western blots with anti-BACE1 antibodies. β-Actin was

used as a loading control. (C) Conditioned media and (D) cell lysates were analyzed by WB using respective antibodies. The Western blots shown are representative of at

least three independent experiments. Densitometric quantification was performed and expressed as percentage change. (E) PS70 cells treated with DMSO, insulin

10nM, Honokiol (5 & 10μM) and α-secretase inhibitor TAPI-1 (10μM) for 24 hours. Cell lysates were assayed for α-secretase activity for comparison (One-way ANOVA

followed by Dunnett’s post hoc test, n = 3, �: p<0.05, ��: p< 0.01, ���: p< 0.001).

https://doi.org/10.1371/journal.pone.0190350.g006
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Fig 7. Effect of Honokiol on SIRT3 activation and AMPK-CREB-PGC1α pathway. Effect of increasing concentrations of insulin (0, 1, 5 and 10nM) on TsAβ (Total

secreted Aβ) along with the densitometric analysis of band intensity normalized to β-Actin. (B) Representative Western blot of SIRT3 performed on whole cell lysates

from PS70 cells exposed to either vehicle (DMSO) or 5 and 10μM Honokiol for 24 and 48 h. The graph displays the densitometric analysis of band intensity of the SIRT3
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characterized by high insulin levels has been associated with increased levels of reactive oxygen

species [70]. High insulin levels promote increased Aβ deposition and tau protein phosphory-

lation [71–73]. In this study, we further validated the cellular effects of hyperinsulinemia on

cognitive impairment. High dose insulin, representing IR, showed an increase in ROS and

lipid peroxidation; decrease in the activity of antioxidants; decrease in phosphorylated AMPK,

pCREB, and PGC-1α expression. These deficits resulted in decreased mitochondrial functions,

increased BACE, and increased Aβ in the PS70 cells. Thus, our results concur with the existing

literature showing that hyperinsulinemia can enhance Aβ production.

Oxidative damage has been known to occur at a very early stage of Alzheimer’s disease even

prior to Aβ plaque formation and the onset of symptoms [74–76]. Several cellular changes

caused by oxidative stress have been related to Aβ plaque formation and pathophysiological

events of Alzheimer’s disease [77]. Increased ROS occurs due to an imbalance between pro-

oxidants (ROS, RNS, superoxide anion, hydroxyl radicals, and hydrogen peroxide) and antiox-

idants (GSH, GPX, CAT, GRx, SOD). In addition, ROS leads to deficits in membrane integrity,

oxidation of mitochondrial proteins, damage to the mitochondrial respiratory chain, changes

in mitochondrial membrane permeability and structure and increased permeability of the

plasma membrane to Ca2+[78]. Down-regulation in antioxidant defense mechanisms and ele-

vated ROS generation leads to oxidative stress-mediated neurodegeneration [79].

Exposure of polyunsaturated fatty acids to ROS leads to the production of toxic lipid perox-

idation products. Similarly, an increase in the levels of lipid peroxidation was observed in Aβ-

induced rat hippocampal cells, due to depletion of antioxidants and increased pro-oxidants

[80]. Furthermore, Honokiol has been shown to exert beneficial effects on Aβ-induced toxicity

in PC12 cells by inhibiting oxidative stress through reduction of ROS production, intracellular

Ca2+ elevation, and caspase-3 activity [81]. In this study, we have reported that Honokiol

treatment significantly increased enzymatic antioxidant activities, decreased ROS generation,

and decreased lipid peroxidation in PS70 cells. Oxidative stress subsequently leads to im-

pairment of mitochondrial dysfunction [82], which leads to Aβ formation and Aβ induced

neurotoxicity [83–86]. At the mitochondrial level, complex I and complex IV seem to be spe-

cifically targeted; tau pathology mainly impairs complex I activity and Aβ impairs complex IV

activity [87]. Importantly, mitochondrial dysfunction and reduced bioenergetics occur early in

pathogenesis and precede the development of plaque formation [88]. Interestingly, hyperinsu-

linemia has also shown to decrease mitochondrial functions [89]. Our results showed that

Honokiol increases the activities of Complex I and IV and increased the mitochondrial mem-

brane potential thereby indicating that it enhances the mitochondrial function.

Furthermore, AMPK is a kinase considered to be a metabolic sensor which is implicated in

the regulation of IR and Aβ pathology [90]. Evidence shows that activation of AMPK decreases

the production levels of Aβ and AMPK activators like resveratrol have been shown to increase

the lysosomal clearance of Aβ [91, 92]. In addition, AMPK enhances mitochondrial biogenesis

by inducing PGC-1α transcription and by phosphorylating PGC-1α at threonine-177 and ser-

ine-538 [93]. This increased PGC-1α has been shown to decrease BACE and Aβ production.

Honokiol increased the phosphorylation of AMPK in a dose-dependent manner and in the

same concentration range, increased the phosphorylation of CREB. Together, these results

normalized to the corresponding GADPH level, used as loading control. (C) Effect of Insulin 10nM and Honokiol (5 and 10μM) on p-AMPK/AMPK ratio.

Representative Western blot of total AMPK and phosphorylated-AMPK (p-AMPK) levels, total CREB and phosphorylated-CREB (p-CREB) levels and PGC-1α
performed on whole cell lysates from PS70 cells exposed to either vehicle, Insulin or Honokiol for 24 h. The graph displays the statistical analysis of the p-AMPK/AMPK

and p-CREB/CREB ratio calculated by densitometric analysis of band intensity normalized to the corresponding β-Actin used as loading control; PGC-1α normalized to

corresponding GAPDH level, used as loading control. Data, means ± SEM are expressed as percentage of vehicle-treated control; n = 3 under each condition.

Significance was calculated with Student’s t test, �p< 0.05, vs. vehicle-treated cells.

https://doi.org/10.1371/journal.pone.0190350.g007
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indicate that one of the primary effects of Honokiol is to target AMPK to increase its phos-

phorylation at Thr-172 and to promote its activation. Furthermore, downstream of AMPK,

there is increased phosphorylation of CREB which promotes the activation of PGC-1α. In

turn, PGC-1α reduces the activity of β-secretase; reducing Aβ generation through a PPAR-γ-

dependent mechanism [94, 95]. Alternatively, SIRT3 is known to directly up regulate the

expression of PGC-1α, which increases SIRT3 gene expression [96]. In our study, Honokiol

increased the protein levels of AMPK, CREB and PGC-1α thereby decreasing Aβ.

Interestingly, Honokiol had a major role in modulating amyloidogenic pathway. Honokiol

had no effect on total APP levels, protein levels of α-secretase ADAM10 and cell based TACE

activity, indicating that Honokiol does not affect α-secretase. In contrast, Honokiol treatment

decreased protein levels of β-secretase BACE1 and reduced BACE1 enzyme activity, as well as

both sAPPβ and APP β–CTF levels, indicating that Honokiol reduces Aβ generation probably

Fig 8. Honokiol mechanism of action.

https://doi.org/10.1371/journal.pone.0190350.g008
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through inhibiting β-secretase activity. Hence, we found a modest increase in sAPPα release.

Since, γ-secretase complex is part of downstream signaling of both amyloidogenic and non-

amyloidogenic pathway, we did not investigate the effect of Honokiol on γ-secretase.

Together, our results demonstrate that Honokiol can reduce Aβ generation in vitro thereby

opening avenues for it to be a lead compound for AD drug development.

Conclusion

Honokiol, a dual SIRT3 activator and PPAR-γ agonist, attenuated the markers of oxidative

stress, improved cellular antioxidant defense systems, and altered the AMPK pathway, leading

to enhanced mitochondrial functions thereby having a modulatory effect on amyloidogenic

pathway and eventually decreasing Aβ levels (Fig 8). Overall, these findings demonstrate a

potential mitochondrial protective and Aβ reducing effect of Honokiol in PS70 cells. This

mechanistic study of Honokiol to suppress pro-oxidative pathways, improve mitochondrial

function, and reduce Aβ production prompts further in vitro studies on neuronal cell lines

and in vivo studies to elucidate the neuroprotective effects of Honokiol in AD. Identifying

these functions of Honokiol and their relations to AD will give rise to therapeutic avenues

where new concepts can be developed to find an effective treatment.

In the mitochondria, Honokiol binds to SIRT3 and increases the level of SIRT3 through a

positive feedback mechanism. Increased levels of SIRT3 enhances mitochondrial biogenesis

thereby promoting mitochondrial function and attenuates Amyloid beta levels by acting

through AMP-CREB-PGC1α pathway. In the nucleus, increased PGC1α levels promote mito-

chondrial biogenesis and attenuate amyloid beta levels.
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