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Mental disorders and neurological diseases are becoming a rapidly increasing medical
burden. Although extensive studies have been conducted, the progress in developing
effective therapies for these diseases has still been slow. The current dilemma
reminds us that the human being is a superorganism. Only when we take the human
self and its partner microbiota into consideration at the same time, can we better
understand these diseases. Over the last few centuries, the partner microbiota has
experienced tremendous change, much more than human genes, because of the
modern transformations in diet, lifestyle, medical care, and so on, parallel to the modern
epidemiological transition. Existing research indicates that gut microbiota plays an
important role in this transition. According to gut-brain psychology, the gut microbiota
is a crucial part of the gut-brain network, and it communicates with the brain via
the microbiota–gut–brain axis. The gut microbiota almost develops synchronously
with the gut-brain, brain, and mind. The gut microbiota influences various normal
mental processes and mental phenomena, and is involved in the pathophysiology of
numerous mental and neurological diseases. Targeting the microbiota in therapy for
these diseases is a promising approach that is supported by three theories: the gut
microbiota hypothesis, the “old friend” hypothesis, and the leaky gut theory. The effects
of gut microbiota on the brain and behavior are fulfilled by the microbiota–gut–brain
axis, which is mainly composed of the nervous pathway, endocrine pathway, and
immune pathway. Undoubtedly, gut-brain psychology will bring great enhancement
to psychology, neuroscience, and psychiatry. Various microbiota-improving methods
including fecal microbiota transplantation, probiotics, prebiotics, a healthy diet, and
healthy lifestyle have shown the capability to promote the function of the gut-brain,
microbiota–gut–brain axis, and brain. It will be possible to harness the gut microbiota to
improve brain and mental health and prevent and treat related diseases in the future.

Keywords: gut-brain psychology, microbiota–gut–brain axis, diet, modernization, lifestyle, superorganism, mental
disorders, nutritional psychology

CURRENT CHALLENGES IN PSYCHOLOGY

Psychology is a discipline that targets the rules of human psychological phenomena and behavior.
Unfortunately, it seems like the more we know about human psychology, the more we realize we do
not know. Until recently, not a single mental disorder had an established definite biomarker, either
physiological, biochemical, or genetic. The application of psychology seems to lag behind other
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disciplines, and mental illnesses remain medical challenges. In the
last few decades, the number of patients with mental disorders
and neurologic diseases has increased rapidly, causing a great
escalation of medical burden, as shown in Figure 1 (DALYs
and Collaborators, 2016, 2017; GBD 2017 Neurological Disorders
Collaborator Group, 2017). Although the overall medical burden
created by mental disorders exceeded one-fifth of the total, the
rates of treatment and recovery were far below those of other
diseases (Ledford, 2014; Smith and Torres, 2014). All of these
findings suggest that the existing research has neglected the fact
that the human being is a superorganism.

RE-RECOGNIZING THE SUBJECT OF
PSYCHOLOGY: THE SUPERORGANISM

Following the development of bioinformatics and gut microbiota
research in the 21st century, scientists have found that the human
being is a superorganism carrying billons of microorganisms,
such as bacteria, archaea, fungi, viruses, and protozoa, living on
its internal and external surfaces (Group, 2008; Limon et al.,
2017; Manrique et al., 2017; Wampach et al., 2017). These
microorganisms mostly inhabit the skin surface and digestive,
respiratory, urinary, and reproductive tracts. Microorganisms
amounting to more than 1 kg inhabit the digestive tract; these
are considered to be the most important microorganisms in the
human body, and they are collectively called the gut microbiota.
The microbiota contains 300–3,000 different species, whose
total number exceeds 1014, which is almost 10 times the total
number of human cells; the genes encoded therein surpass 5
million, which is more than 200 times the number of human
genes (Human Microbiome Project Consortium, 2012; Burcelin
et al., 2013; Sandoval-Motta et al., 2017). Since 2008, Nature
has advocated calling the human being “we” rather than “I”
because more than 90% of the total cells and genes of the
superorganism are microorganisms. In daily life, individuals
living together for a long time usually share many similarities.
This phenomenon could be mainly due to the convergence
of people’s microorganisms (Yatsunenko et al., 2012), since
most of human genes are relatively stable after birth. These
microorganisms have established interdependent and mutualistic
relationships with humans over the long process of evolution;
therefore, they are called commensal microbiota (Fraune and
Bosch, 2010).

Maturation and Function of the
Superorganism Are Modulated by the
Commensal Microbiota
The growth and development of human beings are not only
modulated by their own genes, but they are also influenced
by their commensal microbiota. Humans provide living space
and food for the microbiota and unconsciously regulate
the composition and number of microorganisms, while the
microbiota impacts the maturation and function of human
beings (Ulvestad, 2009). Embryonic development is influenced
by maternal gut microbiota, and the development and function

of most mammalian systems are also affected by their own
commensal microbiota after birth (Manco, 2012; McFall-Ngai
et al., 2013).

The gut microbiota is involved in the metabolism and
digestive absorption of nutrients; it aids in the digestion of
resistant carbohydrates, the decomposition of endogenous and
exogenous proteins, the degradation of bile acid, and the
synthesis of vitamins and other bioactive compounds (Nicholson
et al., 2012; Cabral, 2013). The colonization of the gut microbiota
is indispensable for the maturation of the immune system, and
its impact is likely to have a critical period, which means that
the colonization only works in the critical period and cannot be
remedied after that time (Gensollen et al., 2016; Knoop et al.,
2017). The maturation of the neuroendocrine system is also
regulated by the gut microbiota, and this influence may have
a critical period, too (Sudo et al., 2005; Sudo, 2014). Both the
maturation and function of the brain and mind are impacted by
the gut microbiota (Diaz Heijtz et al., 2011; Borre et al., 2014;
Desbonnet et al., 2014; Parashar and Udayabanu, 2016; Vuong
et al., 2017).

Meanwhile, the respiratory tract microbiota plays an
important role in the development and function of the
respiratory system, and abnormal microbiota may be involved
in the occurrence of respiratory disease (Man et al., 2017). The
skin microbiota not only constitutes the first biological barrier
of the organism, but also influences immune function, and skin
microbiota abnormalities are closely related to skin disorders,
including eczema and psoriasis (Egert et al., 2017). Finally,
healthy vaginal microbiota is necessary for female health, and it
is beneficial for the development of commensal microbiota in the
offspring (Humphries, 2017).

In conclusion, individual maturation and function are
strongly linked to commensal microbiota (Collins et al., 2012;
McFall-Ngai et al., 2013). Acquiring adequate microbiota can help
ensure a healthy and happy human life. When the microbiota
is deprived, dysfunction can appear in the digestive system,
immune system, endocrine system, nervous system, and even in
behavior and cognition (Sudo et al., 2005; Fang and Evans, 2013;
Crumeyrolle-Arias et al., 2014).

Dramatic Changes in the Superorganism
in Modern Society
Human society has changed significantly since the industrial
revolution, which was followed by tremendous variations in
diet, lifestyle, and health care. Although the genes of the
human have not changed much, the important component
of the superorganism microbiota has undergone tremendous
change (Gomez, 2017; Mancabelli et al., 2017). Remote rural
areas have experienced relatively small variation over the past
century, with the inhabitants having gut microbiota distinct from
those of modern city dwellers. Even in developed countries,
rural–urban differences in gut microbiota exist. For example,
the bacteria that metabolize fiber have decreased, whereas the
bacteria that metabolize animal protein and fat have increased
in city dwellers; even in people who have moved from villages
to cities, the gut microbiota seems to have changed to a more
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FIGURE 1 | The ever-increasing medical burden induced by mental disorders and neurological diseases (DALYs and Collaborators, 2016, 2017). (A,B) Shows the
disability-adjusted life years (DALYs) induced by mental disorders and neurological diseases, respectively. (C,D) Shows the DALYs induced by different diseases in
1990, 2006, and 2016.

urbanized microbiota (De Filippo et al., 2017). Modernization
has been changing the microbiota by various means, including
diet, lifestyle, and medication (De Filippo et al., 2017; Gomez,
2017; Mancabelli et al., 2017).

Diet Changes
Diet shapes the gut microbiota, and different foods prompt the
proliferation of different microorganisms (Duncan et al., 2007;
Wu et al., 2011; Voreades et al., 2014; Shanahan et al., 2017; Singh
et al., 2017). Even short-term dietary changes alter the human
microbiota (David et al., 2014; Li J. et al., 2017). The human diet—
including dietary structure, dietary habits, and food processing—
has experienced great changes following modernization, and
these alterations have significantly influenced the gut microbiota
(Zarrinpar et al., 2014; Roca-Saavedra et al., 2017; Statovci et al.,
2017).

In terms of dietary structure, refined carbohydrates dominate
the total food intake; the intake of meat, fat, sugar, and
salt has increased rapidly, whereas the intake of dietary
fibers has decreased sharply. However, high-fat diets and
high refined carbohydrate diets, which are rich in sucrose
and fructose, perturb the gut microbiota (Hu et al., 2014;
Magnusson et al., 2015; Rosas-Villegas et al., 2017). Dietary
fibers, which include β-glucan, arabinoxylans, and resistant
starch, are non-digestible polysaccharides that are abundant
in whole grains, functionally known as microbiota-accessible
carbohydrates (MACs) (Daien et al., 2017; Gong et al., 2018).
They are the main source of energy for gut bacteria, and
they are essential to maintain human health (Koh et al., 2016;
Daien et al., 2017; Williamson, 2017). A long-term low-MAC
diet has been found to lead to microbiota extinction, which

presented intergenerational effects. The gut microbiota was
restored by a high-fiber diet in the first generation, but it was
not restored in the subsequent generations (Sonnenburg et al.,
2016).

In terms of dietary habits, the number of times people
eat at home has reduced significantly, whereas the number
of times people eat out and eat snacks has increased
rapidly. In food processing, the proportion of fresh food and
traditional fermented food has decreased significantly, whereas
the proportion of processed food and industrially produced
food has increased rapidly (De Filippo et al., 2017; Derrien and
Veiga, 2017; Statovci et al., 2017). The food additives, pesticide
residues, and drug residues in the food could greatly disrupt
the gut microbiota upon entry into the digestive tract (Suez
et al., 2014; Chassaing et al., 2015, 2017; Bian et al., 2017; Jiang
et al., 2017; Roca-Saavedra et al., 2017). Although most standard
additives are harmless to the body, they have effects on the gut
microbiota, which have generally been ignored until recently
(Roca-Saavedra et al., 2017). In addition to antiseptics such as
potassium sorbate and sodium benzoate, other additives also
significantly perturb the gut microbiota. Emulsifiers, including
hydroxymethyl cellulose and polysorbate 80, damage the gut
microbiota and induce inflammation and metabolic syndrome
(Chassaing et al., 2015). Artificial sweeteners, such as saccharin,
aspartame, and sucralose, alter the gut microbiota and gut-brain
function, inducing glucose intolerance (Suez et al., 2014; Bian
et al., 2017).

In short, it has become increasingly difficult for a person
to acquire adequate commensal microbiota from food, and the
significant changes in diet in recent decades may be the cause of
the convergent evolution of the gut microbiota in the modern
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urban population (De Filippo et al., 2017; Derrien and Veiga,
2017).

Lifestyle Changes
Human beings live in a bacterial world, and lifestyle factors such
as environment and habit determine the species and the number
of bacteria that one carries (Rook, 2009; Shanahan, 2009; De
Filippo et al., 2017; Jin et al., 2017; Velmurugan et al., 2017). The
living environment has changed since modernization. More and
more people have migrated from villages to cities and/or shifted
from working outdoors to working indoors; as a result, there
are fewer and fewer opportunities for people to touch pollution-
free soil and water to acquire harmless microorganisms (Rook,
2009; Shanahan, 2009; Jin et al., 2017; Velmurugan et al., 2017).
Lifestyle habits have changed as well. Instead of delivering babies
vaginally, modern pregnant women more frequently undergo
cesarean sections. Additionally, modern mothers often do not
have enough time to breastfeed for a variety of reasons, such as
work, so their children are usually fed processed formula milk
powder. Moreover, physical activity levels have been significantly
reduced with the convenience of modern life. The circadian
rhythm is also often disrupted; the average sleep duration has
decreased, and day and night inversion has become increasingly
common. The changes in delivery mode, feeding patterns,
physical activity, and circadian rhythm could all impact the
commensal microbiota (Shanahan, 2009; Di Mauro et al., 2013;
Hallgren et al., 2016; Khalyfa et al., 2017; Paschos and FitzGerald,
2017; Zhao and Zhang, 2017).

Health Care Changes
Health care conditions have been greatly improved since
modernization, but overtreatment and excessive hygiene have
perturbed the commensal microbiota (Armelagos, 2009; Rook,
2009; Blaser, 2016; Two et al., 2016; Joshipura et al., 2017;
Rook et al., 2017). Although drugs, including antibiotics, may be
harmless to the human body, they can damage the commensal
microbiota (Blaser, 2016). As public health standards have been
enhanced, disinfection and sterilization have become more and
more common in the workplace and at home. Personal hygiene
standards have also risen; the frequency of brushing teeth,
washing hands, and washing clothes have increased, which means
greater daily use of chemical products and more and more overly
clean people (Two et al., 2016; Joshipura et al., 2017).

Great Transformation of Disease Types
In brief, the tremendous changes in diet, lifestyle, and health
care have deprived modern people of opportunities to gain
adequate environmental and foodborne microorganisms. All
of these factors have changed the superorganism. The biggest
alterations in the human body from the times of the agricultural
society to the industrial society may not be in the human genes,
but in the commensal microbiota with which we coexist (Gomez,
2017; Mancabelli et al., 2017). The symbiotic relationship between
humans and microorganisms has been established over millions
of years of evolution by natural selection, and it is relatively
exclusive. For example, only the gut microbiota of mice can
facilitate their own immune maturation, whereas those of

humans and rats cannot (Ferreira and Veldhoen, 2012). The
new human gut microbiota was not established through long-
term natural selection, and it easily conflicts with the human
body. Thus, more and more human diseases have appeared that
deviate from Hardy-Weinberg Equilibrium, and they cannot be
explained by the genes present in humans alone (Lerner et al.,
2017; Neish et al., 2017; Rook et al., 2017).

The changes in the species and the construction of the
commensal microbiota inevitably cause alterations in human
function. For example, more and more modern city dwellers
present intolerance to traditional foods, including gluten, milk,
and eggs (Derrien and Veiga, 2017; Skypala, 2017; Tordesillas
et al., 2017). While traditional infectious diseases that prevailed
in the agricultural society have rapidly decreased, autoimmune
diseases, such as allergies and asthma; cardiovascular diseases,
such as hypertension; metabolic diseases, including diabetes and
fatty liver; mental disorders, including depression and anxiety;
and neurodegenerative diseases, such as Alzheimer’s disease and
Parkinson’s disease, have all increased significantly. This is the
epidemiological transition that modern people are experiencing
(Armelagos et al., 2005; Becker, 2007; Rook and Lowry, 2008;
Armelagos, 2009; Elliott and Weinstock, 2009; Bloomfield, 2013;
DALYs and Collaborators, 2017).

The most complex and important component of the
commensal microbiota is the gut microbiota, which is one of
the most biodiverse ecosystems in the world (Montiel-Castro
et al., 2013). The existence and construction of this ecosystem
are closely related to human health and disease. It is believed
that the microbiota plays a crucial role in the pathophysiology
of digestive diseases, metabolic diseases, immune diseases, and
neurodevelopmental diseases (Backhed, 2010; Clemente et al.,
2012; Eloe-Fadrosh and Rasko, 2013). Targeted therapy of the gut
microbiota will be an important and promising field in the future
(Petrof et al., 2013; Wallace and Redinbo, 2013; Young, 2017).

GUT MICROBIOTA, GUT-BRAIN, AND
GUT-BRAIN PSYCHOLOGY

Gut-Brain
The gut is the biggest digestive organ, immune organ, and
endocrine organ of the human body, and it also possesses a
nervous system [the enteric nervous system (ENS)], which is
relatively independent of the brain. During the fetal period,
neural crest cells almost simultaneously differentiate into the
central nervous system (CNS) and ENS. The ENS presents many
similarities with the brain in terms of neuronal components,
neurotransmitters, and functional independence (Petrof et al.,
2013; Wallace and Redinbo, 2013; Young, 2017). The gut
is a microbial organ with 90–95% of its total cell number
consisting of microorganisms. The gut provides living space and
food for microorganisms, while the microbiota influences the
development and function of the gut. The gut and gut microbiota
work together to perform the tasks of digestion, immune and
endocrine functions, and neurotransmission (Forsythe et al.,
2010; Lyte, 2010; Nicholson et al., 2012; Sudo, 2014; Ridaura and
Belkaid, 2015). We call this microbial organ gut-brain because,
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unlike other peripheral organs, it can work without instructions
from the brain, and this specificity can easily be found in
the persistent vegetative state (Liang et al., 2012; Liang et al.,
2018a,b). The gut-brain not only completes its local function,
but also regulates human behavior and cognition, similar to the
brain (Grenham et al., 2011; Collins et al., 2012; Mayer et al.,
2014a; Foster et al., 2016). Gut-brain psychology is the discipline
of studying the relationship between the gut-brain and mind.
Research in this field has increased rapidly over the last decade.

Gut Microbiota Regulates the
Development of Brain and Behavior
As shown in Figure 2, the gut microbiota develops almost
simultaneously with the brain and psychology. It not only
regulates the structure and function of the gut-brain, but also
influences the development of the brain and behavior (Luczynski
et al., 2016; Sharon et al., 2016; Kundu et al., 2017; Vuong
et al., 2017; Carlson et al., 2018), and microbiota disturbances at
different stages can induce different brain and mental disorders
(Borre et al., 2014; Gur et al., 2015; Sampson and Mazmanian,
2015; Dinan and Cryan, 2017).

The human gut microbiota does not appear suddenly, but
experiences a gradual growth from simple to complex, then
tends to stabilize, and finally declines slowly (Garcia-Pena et al.,
2017; Vuong et al., 2017). The fetus probably starts to come
in contact with the microorganisms early in the womb, at
which time the microbiota is mainly determined by maternal
physiological and psychological conditions, diet, drugs, and so
forth (Lim et al., 2016). The early microbiota of the newborn
is largely determined by the delivery mode. Vigorous newborns
typically gain many microorganisms, such as Lactobacillus, from
the maternal vagina, whereas neonates born by cesarean gain
microorganisms, such as Clostridium, from the air and the
maternal skin (Penders et al., 2006; Bokulich et al., 2016; von
Mutius, 2017). Feeding patterns regulate the microbiota in the
next stage. Breastfed infants obtain more Bifidobacterium and
Lactobacillus, whereas infants fed with formula milk obtain more
Enterococcus and Enterobacterium (Penders et al., 2006; Bokulich
et al., 2016; Kundu et al., 2017). Antibiotic use also reduces the
abundance of Bifidobacterium and Bacteroides, and it delays the
development of gut microbiota (Penders et al., 2006; Bokulich
et al., 2016; Wampach et al., 2017). Afterward, the gut microbiota
develops with age and dietary changes. For example, the original
dominant species such as Bifidobacterium decrease with age
(Penders et al., 2006; Bokulich et al., 2016). The phylogenetic
composition of the infant microbiota increases rapidly after birth,
and it evolves toward an adultlike configuration within a 3-
year period (Yatsunenko et al., 2012; Bokulich et al., 2016).
Then, the phylogenetic composition and diversity continue to
evolve, and the drastic changes of adolescence greatly impact
the development of the microbiota (Kundu et al., 2017). The gut
microbiota is relatively stable in adulthood, and more than 60%
of the microbiota, including Bacteroidetes and Actinobacteria,
experiences little changes (Faith et al., 2013; Borre et al., 2014).
In old age, the diversity of the gut microbiota declines, while
the richness of some opportunistic pathogens, including some

Clostridium species, increases (Claesson et al., 2011; Kundu et al.,
2017).

The gut microbiota influences the development and
maturation of the brain and mind (Diaz Heijtz et al., 2011;
Borre et al., 2014; Galland, 2014; Mu et al., 2016; Manderino
et al., 2017; Bruce-Keller et al., 2018). Germ-free (GF) animals
not only present developmental defects in brain structure, but
also show abnormal mental development (Diaz Heijtz et al.,
2011; Desbonnet et al., 2014; Ogbonnaya et al., 2015; Hoban
et al., 2016; Luczynski et al., 2016; Chen et al., 2017). Both
neuroplasticity and myelin plasticity are influenced by the gut
microbiota (Ogbonnaya et al., 2015; Hoban et al., 2016). An
abnormal gut microbiota can induce brain dysfunction and
mental disorders. Risk factors disturbing microbiota growth,
such as maternal stress, early infection, antibiotic use, and early
adversity, also perturb the development of the brain and mind
(O’Mahony et al., 2009; Borre et al., 2014; Gur et al., 2015; Diaz
Heijtz, 2016; Lim et al., 2016; Slykerman et al., 2017). Since
early postnatal life is the critical stage for the development of
the gut-brain, brain, and mind, microbiota abnormality at this
time could lead to irreversible damage in the brain and mind
(Borre et al., 2014; Bokulich et al., 2016). This could be a part of
the reason why early adversity increases susceptibility to mental
disorders (O’Mahony et al., 2009, 2017; Mika et al., 2017).

Normal Psychology and Behavior Cannot
Exist Without Gut Microbiota
The gut microbiota plays a significant role in the host’s mind and
behavior, although this role is usually ignored (Luczynski et al.,
2016; Vuong et al., 2017).

First, the gut microbiota regulates pain perception and
influences visceral pain response and peripheral pain
response. The visceral pain sensitivity of GF mice was
shown to be increased and alleviated after transplantation
with the feces microbiota of wild-type mice (Luczynski et al.,
2017). Pain sensitivity is also augmented after antibiotic
treatment or infection, and reduced after supplementation
with certain probiotics (Vuong et al., 2017). Myalgic
encephalomyelitis/chronic fatigue syndrome patients present
abnormal gut microbiota and metabolomics (Armstrong et al.,
2017), and their symptoms can be alleviated after treatment with
certain probiotics (Rao et al., 2009). Many pain-related disorders,
such as functional abdominal pain, migraine, and chronic back
pain, are strongly linked with abnormal microbiota (Gawronska
et al., 2007; Albert et al., 2013; Dai et al., 2017).

Second, cognitive functions, including learning capacity and
memory, are closely related to the gut microbiota (Gareau,
2016; Manderino et al., 2017). Either depriving the commensal
microbiota or disrupting the microbiota with antibiotics damages
working memory and spatial memory, whereas probiotic
administration improves memory (Liang et al., 2015; Ohsawa
et al., 2015; Wang et al., 2015; Vuong et al., 2017).

Third, mood and emotion are affected by the gut microbiota
(Luczynski et al., 2016; Cowan et al., 2017; Hoban et al.,
2017; Vuong et al., 2017). Germ-free animals present abnormal
anxiety-like behaviors, which appear to be amenable to microbial
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FIGURE 2 | The gut-brain, brain, and mentality develop almost synchronously throughout the lifespan. The gut-brain, brain, and mentality undergo similar
developmental patterns; all three are susceptible to several factors that influence the gut microbiota. Myelination, intestinal length, and the gut microbiota develop
almost synchronously. Diet plays an important role in the maturation of the gut-brain and brain, and mentality is regulated by the development of the brain and
gut-brain. Microbiota disruption at different stages is likely to increase the incidence of different mental disorders.

intervention (Luczynski et al., 2016). Pathogen infection quickly
induces sickness behavior, with infected subjects showing fatigue,
social avoidance, decreased appetite, and increased anxiety-like
behavior (Lyte et al., 2006; Lyte, 2013; De Palma et al., 2014;
Gur et al., 2015). Perturbing the gut microbiota using stress
or antibiotics also increases anxiety-like and depression-like
behaviors (Lurie et al., 2015; Frohlich et al., 2016; Slykerman
et al., 2017). Meanwhile, supplementing with certain probiotics,
prebiotics, or fermented foods reduces negative behaviors and
improves these emotions (Cryan and Dinan, 2012; Steenbergen
et al., 2015; McKean et al., 2017; Vuong et al., 2017).

Fourth, temperament and character are closely linked
with the gut microbiota—they can even transmit from one
subject to another through fecal microbiota transplantation
(FMT) under certain conditions (Collins et al., 2013; Kelly
et al., 2016; Zheng et al., 2016; Kim H.N. et al., 2017).
The transfer of microbiota from high anxiety-like Balb/C
mouse strain to low anxiety-like GF NIH Swiss mice has
been found to be anxiogenic in the recipient. The same
is true of the reverse transplantation: NIH Swiss bacteria
transferred into GF Balb/C mice attenuate the recipients’ anxious
phenotype (Bercik et al., 2011a; Collins et al., 2013). Among
toddlers, surgency/extraversion is positively associated with
phylogenetic diversity (Christian et al., 2015). Among adults, high
neuroticism and low conscientiousness are correlated with the
high abundances of Gammaproteobacteria and Proteobacteria,
respectively. Meanwhile, high conscientiousness is associated
with an increased abundance of some universal butyrate-
producing bacteria, including Lachnospiraceae (Kim H.N. et al.,
2017).

Fifth, stress management is impacted by the gut microbiota.
The gut microbiota is a part of the stress response system
(Dinan and Cryan, 2012; Luczynski et al., 2016). Psychological
stresses not only activate the neuroendocrine, immune, and
nervous systems, but they also destroy mood and disturb the gut
microbiota (Gur et al., 2015; Liang et al., 2015; Bharwani et al.,
2016). The amygdala, which plays a crucial part in stress-related
mood and behavior response as well as in emotion regulation,
is remarkably impacted by the gut microbiota (Cowan et al.,
2017; Hoban et al., 2017). A healthy microbiota helps the host
to cope with stress, whereas an abnormal microbiota reduces
the resistance and increases the susceptibility to stress-related
disorders (Moloney et al., 2014; Parashar and Udayabanu, 2016;
Cowan et al., 2017; Vuong et al., 2017).

Sixth, gut microbiota affects dietary behavior. The dietary
patterns of mammals are strongly linked to their gut microbiota,
which vary significantly among animals with different dietary
compositions (Nishida and Ochman, 2017). A typical example
of this is the red panda, in whose gut the metabolism of dietary
bamboo depends on the microbiota (Kong et al., 2014). The
human appetite is probably modulated by the gut microbiota;
some food tastes good possibly because the microbiota requires
suitable food to promote its proliferation (van de Wouw et al.,
2017). The gut microbiota may also play a vital part in eating
disorders, such as anorexia nervosa (Glenny et al., 2017; van de
Wouw et al., 2017).

Finally, social interaction and reproductive behavior are
strongly linked with the commensal microbiota. A normal gut
microbiota is essential for the development of social behavior
(Desbonnet et al., 2014). Germ-free mice present more social
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avoidance, while microbiota reconstitution in time improves
their social interaction (Montiel-Castro et al., 2013; Desbonnet
et al., 2014; Buffington et al., 2016). Social anxiety in response
to novel subjects or a novel environment is also related to the
gut microbiota (Parashar and Udayabanu, 2016). Mating choices
that are dependent on olfaction and reproductive behavior in
mammals are impacted by the commensal microbiota (McFall-
Ngai et al., 2013; Stumpf et al., 2013).

Both Mental Illnesses and Neurological
Diseases Are Closely Related to
Abnormal Microbiota
Research indicates that mental disorders are likely to be rooted
in abnormal gut microbiota, and targeting the microbiota should
play a vital role in future therapy (Fond et al., 2015; Liang
et al., 2015, 2018b; Ochoa-Reparaz and Kasper, 2018). Depressive
disorder is strongly linked to the gut microbiota (Jiang et al.,
2015; Liang et al., 2018b), and depressive symptoms can be
transmitted from humans to GF or microbiota-depleted rodents
through FMT (Kelly et al., 2016; Zheng et al., 2016), while
probiotics intervention can alleviate and improve the disorder
(Liang et al., 2015; Pirbaglou et al., 2016; Wallace and Milev,
2017). The gut microbiota also plays a crucial part in the
etiology of anxiety disorders, such as obsessive compulsive
disorder, post-traumatic stress disorder, and panic attacks, while
regulating the microbiota brings about therapeutic effects for
these disorders (Kantak et al., 2014; Leclercq et al., 2016; Schnorr
and Bachner, 2016; Turna et al., 2016). Bipolar disorder is
significantly related to microbiota abnormalities (Evans S.J. et al.,
2017; Yolken and Dickerson, 2017), and microbiota regulation
probably alleviates the disorder (Hamdani et al., 2015; Dickerson
et al., 2017). Schizophrenia is related with the dysfunction
of microbiota–gut–brain axis (Nemani et al., 2015; Rodrigues-
Amorim et al., 2018; Shen et al., 2018), and improving the gut-
brain and immune functions by targeting the microbiota could
possibly produce beneficial effects (Davey et al., 2013; Tomasik
et al., 2015; Dickerson et al., 2017). Additionally, patients
subjected to neurodevelopmental disorders, including autism
spectrum disorders (ASD) and attention deficit hyperactivity
disorder (ADHD), possess abnormal gut microbiota (Mayer
et al., 2014b; Aarts et al., 2017; Strati et al., 2017), while
correcting the microbiota abnormalities in a timely manner
probably improves the development of the brain and behavior
and has remedial effects (Borre et al., 2014; Partty et al.,
2015; Kang et al., 2017; Doenyas, 2018; Yang et al., 2018).
Neurodegenerative diseases, such as Alzheimer’s disease and
Parkinson’s disease, may also originate from the gut (Hu
et al., 2016; Liddle, 2018); aberrations first appear in the
gut microbiota and gut (Li W. et al., 2017; Mancuso and
Santangelo, 2017), with ENS degeneration occurring first and
gradually spreading to the CNS, while improving gut-brain
function by adjusting the microbiota has remedial effects (Hu
et al., 2016; Liddle, 2018). The gut microbiota is also involved
in the pathophysiology of behavior disorders, including drug
addiction and substance abuse, while behavior modifications
combined with microbiota regulation may have beneficial effects

(Engen et al., 2015; Vogtmann et al., 2015; Kiraly et al.,
2016; Skosnik and Cortes-Briones, 2016). Additionally, the
gut microbiota plays a vital role in the pathophysiology of
neurobiological diseases, such as multiple sclerosis, hepatic
encephalopathy, epilepsy, and migraine (Liang et al., 2012;
Sharon et al., 2016; Wu et al., 2016; Dai et al., 2017; van
den Hoogen et al., 2017). The prevalence of mental disorders
and neurological diseases has been ever increasing, almost in
parallel with the changes in the human commensal microbiota.
In response to this, therapies targeting the microbiota have
gained more and more attention, and attempts to treat these
diseases by microbiota intervention using probiotics, prebiotics,
and FMT have increased steadily (Cryan and Dinan, 2012;
Dinan et al., 2013; Liang et al., 2015; Pirbaglou et al., 2016;
He et al., 2017; Kang et al., 2017; Mika et al., 2017; Zhao
et al., 2017; Bruce-Keller et al., 2018; Yang et al., 2018).
Thus far, researchers have proposed several theories, such
as the gut microbiota hypothesis (Liang et al., 2018a,b), the
“old friends” hypothesis (Rook and Lowry, 2008), and the
leaky gut theory (Smythies and Smythies, 2014), to explain
the relationship between the gut microbiota and the above-
mentioned diseases.

The Gut Microbiota Hypothesis of Brain Disorders
In 2002, F Jin’s lab found that pigs fed with Lactobacillus-
fermented fodder were more resistant to swine influenza and
porcine reproductive and respiratory syndrome when compared
with conventional pigs. Their meat was more nutritious and
delicious and even their characters were more meek and less
aggressive. Since then, the lab has turned its attention to
the relationship of the commensal microbiota with behavior
and psychology. In 2012, the lab tried to comprehensively
elucidate the role that commensal microbiota plays in human
mental disorders and neurological diseases (Liang et al., 2012).
Then, after a series of experiments, the lab found that
anxiety-like behavior, depression-like behavior, and cognitive
impairment induced by gastrointestinal disease, a high-fat diet,
and antibiotic use were all associated with gut microbiota
abnormalities and improved by gut microbiota regulation using
specific Lactobacillus strains (Hu et al., 2014, 2015; Luo et al.,
2014; Wang et al., 2015). Their next study indicated that
the key reason for both acquired and inborn depression was
likely to be an abnormal gut microbiota (some of the data
were unpublished). In the chronic restraint stress depression
model, depressive rats had microbiota that was different from
control rats; the traditional antidepressant citalopram alleviated
some behavioral and physiological aberrations, but could not
recover the microbiota, while the Lactobacillus helveticus NS8
intervention not only improved the behavioral and physiological
abnormalities, but also recovered the microbiota (Liang et al.,
2015). In the inborn depression model, the Wistar Kyoto (WKY)
rats possessed a gut microbiota that was distinct from the control
Wistar rats. Chronic restraint stress aggravated the depressive-
like symptoms, and Lactobacillus helveticus NS8 supplementation
presented the opposite effect with stress; it also alleviated the
behavioral, biochemical, and microbiota aberrations as in the
case of the acquired depression model. The lab further found
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that aggressive behavior was connected with the microbiota;
for example, prisoners with violent tendencies presented higher
levels of blood ammonia (NH3) (Duan et al., 2015). They
also found that ASD, ADHD, and Tourette syndrome were all
closely related with gut microbiota abnormalities and could be
improved by specific probiotic intervention. This research is
still ongoing. Patients diagnosed with Alzheimer’s disease and
Parkinson’s disease have also been found to possess abnormal
gut microbiota, and their hypofunction in the brain and gut-
brain can be improved by specific probiotic intervention (Hu
et al., 2016; Li W. et al., 2017). Based on the above research
and observations, the lab proposed the gut microbiota hypothesis
(Liang et al., 2018a,b). According to this hypothesis, many factors
in the modern society, including unhealthy diet, antibiotic use,
and life stress, disturb the gut microbiota, and an abnormal
microbiota may be a direct risk factor for mental and brain
illnesses. Abnormal microbiota and the subsequent dysfunction
in the microbiota–gut–brain axis are the main pathophysiology of
these disorders, and regulating the microbiota by valid methods,
such as probiotics or a healthy diet, will have therapeutic
effects.

The “Old Friends” Hypothesis
The “old friends” hypothesis, or the early immune challenge
hypothesis, was proposed by Rook on the basis of Strachan’s
hygiene hypothesis (Strachan, 1989; Rook and Lowry, 2008;
Kramer et al., 2013; Rook, 2013). This theory proposes that
the symbiotic relationship between humans and the commensal
microbiota has been formed over millions of years of evolution,
and that it is evolution dependent and adapted to the hunter-
gatherer life. This microbiota was or used to be humans’ “old
friends,” which include microorganisms and helminths found
in pollution-free water, soil, and food. However, in modern
society, dramatic changes in health care, lifestyle, and diet
have greatly diminished exposure to these friends, which has
resulted in abnormalities in immune development. Only through
adequate exposure to these “old friends” can naïve dendritic
cells (DCs) mature to regulatory dendritic cells (DCreg). In
turn, the DCreg induce the maturation of T-lymphocytes into
regulatory T-lymphocytes (Treg). The Treg regulate immune
tolerance information, which means that these “old friends” and
human tissues do not generate an immune response. Regulatory
T-lymphocytes also regulate the intensity of immune response
by certain biological process, such as the release of interleukin
10 (IL-10), and avoid excessive immune responses that could
damage the human body. However, with the lack of the “old
friends,” the DCs cannot mature, and T-lymphocytes differentiate
into effective T-lymphocytes, such as Th1, Th2, and Th17.
In this condition, subjects may present immune responses to
harmless microorganisms and their own tissues, as in the case
of allergies and autoimmune diseases, and they are also likely to
present inappropriate and uncontrollable inflammation. Chronic
inflammation may be a risk factor for many diseases, including
allergies, autoimmune diseases, chronic inflammatory diseases,
and mental disorders (Becker, 2007; Rook and Lowry, 2008;
Elliott and Weinstock, 2009; Rook et al., 2011, 2017; Bloomfield,
2013; Kramer et al., 2013).

The Leaky Gut Theory
The human body has two major barriers—the gut barrier and
the blood–brain barrier (BBB)—in addition to the placental
barrier in pregnant females. The gut barrier regulates the flow
of nutrients and signal molecules in the body and prevents the
entry of microorganisms, food residue, and harmful substances.
The BBB controls the entry and exit of substances in the
circulatory system, and its key components are tight junctions
(TJs). Thus, the integrity of the barriers is critical for human
health (Borre et al., 2014; Kelly et al., 2015). The gut microbiota
regulates the development and function of these barriers, for
example, influencing the formation of TJs (Braniste et al.,
2014). Many factors, such as stress, alcohol use, unhealthy diet,
and heavy metal, damage the gut barrier, increase intestinal
permeability, and allow biomacromolecules and microorganisms
to pass through to the body that could not do so before; this
syndrome is called leaky gut (Leclercq et al., 2012; Slyepchenko
et al., 2017). The early leaky gut theory emphasizes more on the
nutrient absorption and immune function of gut barrier (Fink,
1990), whereas the latest leaky gut theory posits that when the
gut barrier is broken, not only bacterial translocation, circulating
lipopolysaccharides (LPS) levels, and immunoglobulin (Ig) M
and IgA levels increase, but the BBB is also impaired, and cyclic
biomacromolecules can even pass through the BBB, reaching the
brain and inducing neuroinflammation (McCusker and Kelley,
2013; Smythies and Smythies, 2014; Kelly et al., 2015). These
are key contributors to many inflammatory diseases, metabolic
diseases, mental disorders, and neurological diseases (de Kort
et al., 2011; Fasano, 2012; Smythies and Smythies, 2014; Potgieter
et al., 2015; Garcia Bueno et al., 2016; Slyepchenko et al., 2017).
Repairing the gut barrier by microbiota regulation is likely to be
an effective therapy for these diseases (Ait-Belgnaoui et al., 2012).

In conclusion, human mind and behavior are not only
regulated by the brain, but are also probably impacted by the
gut-brain. Thus, factors perturbing the gut microbiota also affect
the brain and mind simultaneously. Although each of the above
theories has a different focus, all of them hold that mental
disorders are closely related to abnormal gut microbiota. The “old
friends” hypothesis emphasizes the evolution of the microbiota,
whereas the leaky gut theory emphasizes on the function of the
gut barrier, but both the theories recognize immune dysfunction
as the main cause and future therapy target for brain disorders.
Both the gut microbiota hypothesis and the leaky gut theory hold
that abnormal microbiota injures gut-brain function, thereby,
damaging brain function and finally inducing mental and brain
disorders. However, the gut microbiota hypothesis puts more
emphasis on how the microbiota influences the brain and
behavior, which is currently the field of greatest concern in
gut-brain psychology.

GUT MICROBIOTA IMPACTS THE BRAIN
AND BEHAVIOR THROUGH THE
MICROBIOTA–GUT–BRAIN AXIS

The brain-gut axis is the bidirectional communication
between the CNS and the digestive tract (Wood, 2007;
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O’Mahony et al., 2011; Liang et al., 2012). Recent research
reminds us to bring gut microbiota into this axis, which is the
microbiota–gut–brain axis. As shown in Figure 3, the influences
of microbiota overstep the gut and reach the whole body,
especially the brain, through the microbiota–gut–brain axis
(Cryan and O’Mahony, 2011; Grenham et al., 2011; Collins et al.,
2012; Mayer et al., 2014a, 2015; Smith, 2015; Kelly et al., 2017;
Cox and Weiner, 2018; Dinan et al., 2018; Liang et al., 2018b). The
microbiota–gut–brain axis mainly contains three pathways: the
nerve pathway, neuroendocrine pathway, and immune pathway.

Nerve Pathway
The nerve pathway is the fastest way through which microbiota
affects the brain and behavior; it includes neural conduction
(Forsythe et al., 2014), neurotransmitter (Wall et al., 2014),
neurogenesis (Ogbonnaya et al., 2015), apoptosis, and
neurodegeneration (Thion et al., 2017; Westfall et al., 2017).

Neural Conduction
The oral microbiota impacts not only lower organs, but also
the head and brain (Montiel-Castro et al., 2013; Gholizadeh
et al., 2016). In certain conditions, the oral microbiota and its
metabolites can even directly activate cranial nerves, such as the
olfactory nerve and trigeminal nerve, to influence the brain and
behavior; they are probably involved in the pathophysiology of
neurodegenerative diseases (Garcia-Pena et al., 2017; Marizzoni
et al., 2017).

The gut microbiota can affect the brain and behavior through
the vagus nerve (Forsythe and Kunze, 2012; Quigley, 2017;
Bonaz et al., 2018). The sickness behavior induced by infection
is closely related to the vagus nerve. The primary afferents
send out the microbial signals first and activate the vagus
nerve quickly and then transmit the message to the brain
(Forsythe et al., 2014). The gut microbiota recognizes neural
signals released by the host and responds appropriately to
prompt its own proliferation. They can also respond quite
differently to different catecholamines and recognize other neural
signals, such as serotonin (5-HT), gamma-aminobutyric acid
(GABA), and neuropeptides (Lyte, 2014b; Sudo, 2014; Wall et al.,
2014). Infection by pathogens, such as Campylobacter jejuni and
Citrobacter amalonaticus, increases anxiety-like behavior, while
probiotic supplementation with bacteria, including Lactobacillus
rhamnosus and Bifidobacterium longum, reduces anxiety-like and
depression-like behaviors. Both the anxiogenic/depressive effect
and the anxiolytic/antidepressant effects depend on the vagus
nerve, and they are eliminated by vagotomy (Lyte et al., 2006;
Bercik et al., 2011b; Bravo et al., 2011; Forsythe and Kunze, 2012;
Forsythe et al., 2014).

It is unclear how the sympathetic nervous system works in the
communication between the gut and brain, but the research on
hypertension has revealed that it is involved in the regulation of
the gut barrier function (Taylor and Takemiya, 2017; Yang and
Zubcevic, 2017).

Neurotransmitters
The neurotransmitter content of mammals is regulated not
only by their own bodies, but also by their gut microbiota

(Diaz Heijtz et al., 2011; Wall et al., 2014). Gut microbiota
can synthesize neurotransmitters directly (Lyte, 2014a; Wall
et al., 2014; Mazzoli and Pessione, 2016), and more than 90%
of 5-HT and 50% of dopamine (DA) are synthesized in the
gut (Sudo, 2014; Yano et al., 2015). Many bacteria, including
Bacillus strains and some lactic acid bacteria (LAB) species,
synthesize catecholamines and/or acetylcholine (ACh) (Wall
et al., 2014). Members of the genera Candida, Streptococcus,
Escherichia, and Enterococcus synthesize 5-HT (Holzer and
Farzi, 2014). Several coryneform bacteria and many LAB strains
are able to produce glutamate (Glu), and both prokaryotes
and eukaryotes synthesize GABA through the decarboxylation
of Glu by glutamate decarboxylase (Mazzoli and Pessione,
2016).

Gut microbiota regulates the synthesis of neurotransmitters
by changing the neurotransmitter-related metabolism pathways
(O’Mahony et al., 2014; Mazzoli and Pessione, 2016). Taking
5-HT as an example, more than 90% of the body’s 5-
HT is synthesized in the gut by enterochromaffin cells
(Margolis et al., 2014). Tryptophan can synthesize 5-HT,
and it can also produce kynurenine catalyzed by the largely
hepatic-based enzyme tryptophan-2,3-dioxygenase (TDO) or
the ubiquitous indoleamine-2,3-dioxygenase (IDO) (O’Mahony
et al., 2014). Some indigenous spore-forming microbes can
induce the biosynthesis and bioavailability of 5-HT by prompting
enterochromaffin cells to upregulate tryptophan hydroxylase
1 expression (Yano et al., 2015; Yang et al., 2017). The gut
microbiota also regulates the brain concentration of 5-HT, which
is probably implemented by the inhibition of the kynurenine
pathway (Desbonnet et al., 2008; Luo et al., 2014; Liang et al.,
2015; Kennedy et al., 2017).

The gut microbiota impacts the expression of
neurotransmitter-related genes. Many genes linked with
neurotransmitters in the striatum of male GF NMRI mice were
found to be expressed differently when compared with their
specific pathogen-free (SPF) counterparts (Diaz Heijtz et al.,
2011). Additionally, the mRNA expression of the NR2B subunit
of N-methyl-D-aspartate (NMDA) receptors in the central
amygdala and the 5-HT1A receptor in the hippocampus of
female NMRI mice was reduced when compared with the SPF
mice (Neufeld et al., 2011). Moreover, the gene expression of
GABAA and GABAB in several areas of the brain changed after
Lactobacillus rhamnosus JB-1 intervention in adult BALB/c mice
(Bravo et al., 2011).

Neurogenesis, Apoptosis, and Neurodegeneration
Adult neurogenesis is influenced by the gut microbiota. The
hippocampal neurogenesis of adult GF mice was found to
be increased when compared with conventional mice, and
postweaning microbial colonization of GF mice did not affect
the abnormalities, suggesting that there is a critical window
in early life during which microbial colonization influences
adult hippocampal neurogenesis (Ogbonnaya et al., 2015). Brain
neurogenesis is regulated by the brain-derived neurotrophic
factor (BDNF), while the content and gene expression of BDNF
are regulated by the gut microbiota. The concentration and gene
expression of brain BDNF changed in GF animals and decreased
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FIGURE 3 | The gut-brain communicates with the brain mainly via three pathways of the microbiota–gut–brain axis. First, the gut microbiota influences the synthesis
and secretion of neurotransmitters, including 5-HT, GABA, DA, NE, Glu, and ACh. Gut signals can activate the ENS and primary afferents as well as transmit
messages to the brain through the vagus nerve and the sympathetic nervous system. Second, the gut microbiota impacts the concentration and function of
neuropeptides that include neuropeptides, gut peptides, OT, and opioid peptides and neurohormones, such as melatonin, communicating with the brain through the
neuroendocrine pathway, including the HPA axis and hypothalamus-pituitary-other peripheral glands axis. Third, the gut microbiota regulates the function of TJs and
TLRs in the gut barrier and BBB, adjusts the differentiation of lymphocytes, and impacts the brain via the immune pathway. Additionally, the bioactive products of the
microbiota also influence the microbiota–gut–brain axis. The five influential factors on the left protect the microbiota and the mucous layer, leading to the production
of beneficial substances, such as SCFA, by the microbiota, which results in an anti-inflammatory environment; meanwhile, the five factors on the right are likely to
interrupt the normal function of the gut-brain, which can induce mucus loss and microbiota disturbance, leading to the production of harmful substances such as
lipopolysaccharide and NH3 and resulting in a pro-inflammatory environment. NP, Neuropeptides; GP, Gut peptides; OP, Opioid peptides; MT, Melatonin; LPS,
lipopolysaccharide; MC, M cell; EC, Enteroendocrine cell.

in frail subjects, but increased after probiotic intervention (Sudo
et al., 2005; Bercik et al., 2010; Ait-Belgnaoui et al., 2014; Distrutti
et al., 2014; Maqsood and Stone, 2016).

Myelination and myelin plasticity are also impacted by the
gut microbiota. The absence of microbiota was found to result
in hypermyelinated axons in the prefrontal cortex and the
overexpression of myelin component genes in a region- and
sex-dependent manner. Conventional microbiota colonization
following weaning inhibited the overexpression of these genes,
but it did not reverse the levels of the proteins they encoded
(Hoban et al., 2016). The gut microbiota plays a vital role in
diseases characterized by CNS demyelination, such as multiple
sclerosis (Lee et al., 2011; Girolamo et al., 2017; van den Hoogen
et al., 2017).

The apoptosis of neurons is related to gut microbiota.
The programmed cell death in the hypothalamus and some
hippocampus areas was found to be increased in neonatal
GF mice when compared with conventional mice, which was
paralleled by the elevation in the number and density of microglia
and the increase of microglia biomarkers in these areas (Castillo-
Ruiz et al., 2018).

Neurodegeneration and its accumulation are influenced
by the gut microbiota. Abnormal microbiota or microbial
metabolites may influence neurodegeneration through the
promotion of amyloid formation by human proteins or by

enhancing inflammatory responses to endogenous neuronal
amyloids (Friedland and Chapman, 2017; Hoffman et al., 2017;
Minter et al., 2017), while microbiota interventions, such as
probiotic supplementation, may prevent or even reverse this
process (Hu et al., 2016; Westfall et al., 2017).

Endocrine or Humoral Pathway
The gut is the largest endocrine organ in the human body.
It contains more than 20 different kinds of enteroendocrine
cells, expresses more than 30 kinds of hormone genes, each
with several phenotypes, and secretes more than 100 hormonal
peptides (Raybould, 2010; Rehfeld, 2014). The gut microbiota
can influence the brain and behavior through the endocrine
pathway, directed by the neuroendocrine cells, neuropeptides,
and neuroactive substances (Liang et al., 2012; Holzer and Farzi,
2014; Sudo, 2014; Wall et al., 2014).

Neuroendocrine
The endocrine system also governs the whole body via signaling
molecules. The hypothalamus is a higher nervous center for the
regulation of viscera and endocrine function; it plays a vital role
in the secretion of pituitary hormones and autonomic nervous
system activity. The pituitary gland is the most important
endocrine gland and the main regulator of homeostasis through
hormones. It controls the synthesis of many key hormones
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that regulate metabolism, development, reproduction, and other
functions. The hypothalamus, pituitary gland, and peripheral
endocrine glands constitute the neuroendocrine system, which
facilitates the communication between the brain and gut (Sudo,
2014; Rieder et al., 2017; Cussotto et al., 2018).

The hypothalamic–pituitary–adrenal (HPA) axis is the main
pathway of neuroendocrine transmission, and it is a crucial part
of the stress response system. The gut microbiota is essential
to the development and function of the HPA axis (Liang
et al., 2012; Sudo, 2014). The absence of a microbiota induces
abnormal development of the HPA axis and only colonization
within a critical window will prompt HPA axis maturation
(Sudo et al., 2005; Liang et al., 2012; Keightley et al., 2015).
Germ-free mice were found to present an enhanced HPA
stress response and reduced sensitivity to negative feedback
signals when compared with SPF mice (Sudo et al., 2005; Sudo,
2006, 2014). The exaggerated HPA response by GF mice was
reversed by reconstitution with Bifidobacterium infantis, but it
was exacerbated by mono-colonization with enteropathogenic
Escherichia coli. The enhanced HPA response of GF mice was
also partly corrected by reconstitution with SPF feces at an early
stage, but it was not corrected by any reconstitution performed
at a later stage (Sudo et al., 2005; Sudo, 2014). Even if one has
an intact microbiota, many factors, such as chronic stress and
antibiotic use, can impair the function of the HPA axis, while
probiotic intervention improves the function of the HPA axis
both in juveniles and adults (Eutamene and Bueno, 2007; Gareau
et al., 2007; Liang et al., 2015; Wang et al., 2015).

The gut microbiota also plays an important role in the activity
of other peripheral endocrine glands, such as the release of sex
hormones and thyroid hormones (Neuman et al., 2015; Cussotto
et al., 2018). The gut microbiota regulates estrogen primarily
through the secretion of β-glucuronidase, which can deconjugate
estrogen into its active forms (Baker et al., 2017). Testosterone
enriches the male microbiota with specific bacteria, including
SFB, E. coli, and Shigella-like bacteria, while the transplantation
of the male microbiota into females elevates testosterone levels
(Markle et al., 2013).

Neuropeptides and Neurohormones
Neuropeptides are a type of bioactive peptide that are widespread
in the nervous system; they include neuropeptide Y (NPY),
oxytocin (OT), calcitonin gene-related peptide, vasoactive
intestinal peptide, somatostatin, corticotrophin-releasing factor
(CRF) and so forth. These neuropeptides serve as messengers
of the microbiota–gut–brain axis and are either released by
enterocytes to regulate microbiota or secreted by the microbiota
to influence the host (Holzer and Farzi, 2014; Lach et al.,
2017).

The gut microbiota regulates the concentration and activity of
gut peptides/gut hormones, including insulin, glucagon, gastrin,
cholecystokinin, and leptin (Berthoud, 2008; Lach et al., 2017;
Worthington et al., 2018). For example, insulin sensitivity is
regulated by the gut microbiota; microbiota disturbance induces
insulin resistance, whereas microbiota regulation alleviates
insulin resistance (Bekkering et al., 2013; He and Shi, 2017; Kim
Y.A. et al., 2017).

The NPY family mainly consists of NPY, peptide YY (PYY),
and pancreatic polypeptide (PP). Neuropeptide Y is the most
abundant neuropeptide in brain, and it is found at all levels
of the microbiota–gut–brain axis. Meanwhile, PYY and PP are
exclusively expressed by the endocrine cells of the digestive
system, but they can pass through the BBB to impact the brain
(Holzer et al., 2012). The NPY family plays important roles
in regulating energy homeostasis, mood, and stress resilience
(Holzer, 2016; Lach et al., 2017). Neuropeptide Y regulates
microbiota composition mainly by altering gastrointestinal
activity and immunity. In turn, the microbiota recognizes NPYs,
impacts their synthesis and secretion, and ultimately influences
the brain and behavior (Holzer et al., 2012; Holzer and Farzi,
2014; Holzer, 2016; Lach et al., 2017).

Oxytocin plays an important part in many activities, such
as parturition, lactation, social interaction, and stress response
(Fineberg and Ross, 2017). The synthesis and release of OT are
probably impacted by the gut microbiota. Microbiota depletion
from weaning by antibiotics induces abnormal behaviors and
cognitive impairment, and reduces OT mRNA levels in the
hypothalamus (Desbonnet et al., 2015). Maternal high-fat
diet (MHFD) offspring exhibit social deficits, gut microbiota
abnormalities, and OT immunoreactive neuron reduction in
the hypothalamus; these abnormalities can be prevented by
cohousing with the offspring of mothers on a regular diet or
Lactobacillus reuteri treatment, and can be transmitted to GF
mice after microbiota colonization from MHFD mice (Buffington
et al., 2016).

Opioid peptides are one kind of neurohormones that widely
exist in the brain and peripheral organs (Terenius, 2000; Bodnar,
2016). The endogenous opioid system plays a crucial role in
many different kinds of human activities, of which pain and
analgesia, tolerance, and dependence are of the greatest concern
(Akbarali and Dewey, 2017; Bodnar, 2017; Hearing et al., 2018).
Although it is unclear how the endogenous opioid system is
involved in the microbiota–gut–brain axis, opioids significantly
alter the composition of the gut microbiota, while the microbiota
possibly plays important roles in behavioral responses to opioids,
including the development of tolerance to its pain-relieving
effects (Meng et al., 2015; Banerjee et al., 2016; Kiraly et al., 2016;
Lazaro et al., 2016; Skosnik and Cortes-Briones, 2016; Acharya
et al., 2017; Akbarali and Dewey, 2017; Wang and Roy, 2017).

Furthermore, circadian rhythms are fundamental properties
of mammals, and the microbiota is also regulated by the host’s
circadian clock (Paulose and Cassone, 2016; Zhao and Zhang,
2017). Melatonin is a neurohormone secreted by the pineal gland
that plays a vital role in the regulation of the circadian rhythm.
Host circadian rhythms are influenced by bacterial signaling
via the immune system, and the gut bacteria are sensitive to
melatonin (Paulose et al., 2016; Thaiss et al., 2017). For example,
melatonin specifically increases the magnitude of swarming in
cultures of Enterobacter aerogenes in a dose- and temperature-
dependent manner (Paulose and Cassone, 2016).

Neuroactive Substances
The neuroactive substances generated during gut microbiota
metabolism, including fatty acids, neural signals, and polyamines,
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also impact the brain and behavior (Forsythe and Kunze, 2012;
Kibe et al., 2014; Wall et al., 2014).

The gut microbiota produces short-chain fatty acids (SCFAs),
such as acetic acid, propionic acid, and butyric acid, mostly
from the degradation of fibers (Koh et al., 2016). The SCFAs are
recognized by the receptors in enterocyte and enteroendocrine
cells; thereby, SFCAs further affect the nervous and immune
systems (Wall et al., 2014; Koh et al., 2016). In addition, they can
pass the BBB to regulate brain development and neurotransmitter
synthesis, thereby impacting the maturation and function
of microglia (Erny et al., 2015). Polyunsaturated fatty acids
(PUFAs), including arachidonic acid and docosatetraenoic acid,
are important constituents of the brain, and they affect
brain growth and neurotransmission. PUFAs regulate the gut
microbiota, while microbiota, such as Bifidobacterium breve
NCIMB702258, impacts the brain PUFA content (Wall et al.,
2012; Robertson et al., 2017). Conjugated linoleic acid (CLA)
can pass through the BBB and be metabolized in the brain,
thereby influencing the brain and behavior, while certain bacteria,
including some strains of Lactobacillus and Bifidobacterium,
synthesize CLA (Wall et al., 2014).

The gut microbiota also produces other substances, such as
amines, phenols, NH3, indole, indole derivatives, and sulfureted
hydrogen, from the metabolism of proteins and amine acids
(Hamer et al., 2012; Pimentel et al., 2013; Agus et al., 2018).
Take NH3 as an example; most of the ammonia in the blood is
produced in the gut by the decomposition of urea by gut bacteria,
such as Helicobacter pylori. The accumulation of NH3 in the
blood damages astrocyte cells and disturbs neurotransmitters,
including Glu and GABA. Hyperammonemia is one of the
important risk factors of neurological diseases, such as hepatic
encephalopathy and autism (Albrecht, 2007; Liang et al., 2012;
Wang et al., 2012).

Immune Pathway
The gut is also the biggest immune organ of the human body.
Its internal surface area is about 200 square meters, and it forms
a barrier separating the intestinal tissue from the outside. Gut
mucosal immunity is one of the most important parts of the
innate immune system, and the immune cells in gut-associated
lymphatic tissue (GALT) account for about 70 to 80% of the
total immunologically active cells (Tlaskalova-Hogenova et al.,
2005). The immune system plays a crucial role in the symbiotic
relationship with commensal microbiota; it has coevolved with
the microbiota for millions of years, and it cannot mature without
normal microbial colonization. The absence of the microbiota
leads to significant immune deficiency (Gensollen et al., 2016).
The gut microbiota regulates the development and function of
innate and adaptive immunity and influences neuroimmunity
and inflammation to change the brain and behavior (Freestone
et al., 2008; Lee and Mazmanian, 2010; Liang et al., 2012; Lyte,
2014a; Neuman et al., 2015; Levy et al., 2017).

Innate Immunity
The maturation and function of the innate immunity depend on
the gut microbiota. The gut microbiota affects the development
and function and the immune barrier, and it regulates the

expression of pattern recognition receptors (PRRs) and the
development of innate immune cells (Tlaskalova-Hogenova et al.,
2005; Thaiss et al., 2014).

The development and function of the gut barrier and BBB
are dependent on the gut microbiota. Barrier deficiency induced
by microbiota absence or dysbiosis increases susceptibility to
various diseases, including allergies and inflammatory bowel
disease (Geuking et al., 2014; Gensollen et al., 2016). The absence
of a microbiota downregulates the expression of TJs, increases
BBB permeability, and can even induce leaky brain (Braniste
et al., 2014; Kelly et al., 2015; Hu et al., 2016). This abnormality
could last from the fetal stage to adulthood. Supplementing with
specific probiotics has been found to increase the expression
of TJs and reduce BBB permeability (Bien-Ly and Watts, 2014;
Braniste et al., 2014). Abnormal microbiota not only leads to
leaky gut and leaky brain, but it is also likely to induce stress-
related disorders and neurodegenerative diseases (Kelly et al.,
2015; Hoffman et al., 2017).

The gut microbiota impacts the expression and signal
transmission of PRRs (Thaiss et al., 2014). Many PRRs, such
as toll-like receptors (TLRs) and nucleotide oligomerization
domain-like receptors (NLRs), are expressed in enterocytes; they
recognize microbiota material and stimulate a series of immune
responses to eliminate or inactivate the pathogen, but tolerate
the commensal and harmless material (Artis, 2008; Thaiss et al.,
2014). For example, TLR-4 can recognize bacterial LPS and
induce immune responses, and the overactivation of TLR-4
in the periphery may play an important part in stress-related
mental illnesses and substance abuse (Garcia Bueno et al., 2016).
When the gut barrier is impaired, circulating LPS increase
and enter into other organs including the brain, resulting in
various physiological and/or behavioral symptoms (Rudzki and
Szulc, 2018). Lipopolysaccharide injection is a common immune
activation model, and systemic LPS treatment might be used as
an in vivo model for neuroinflammation or neurodegeneration
(Noh et al., 2014).

The gut microbiota regulates the differentiation and
development of innate immunocytes. Gut innate immunocytes,
such as macrophages, innate lymphoid cells, and DC,
differentiate and mature following normal microbial colonization
(Tlaskalova-Hogenova et al., 2005; Thaiss et al., 2014). Microglia
are a kind of highly specialized tissue macrophages in the CNS;
they account for 20% of the total neuroglia, and they play a
vital role in immune surveillance and homeostasis of the CNS
(Prinz et al., 2014). The gut microbiota regulates the maturation
and function of neuroglia from prenatal stages in a sex- and
time-dependent manner (Erny et al., 2015; Matcovitch-Natan
et al., 2016; Thion et al., 2017). The absence of a microbiota,
microbiota disturbance, and limited microbiota complexity all
induce microglia deficiency, leading to impaired innate immune
responses, while recolonization of a normal microbiota partly
recovers microglia features in an SCFA-dependent manner (Erny
et al., 2015).

Adaptive Immunity
Adaptive immunity develops and matures during exposure to
and through combat with the microbiota. The gut microbiota
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regulates the differentiation and function of lymphocytes,
influencing the synthesis and release of antibodies (Artis, 2008;
Lee and Mazmanian, 2010). The immune system can distinguish
beneficial bacteria and pathogens and tolerate self-components
and harmless material only if it is exposed to the microbiota in
early life (Rook and Lowry, 2008; Knoop et al., 2017).

The differentiation and function of T-lymphocytes are
regulated by the gut microbiota (Knoop et al., 2017). The
gut microbiota regulates whether naïve CD4+T-lymphocytes
(Tnai) differentiate into effective T-lymphocytes to produce
a pro-inflammatory response or into Treg to generate anti-
inflammatory effects (Honda and Littman, 2016). In conditions
that include microbial absence and microbiota abnormality,
SFB prompt the Tnai to differentiate into Th17 and induce
autoimmune diseases, such as multiple sclerosis (Lee and
Mazmanian, 2010; Lee et al., 2011). Even maternal immune
activation facilitates the differentiation of Th17, increasing
the incidence of neurodevelopmental diseases in the offspring
(Kim S. et al., 2017), while probiotic interventions, including
Lactobacillus helveticus and Bacteroides fragilis, induce the
differentiation of Treg and the release of IL-10, thereby
improving immunity (Ochoa-Reparaz et al., 2009; Ohland et al.,
2013; Liang et al., 2015).

The gut microbiota also regulates the differentiation and
development of B-lymphocytes, influencing the synthesis and
secretion of Ig (Honda and Littman, 2016). Even microbiota
metabolites, such as SCFA, influence the differentiation by
changing the expression of related genes (Hansson et al., 2011;
Kim et al., 2016; McCoy et al., 2017). Immunoglobulin A is a vital
component of non-inflammatory immune protection, and it also
influences the composition and diversity of the microbiota, while
the commensal microbiota regulates the synthesis and release of
IgA (Dolle et al., 2016; Honda and Littman, 2016). Commensal
microbiota inhibits the secretion of IgE, but promotes the
secretion of IgG (McCoy et al., 2017). Absence of a microbiota
decreases the content of IgA and IgG1, while increasing the
content of IgE, thereby increasing the susceptibility to various
diseases (Gensollen et al., 2016).

Inflammation
The gut microbiota not only impacts the differentiation and
maturation of immune cells, but it also regulates the immune
response. A healthy microbiota prompts immunocytes to
release moderate anti-inflammatory cytokines, such as IL-10,
transforming growth factor beta (TGF-β), and TGF-α, and
to secrete moderate pro-inflammatory cytokines, such as IL-
1β, IL-17, IFN-γ, and tumor necrosis factor alpha (TNF-α),
facilitating the appropriate immune responses (Rook and
Lowry, 2008; Rothhammer et al., 2018). However, abnormal
microbiota induces an imbalance between anti-inflammation
and pro-inflammation, impairs the functions of immune
tolerance and immune surveillance, and may even result
in chronic inflammation. Chronic inflammation is a key
factor in autoimmune diseases and inflammatory diseases, and
it can also be found in obese and aging subjects (Rook
and Lowry, 2008; Lee and Mazmanian, 2010; Liang et al.,
2012).

Abnormal microbiota not only leads to peripheral
inflammation, but also probably results in neuroinflammation;
it could further damage the BBB integrity, inducing neuron
apoptosis, microglia dysfunction, and neurodegeneration, finally
causing memory decline, abnormal behavior, and dyskinesia,
which are omens of many mental disorders and brain diseases
(Daulatzai, 2014; Castanon et al., 2015; Maranduba et al.,
2015; Rea et al., 2016; Sampson et al., 2016). Meanwhile, the
reconstitution of a healthy microbiota using probiotics or
prebiotics is likely to improve immunity and alleviate the brain
dysfunction and cognitive and behavioral abnormalities (Dinan
et al., 2013; Daulatzai, 2014; Liang et al., 2015; Liu et al., 2015).

Information Integration in the
Microbiota–Gut–Brain Axis
The interplay among the nervous system, endocrine system, and
immune system makes the brain and gut-brain multifunctional
organs; both the brain and gut-brain orchestrate our metabolism,
immunity, and endocrine function. Beyond the comprehensive
analysis of the brain and gut-brain, the interaction also appears in
information transmission via neuronal, endocrine, and immune
pathways. The influence of the gut microbiota on the brain and
behavior is the result of this interplay.

The gut-brain integrates the endogenous and exogenous
signals of the neuronal, endocrine, and immune pathways,
and enterocytes recognize and respond to messages from
more than two pathways. For example, the enterochromaffin
cell is a crucial endocrine and information conversion cell
located on the surface layer of the gut that expresses various
receptors, such as 5-HT, norepinephrine, and CRF receptors.
When stimulated, it secretes active substances, such as 5-HT
and signal peptides, which activate the afferent nerve endings
and transmit the message upward through the vagus nerves
(Rhee et al., 2009). The synthesis and release of 5-HT by
enterochromaffin cells are impacted by the gut microbiota
(Yano et al., 2015). Gut epithelial cells and lymphocytes also
recognize microbiota signals by PRRs and secrete substances,
including cytokines, 5-HT, and CRF, to activate immune,
neuronal, and endocrine pathways (Artis, 2008; Rhee et al.,
2009).

The three pathways of the microbiota–gut–brain axis interact
with each other. For example, the increase of pro-inflammatory
cytokines in inflammation enhances the activity of IDO and
promotes the metabolization of tryptophan into kynurenine.
Meanwhile, under stress condition, the increased glucocorticoid
levels heighten TDO activity and induce the kynurenine pathway.
Both conditions inhibit 5-HT synthesis by reducing available
tryptophan, changing behaviors, and even possibly leading to
depression (Le Floc’h et al., 2011; Baganz and Blakely, 2013;
O’Mahony et al., 2014).

In conclusion, the microbiota–gut–brain axis is a bidirectional
information communication network. The brain governs other
organs and regulates the survival and proliferation of the
microbiota, while the microbiota impacts the brain and
behavior through neuronal, endocrine, and immune pathways.
The emotional, behavioral, and brain changes under stress
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affect the microbiota through the microbiota–gut–brain axis.
Hosts can also consciously change their diet to induce the
proliferation of beneficial microorganisms in order to improve
microbiota–gut–brain axis function and promote health and
wellbeing.

TARGETING MICROBIOTA–GUT–BRAIN
AXIS TO PROMOTE BRAIN AND MENTAL
HEALTH

It is foreseeable that the establishment of gut-brain psychology
will bring tremendous changes to psychology and related
disciplines. Gut-brain psychology will contribute to the
development of general psychology, aiding research on
subjects, such as character, memory, and behavior. It may
also help illuminate controversial areas, including the study
of unconsciousness. However, its more crucial influence
is likely to be in clinical application, for example, in
regulating the brain and behavior through gut microbiota
intervention. The related research and applications will
undoubtedly exert a far-reaching impact on many fields,
including psychology, medication, food, and environment
(Barratt et al., 2017; Leulier et al., 2017; McKenzie et al.,
2017).

There are mainly seven recognized microbiota interventions:
the GF technique, pathogen infection, antibiotics, FMT,
probiotics, prebiotics, and diet (Cryan and Dinan, 2012;
Aroniadis and Brandt, 2013; Cammarota et al., 2014; Liu et al.,
2015); all of the methods have shown great potential in regulating
mind and behavior (Cryan and Dinan, 2012; Bercik and Collins,
2014; Desbonnet et al., 2014; Liu et al., 2015; Evrensel and Ceylan,
2016; Liang et al., 2018b). Among these methods, the first two
are only feasible in experimental animals, the third one is usually
used in anti-infection, and the last four are all promising in
microbiota improvement.

Fecal microbiota transplantation is the process of
transplanting feces from a healthy donor to the receiver’s
gut in order to recover the impaired intestinal flora. It has been
effectively used in the treatment of various diseases including
recurrent Clostridium difficile infection and inflammatory
bowel disease, and its improved model-selective microbiota
transplantation- has been put to use (Aroniadis and Brandt,
2013; Zhang et al., 2018). Remolding the gut microbiota through
FMT not only recovers digestive function, but also improves
the brain and behavior (Evrensel and Ceylan, 2016). Latest
research indicates that FMT can be used in the treatment
of many brain diseases, such as ASD (Kang et al., 2017),
Tourette Syndrome (Zhao et al., 2017), and epilepsy (He et al.,
2017).

Probiotics, such as Lactobacillus and Bifidobacterium, are
important components of the gut microbiota, and their related
products are widely used in current medications (Kaur et al.,
2009; Bested et al., 2013a,b; Sanchez et al., 2017). Dinan et al.
(2013) coined the word “psychobiotics” to emphasize on the
potential of some probiotics in mental disorder therapy. Animal
and clinical studies have identified some psychobiotics that

present good antidepressant, anti-anxiety, and/or anti-autism
effects. These psychobiotics are likely to work through the
regulation of gut microbiota and the improvement of the
microbiota–gut–brain axis (Desbonnet et al., 2010; Liang et al.,
2015; Mi et al., 2015; Steenbergen et al., 2015; Akkasheh
et al., 2016; Pirbaglou et al., 2016; Wallace and Milev,
2017).

Prebiotics mainly include oligosaccharides, unsaturated fatty
acids, dietary fibers, and polyphenols (Vyas and Ranganathan,
2012; Liu et al., 2015; Cerdo et al., 2017; Gibson et al., 2017).
Studies have found that prebiotics, such as omega-3 fatty acids
and oligosaccharides, change the gut microbiota improving the
microbiota–gut–brain axis function and symptoms of mental
illness subjects (Liu et al., 2015; Burokas et al., 2017; Evans S.
et al., 2017; Mika et al., 2017; Robertson et al., 2017). A diet
rich in dietary fibers increases gut microbiota diversity, improves
the gut barrier, regulates glycometabolism by improving glucose
control and insulin sensitivity, modulates lipid metabolism by
reducing low-density lipoprotein and cholesterol content, and
promotes gut-brain health (Bourassa et al., 2016; Gazzaniga and
Kasper, 2016; Koh et al., 2016; Cooper et al., 2017; Gong et al.,
2018).

Traditional fermented foods, such as yogurt, natto, and
pickles, also regulate the gut microbiota and promote gut-
brain health. Diets rich in fermented food, dietary fibers,
and unsaturated fatty acids, such as the Mediterranean diet
and Japanese diet, also facilitate the proliferation of beneficial
microorganisms and improve health and wellbeing (Quirk et al.,
2013; Gutierrez-Diaz et al., 2016; Sandhu et al., 2017). The
healthy diet probably promotes the function of the microbiota–
gut–brain axis and leads to improvements in health and
well-being, whereas unhealthy diets including high-fat diets,
high-refined carbohydrate diets, and low-MACs diets damage
mood and memory (Bereswill et al., 2014; Hu et al., 2014,
2015; Marques et al., 2014; Murphy et al., 2014; Wang et al.,
2015; Sandhu et al., 2017). Allen et al. (2017) proposed
nutritional psychology to connect the microbiota–gut–brain
axis with psychology. In our opinion, nutritional psychology
posits that mind and behavior are closely related to the gut
microbiota. Food is the most influential factor for the gut
microbiota, exerting its influence throughout the whole lifetime.
An individual’s diet shapes his or her gut microbiota and
regulates gut-brain function. Through the microbiota–gut–brain
axis, different types of microbiota exert different influences
on the brain and behavior. A healthy diet contributes to
a healthy gut microbiota and gut-brain and promotes brain
and mental health through the microbiota–gut–brain axis.
Meanwhile, an unhealthy diet disturbs the gut microbiota
and damages gut-brain function, induces microbiota–gut–
brain axis dysfunction and finally harms the brain and well-
being.

Dietotherapy is the improvement of health through dietary
adjustment. It has been used as an adjuvant treatment for mental
disorder therapy for a long time, but it is often doubted for
its controversial mechanisms (Lakhan and Vieira, 2008; Lang
et al., 2015; Owen and Corfe, 2017). Traditional research has
usually focused on the function of certain foods or certain
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nutrients, such as omega-3 and omega-6 fatty acids (Lakhan
and Vieira, 2008; Evans S. et al., 2017; Robertson et al., 2017).
Recently, studies have started to pay more attention to the
relationship between diet quality and mental illness. Because
human beings do not eat just one kind of food, the deficit
of one food can have as significant an effect as the excess
of another food (Quirk et al., 2013; Lang et al., 2015). Sarris
et al. (2015) proposed nutritional psychiatry; they believed
that food would play an important part in the prevention
and therapy of mental disorders in the future (Sarris et al.,
2015; Zepf et al., 2016; Jacka, 2017). With the development
of gut-brain psychology and nutritional psychology as the
mechanisms of mental disorders and with the role of food
in these disorders being clarified, nutritional psychiatry will
enter a new stage. Moreover, combining dietotherapy with
other interventions, including drug treatment, psychotherapy,
and exercise, has shown some good effects in mental therapy
(Clarke et al., 2014; Schnorr and Bachner, 2016; Bambling et al.,
2017).

CONCLUSION AND OUTLOOK

Over hundreds of years, psychology has progressed remarkably.
Psychologists have intensively studied various mental processes
and phenomena, and numerous subdisciplines have sprung up in
this process. However, mental disorders remain a problem, and
relevant research and therapies lag behind those of other diseases.

This lag reminds us that most psychological research has
omitted the fact that the human being is a superorganism. The
main part of the superorganism is the microbiota, which accounts
for more than 90% of the total genes and total cell numbers
in the human body. These microorganisms have coexisted with
humans for millions of years and play a vital part in the
maturation and function of most human organs. However, since
modernization, the commensal microbiota has been continually
altered, and in some cases, it has been lost following the dramatic
changes in diet, lifestyle, and medication. These alterations have
paralleled the transformation of disease patterns in modern
society.

The gut microbiota is the most important part of the
commensal microbiota, and it can work together with the
gut as a whole to respond to endogenous and exogenous
signals. The combination of the gut and gut microbiota is
called the gut-brain because its activity is partly independent
of the brain. The gut microbiota not only regulates the
composition and function of the gut-brain, but it also influences
the brain and behavior. The abnormal development of the
gut microbiota could lead to neurodevelopmental disorders.
Various aspects of normal psychology, such as pain perception,
emotion, cognition, character, stress management, and social
behavior, are impacted by the gut microbiota. Microbiota
disturbance can be induced by many factors, including stress,
antibiotics, and unhealthy diet, and it could be a direct
cause of mental illnesses. Abnormal microbiota is undoubtedly
involved in the etiology and pathophysiology of mental
disorders, behavioral problems, and neurological diseases, and

it will probably be an effective target of future therapy.
This viewpoint is strongly supported by the gut microbiota
hypothesis, the “old friend” hypothesis, and the leaky gut
theory.

The gut-brain is not just a digestive organ but also
a neurological, endocrine, and immune organ. The gut
microbiota conducts bidirectional information communication
with the brain through the microbiota–gut–brain axis; it
impacts the host brain and behavior and is also impacted
by the host. The microbiota–gut–brain axis mainly consists
of the nervous pathway, endocrine pathway, and immune
pathway. The nervous pathway mainly operates through neural
conductions, neurotransmitters, and through the regulation of
neurogenesis, neural apoptosis, and neurodegeneration. The
endocrine pathway mainly operates through the neuroendocrine
system, neurohormones, and neural active substances. The
immune pathway mainly operates through the regulation of
innate and adaptive immunity and the peripheral and neural
inflammation. Messages transmitted along the microbiota–gut–
brain axis are integrated in the brain, the gut-brain, and the three
pathways.

The establishment of gut-brain psychology will have a
profound influence on psychology and related disciplines.
Unlike other psychology subdisciplines, gut-brain psychology
will not only promote the progress of fundamental research,
but it will also lead to tremendous changes in practical
applications. Targeting the microbiota–gut–brain axis to
improve brain and behavior will be a research hotspot in
neuroscience, psychology, and psychiatry. Improving the
gut microbiota through FMT, probiotics, prebiotics, healthy
diet, and/or healthy lifestyle to regulate microbiota–gut–
brain axis function and promote mental health will be a
promising field in the future. Patients suffering from mental
disorders or neurological diseases will get help from one or
a combination of these interventions. Healthy persons will
promote their cognition and resilience from these methods
and reduce mental and brain damage by decreasing microbiota
disturbances.
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