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Abstract

Purpose—Gut microbiota regulate intestinal function and health. However, mounting evidence 

indicates that they can also influence the immune and nervous systems and vice versa. Here we 

reviewed the bidirectional relationship between the gut microbiota and the brain, termed 

microbiota-gut-brain (MGB) axis, and we discuss how it contributes to the pathogenesis of certain 

disorders, that may involve brain inflammation.

Methods—Articles were chosen from Medline since 1980 using the key words anxiety, 

attention-deficit hypersensitivity disorder (ADHD), autism, cytokines, depression, gut, 

hypothalamic-pituitary-adrenal (HPA) axis, inflammation, immune system, microbiota, nervous 

system, neurologic, neurotransmitters, neuroimmune conditions, psychiatric, stress.

Findings—Various afferent or efferent pathways are involved in the MGB axis. Antibiotics, 

environmental and infectious agents, intestinal neurotransmitters/neuromodulators, sensory vagal 

fibers, cytokines, essential metabolites, all convey information about the intestinal state to the 

CNS. Conversely, the HPA axis, the CNS regulatory areas of satiety and neuropeptides released 

from sensory nerve fibers affect the gut microbiota composition directly or through nutrient 
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availability. Such interactions appear to influence the pathogenesis of a number of disorders in 

which inflammation is implicated such as mood disorder, autism-spectrum disorders (ASDs), 

attention-deficit hypersensitivity disorder (ADHD), multiple sclerosis (MS) and obesity.

Implications—Recognition of the relationship between the MGB axis and the neuroimmune 

systems provides a novel approach for better understanding and management of these disorders. 

Appropriate preventive measures early in life or corrective measures such as use of psychobiotics, 

fecal microbiota transplantation and flavonoids are discussed.
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Introduction

Humans have up to 37% gene homology with Bacteria and Archae1. Great numbers of 

commensal microorganisms reside on both the external and the internal surfaces of our 

bodies, especially the gut, outnumbering human somatic cells by approximately 10:12. Our 

colonization starts at birth during vaginal delivery with a maternal signature followed by 

complex “adult” microbiota after the first year of age3, 4. As a result, the human body is 

considered as a super-complex ecosystem, a social network with the gut microbiota having 

formed a permanent symbiotic relationship rather than a temporary form of parasitism5. 

Normally, the gastrointestinal (GI) microbiota has a symbiotic relationship with our enteric 

cells and contributes to basic physiological processes including digestion, growth and self-

defense (Table 1).

An individual’s gut microbiota composition depends on the mode of delivery at birth, 

genetic predisposition, age, nutrition, physical activity, environmental factors, stress, 

infections, other diseases and use of antibiotics. Brain function and psychological make-up 

are now increasingly considered to have a reciprocal relationship with the gut6.

Disruption of the gut microbiota (dysbiosis) balance is known to contribute, among others, 

to the pathogenesis of GI diseases, especially inflammatory bowel disorder (IBD)7 and 

irritable bowel syndrome (IBS)8, especially since the gut microbiome regulates 

immunity9–13. In fact, bacteria reported to directly induce inflammation and pain14

Accumulating evidence suggests that the gut microbiota maintain bidirectional interactions 

with critical parts of the central nervous system (CNS) and the immune system through 

direct and indirect pathways (Table 2 and Fig. 1). These involve the endocrine 

[hypothalamic-pituitary-adrenal (HPA) axis], immune (chemokines, cytokines), autonomic 

nervous system (ANS) and enteric nervous systems forming the microbiota-gut-brain 

(MGB) axis6.

Neuro/immune-active substances derived from the intestinal lumen can penetrate the gut 

mucosa, be transported by blood, cross the blood-brain-barrier (BBB) and affect the CNS15. 

Gut microbiota can influence CNS function through their ability to synthesize or mimic a 

range of host-signaling neuroactive molecules, such as acetylcholine (Ach), catecholamines, 
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gamma-aminobutyric acid (GABA), histamine, melatonin and 5-hydroxytryptamine (5-HT, 

serotonin)16. 5-HT is crucial in the regulation of peristalsis or modulation of sensation17.

Conversely the composition of gut microbiota is influenced by emotional and physiological 

stress18. One study found that healthy students during an extremely stressful time had fewer 

Lactobacilli present in their stool as compared to less stressful periods19. Maternal 

separation stress between 6–9 months of age in rhesus monkeys resulted in decreased faecal 

Lactobacilli20. Exposure to chronic stress in adult mice decreased the relative abundance of 

Bacteroides species and increased the Clostridium species in the caecum; moreover, it 

caused activation of the immune system as documented by increased IL-6 and CCL2 

production21. Acute stress increased GI22, 23 and BBB24 permeability through activation of 

mast cells (MCs), which express high affinity receptors for CRH25. Moreover, chronic stress 

disrupted the intestinal barrier through MC activation and permitted penetration of luminal 

antigens, microflora metabolites, toxins and lipopolysaccharide (LPS) into the systemic 

circulation and the CNS26. In fact, stress-induced MC activation has been implicated in 

functional GI diseases27. Maternal separation stress in mice also increased intestinal MC-

neuron communication28.

MCs communicate with pathogens29 and have been invoked as key modulatory cells in 

innate immunity30, as well as in inflammation31–34 and autoimmunity35. A new finding 

concerning MCs is their ability to secrete mitochondrial components, including DNA, 

extracellularly36. These components are then misconstrued by the body as “innate 

pathogens” and induce a strong auto-inflammatory response36 leading to inflammation and 

neuronal damage37. The microbiota can also modulate the immune system through other 

mechanisms38 And the increased use of antibiotics results in depletion of microbiota-derived 

metabolites, impairs immune homeostasis and contributes to chronic inflammation39.

Mood disorders

Genes involved in synapse formation between neurons in the brain and neurons in the GI 

tract are quite similar, and any mutations could possibly lead to both brain and GI 

abnormalities40. Recent studies analyzing the human genome in brains from diseased 

individuals with psychiatric disorders reported only two clusters of affected genes with: (a) 

increased inflammation and (b) decreased mitochondrial function41. Depression is 

associated with increased inflammatory biomarkers, such as interleukin (IL)-6, tumor 

necrosis factor (TNF)-α, and C reactive protein (CRP)42. Schizophrenia has been linked to 

intestinal inflammation43 and gastrojejunal ulcers44.

“Psychobiotics”, which are live organisms, when ingested may produce health benefits in 

patients suffering from mood disorders45. In a study of 124 healthy volunteers (mean age 

61.8 years), those who consumed a mix of specific psychobiotics (Lactobacillus helveticus 

and bifidobacterium longum) exhibited less anxiety and depression19. Symptoms of 

“depression” were reported to decrease following probiotic treatment in the rat46. Additional 

studies showed beneficial effects of probiotics in animal models with altered behavioral 

phenotypes, as they reduced vagal-dependent activation of GABA receptors in response to 

physical and psychological stress46–51.
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Studies in animals showed that certain bacterial species could reduce mood changes. For 

inastance, when Citrobacter rodentium was administrated orally to CF-1 mice, there was an 

increase in anxious-like behavior 7–8 hours following the infection, through activation of 

vagal pathways52. Postnatal colonization of germ-free (GF) mice by orally feeding them 

with different probiotics programmed the HPA for a stress response; for instance, when 

Campylobacter jejuni was given orally, it increased anxious-like behavior 7 hours after the 

infection53. Furthermore, a corresponding increase in brain-derived neurotrophic factor 

(BDNF) in the hippocampus and amygdala was evident and was eliminated after 

administration of antibiotic therapy in the mice53. Of note, BDNF is involved in the 

pathology of depression54 and Autism Spectrum Disorders (ASDs)55, while it is also 

considered a biomarker for gastric hypersensitivity56.

Attention-Deficit Hypersensitivity Disorder (ADHD) and Autism Spectrum Disorders (ASDs)

ADHD is a neurodevelopmental disorder characterized by lack of attention, impulsiveness 

and hyperactivity. Its cause is considered multifactorial, involving genetic pre-disposition, 

somatic mutations, epigenetic changes, perinatal factors (e.g. low birth weight, prematurity 

and prenatal exposure to alcohol and/or smoke), as well as environmental and 

socioeconomic factors57.

Increasing evidence from clinical and epidemiological studies suggests that children and 

adults with food allergies, eczema or asthma are associated with behavioral problems and 

neuropsychiatric disorders, including ADHD58–63. The gut microbiota are known to 

participate in susceptibility to allergies64, 65, especially food allergens66.

One meta-analysis reported that the Kaiser-Permanente (K-P) diet using elimination of 

salicylates, artificial food colors (AFC) and flavors, as well as the preservative butylated 

hydroxytoluene, could decrease the hyperactivity of ADHD children57. Children with 

ADHD were substantially improved on either an AFC-free diet67, or by dietary 

supplementations with polyunsaturated fatty acids (PUFA), iron and zinc68. In fact, PUFA 

levels in plasma of ADHD children were reported low69. Food-based treatments in children 

with allergic disorders significantly reduced ADHD-like behavior70.

Autism spectrum disorders (ASDs) are neurodevelopmental disorders characterized by 

deficits in social interactions and communication, along with repetitive and stereotyped 

behaviors71.

Many children with ASDs present with GI symptoms72–74 and altered GI flora71. Increasing 

evidence indicates that ASD pathogenesis may involve brain inflammation75 especially 

activation of microglia76, 77. Moreover, about 30% of children with ASDs have auto-

antibodies against brain proteins78 and the presence of such antibodies strongly correlated 

with allergic symptoms79.

We recently showed that levels of the neuropeptide neurotensin (NT), found both in the 

brain and the gut and CRH were increased in the serum of children with ASDs; moreover, 

NT was significantly correlated with the presence of GI symptoms80. We also reported 

elevated levels of mitochondrial DNA in the serum of children with ASDs81 and CRH 
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augmented the stimulatory effect of mitochondrial DNA on MCs82. A paper recently 

reported increased amount of mitochondrial DNA in peripheral mononuclear cells (PBMC) 

from patients with ASDs83. Extracellular mitochondrial DNA could derive either from MCs, 

PBMC, intestinal cells or bacteria and is misconstrued as “innate pathogens” leading to 

auto-inflammatory reactions84.

About 30% of ASD children are characterized by hyperserotonemia85 and a serotonin re-

uptake transporter (SERT) gene mutation (SERT Ala56) was identified in some ASD 

children with hyperserotenemia86. Introduction of this mutation in mice resulted in 

communication delays and repetitive behaviors similar to those in children with ASDs86. In 

fact, 5-HT can affect the immune system28, and autoimmune neuroinflammation was treated 

with a tryptophan metabolite87.

The SERT Ala56 mice were also constipated and had bacterial intestinal overgrowth similar 

to what is often seen in children with ASDs88.

Increased intestinal permeability would permit bacterial products, cytokines and chemokines 

to enter the circulation and cross the BBB89 influencing brain and behavior. For example, 

children with ASDs had higher levels of immunoglobulins (IgA, IgG, IgM) against cow’s 

milk-derived allergens, and milk intake by these patients significantly worsened some of 

their behavioral symptoms70. Elimination of caseinomorphin, gliadomorphin, colorings, 

sweeteners and preservatives led to significant benefit70. The gut microbiota composition 

appears to differ between healthy children and those with ASDs71. For example, there was a 

higher prevalence of Bifidobacteria in healthy controls as compared to ASD patients90. In 

contrast, Bacteroides vulgatus and Desulfovibrio species were more commonly found in 

stools of ASDs children; however, only D. desulfuricans, D. fairfielddensis and D. piger 

were associated with regressive ASD. Clostridium species were increased at the expense of 

Bifidobacterium in ASD children with food allergies and pediatric IBD as compared to sex-

matched controls children91. ASD children treated with oral vancomycin had significant 

improvement in behavioral, cognitive and GI symptoms92. Such findings are discussed in 

detail in another manuscript in this issue.

Such findings have led to the gut-to-brain connections being proposed as target for treatment 

of ASDs93.

Multiple Sclerosis (MS) and Neuromyelitis optica (NMO)

Multiple sclerosis (MS), an autoimmune disease characterized by progressive demyelination 

and deterioration of neurological function94, 95. It has been suggested that gut microbiota 

may contribute to the pathogenesis of MS96. One study showed that germ-free mice had 

delayed induction of experimental autoimmune encephalomyelitis (EAE), probably due to 

the attenuation of Th17 and auto-reactive B cell responses96. In another study, mice 

genetically predisposed to develop EAE spontaneously did not develop EAE when housed 

under germ-free conditions; however, this was reversed upon colonization with conventional 

microbiota in adulthood97. Even the presence of commensal microbiota promoted the 

induction of EAE in germ-free B6 mice due to decreased IFN-γ and IL-17 responses98. 
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High-fat diet was found to increase EAE severity in mice, while caloric restriction 

attenuated EAE symptoms99.

Patients with NMO have aquaporin (AQP) autoantibodies (AQP4-seropositive) against the 

optic nerve and spinal cord, but also more antibodies against GI antigens than healthy 

controls100. Specifically, 37% of these patients had increased levels of antibodies at least 

against one of the following: gliadin, tissue transglutaminase (tTG), intrinsic factor (IF), 

parietal cells (PC) and Saccharomyces cerevisiae compared to 8% of healthy controls, with 

anti-gliadin and ASCA being the most frequent in AQP4-seropositive NMO (P=0.01 and 

P<0.05, respectively100. In addition, the AQP4-specific T-cells in NMO patients showed 

cross-reactivity to a protein of Clostridium perfrigens, supporting a microbiota-related 

molecular mimicry process in NMO pathogenesis101. MS102 and EAE103 are precipitated or 

worsen by stress, which is known to also affect the gut104. In fact, stress-induced gut 

alterations can impact the brain and behavior105.

5. Obesity

Obesity has been called a psychiatric disease106 and is associated with depression107 and 

other neuropsychiatric disorders43Adipocytokines can influence both the brain and the 

gut106. Recent evidence suggests that gut microbiota influence energy balance and weight68. 

Increased energy harvesting from diet, regulation of biologically active fatty acid tissue 

composition, chronic low-grade endotoxemia and modulation of gut-derived peptide 

secretion are some of the proposed routes that link gut microbiota with obesity108.

Gut microbiota may also contribute to low-grade inflammation in obesity109. Increased fat 

intake has been associated with increased serum levels of LPS in normal humans110 and 

mice111. This endotoxin can potentially trigger toll-like receptors (TLRs) in adipose or on 

pancreatic β-cells, contributing to both insulin resistance and β-cell damage112, 113. 

Experimental endotoxemia induced adipose inflammation and insulin resistance in lean 

human subjects114. Modulation of gut microbiota by using probiotics in obese mice was 

found to decrease high-fat-diet-induced LPS endotoxemia, as well as systemic and liver 

inflammation111, 112.

There are many studies with contradictory results concerning the types of bacteria that 

predominate in obese as compared to lean individuals115–117. For instance, metabolically 

obese mice with mutated leptin gene had different microbiota than mice without the 

mutation115. The same researchers later reported altered gut microbiota composition 

(reduction of Bacteroidetes and increase of Firmicute phyla) in obese human subjects 

compared to lean human subjects118. In contrast, other authors reported higher proportion of 

Bacteroidetes in overweight and obese subjects119. These conflicting results may be due to 

the variable methods of analysis and to the different profile of subjects.

Gut microbiota can convert undigested carbohydrates into short-chain-fatty acids (SCFA), 

like acetate, propionate and butyrate. These SCFAs are able to bind and activate two G-

protein-coupled receptors (GPR41 and GPR43) on gut epithelial cells, leading to secretion 

of petide YY (PYY), which suppresses gut motility and retards intestinal transit108. It is 

interesting that propionate could induce an autistic-like phenotype in rats120.
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Modulation of gut microbiota may have therapeutic potential in the management of 

metabolic disorders121.

Treatment and Future Directions

Therapeutic modulation of gut microbiota possibly by the use of pPre- and probiotics may 

be helpful in disorders involving MGB axis disturbances122. Prebiotics can benefit both 

intestinal mucosa and systemic immunity as they reach the large intestine non-hydrolyzed 

and stimulate the growth of beneficial intestinal microbiota123. Probiotics could restore 

intestinal permeability by improving mucosal barrier function124. Administration of 

different probiotics has been reported to be beneficial in humans with abdominal pain125, 126 

and increased the pain threshold in rats127. Lactobacillus acidophilus induced the expression 

of the cannabinoid 2 and μ-opioid 1 receptors in the colonic epithelium128, while 

Lactobacillus farciminis inhibited stress-induced visceral hypersensitivity129. However, use 

of probiotics may result in both beneficial and detrimental effects. For example, there were 

beneficial effects in IBS with the use of probiotics Bifidobacterium infantis 35624130, 131 

and Bifidobacterium lactis and animalis DN173010132 and of probiotic mixtures, such as 

Escherichia coli (DSM 17252) and Enterococcus faecalis (DSM 16440)133 or Lactobacillus 

rhamnosus GG, L. rhamnosus LC705, Bifidobacterium breve Bb99 and Propionibacterium 

freudenreichii ssp. shermanii JS134, 135. On the contrary, use of other probiotic mixtures, 

such as Lactobacillus paracasei spp. Paracasei F19, L. acidophilus La5 and 

Bifidobacterium lactis Bb12136, 137 or Lactobacillus plantarum MF1298138 had negative 

effects in IBS. Non-absorbable antibiotics (e.g. oral rifaximin) was shown to be beneficial in 

IBS139.

Natural flavonoids may be useful because they have immunoregulatory actions140. For 

instance, the quercetin glycoside rutin is cleaved by gut bacteria to liberate quercetin, which 

has anti-inflammatory actions141. Both quercetin, luteolin and tetramethoxyluteolin are 

potent inhibitors of MCs142.

Fecal microbiota transplantation (FMT) from a healthy donor can re-establish intestinal flora 

balance and could be used for specific GI diseaseS143, especially the treatment of 

Clostridium difficile infection144 and possibly be efficacious in IBD145.
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Figure 1. Diagrammatic representation of the M-G-B axis showing the proposed bidirectional 
communications
Gut microbiota can release molecules that can: activate the neuroenteric plexus, stimulate 

brain production of neuropeptides, as well as increase gut-blood barrier and BBB 

permeability. The brain releases molecules that stimulate the neuroenteric plexus and gut 

function. The vagus nerve sends orthodromic and antidromic.

Ach= Acetylcholine

BBB= Blood-brain barrier

CRH= Corticotropin-releasing hormone

5-HT= 5-hydroxytryptamine

IL-6= Interleukin 6

NT= Neurotensin

SP= Substance P
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TNF= Tumor necrosis factor

VIP= Vasoactive intestinal peptide
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Table 1

Beneficial Functions of Gut Microbiota

• Defense against pathogen colonization by nutrient competition and production of antimicrobial substances

• Fortification of intestinal epithelial barrier and induction of secretory IgA (sIgA) synthesis to limit pathogenic bacteria penetration 
into tissues

• Facilitation of nutrient absorption by metabolizing indigestible dietary compounds

• Participation in the maturation and functionality of the host immune system by providing diverse signals for “tuning” the host 
immune status
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Table 2

Pathways Involved in Bidirectional Communication Between Gut Microbiota, the Brain and the Immune 

System

  Afferent arm

  Pathways Effect

Change of the gut microbiota due to usage of antibiotics/
infectious agents/probiotic bacteria

Alteration in the circulating levels of pro/anti-inflammatory cytokines that affect 
brain function

Modulation of various host metabolic reactions Production of essential metabolites (bile acids, choline, short-chain fatty acids)

Generation of neurotransmitters or neuromodulators in 
the intestinal lumen

Induction of epithelial cell release of molecules that stimulate afferent axons

Changes in tryptophan metabolism Effects on behavior

Activation of sensory vagal fibers Conveyance of information about the state of intestine to the CNS

  Efferent arm

  Pathways Effect

HPA axis activation Regulation of immune cells locally in the gut and systematically affecting gut 
permeability, motility, secretion, barrier function and gut microbiota composition

Anti-inflammatory cholinergic reflex and/or sympathetic 
activation

Release of neurotransmitters that may affect gut microbiota composition, 
intestinal permeability and local immunity

Activation of CNS regulatory areas of satiety Impact on nutrient availability to intestinal microbiota and their composition
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