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Abstract

Studies into the mechanisms in resolution of self-limited inflammation and acute reperfusion 

injury have uncovered a new genus of pro-resolving lipid mediators coined specialized pro-

resolving mediators (SPM) including lipoxins, resolvins, protectins and maresins that are each 

temporally produced by resolving-exudates with distinct actions for return to homeostasis. SPM 

evoke potent anti-inflammatory and novel pro-resolving mechanisms as well as enhance microbial 

clearance. While born in inflammation-resolution, SPM are conserved structures with functions 

discovered in microbial defense, pain, organ protection and tissue regeneration, wound healing, 

cancer, reproduction, and neurobiology-cognition. This review covers these SPM mechanisms and 

other new omega-3 PUFA pathways that open their path for functions in resolution physiology.
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1. Introduction

The origins of resolving inflammation trace to the 11th century in the Canon of Medicine [1] 

as a resolvent promotes the disappearance of inflammation. For historical perspective on 

resolution, interested readers are directed to ref. [1] for a recent review. Barrier break, 

trauma and microbial invasion each create the host’s need to neutralize invaders, clear the 

site, remodel and regenerate tissue (Fig. 1A); the inflammatory response is a terrain where 

lipid mediators (LM) such as eicosanoids (prostaglandins (PG) and leukotrienes (LT)) [2] 
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and novel pro-resolving mediators uncovered [3, 4] play pivotal roles. The acute 

inflammatory response is divided into initiation and resolution phases (Fig. 1A).

Leukocyte traffic from circulation forms inflammatory exudates traditionally viewed as a 

battlefield. The first responders, neutrophils (PMN), swarm like sharks to defend the host 

along chemotaxic gradients, e.g. LTB4 [5, 6], exiting venules governed by PGE2 and PGI2 

and influx to form the exudate. The main events in resolution are cessation of PMN influx 

and macrophage clearance of debris. But how does the host return the system to homeostasis 

and what are the roles of chemical mediators and the inflammatory exudate in timely 

resolution?

Excessive inflammation is widely appreciated as a unifying component in many chronic 

diseases including vascular diseases, metabolic syndrome, neurological diseases, and many 

others, and thus a significant public health concern. Since the acute inflammatory response 

is protective, evolved to permit repair of injured tissues and eliminate invading organisms, it 

is ideally self-limited and leads to complete resolution enabling return to homeostasis (Fig. 

1A). Although resolution of disease is appreciated by clinicians, resolution was considered a 

passive process [7], passive in that the chemoattractant and other chemical mediators 

involved in mounting the inflammatory response would just dilute and dissipate [8, 9]. With 

identification of proresolving mediators, we obtained evidence that resolution of self-limited 

inflammation is an active programmed response that is “turned on” and not simply a 

process of diluting chemoattractant gradients. Unexpectedly, n-3 PUFA present in marine 

oils are precursors of proresolving mediators (Fig. 1A&B).

Since n-3 PUFA EPA and DHA have cardioprotective and anti-inflammatory effects, they 

were held earlier to simply compete with arachidonic acid for eicosanoid biosynthesis, 

preventing pro-inflammatory eicosanoids, a process readily discernible in vitro [10]. 

Utilization of n-3 PUFA by resolving exudates to biosynthesize novel pro-resolving local 

mediators -- resolvins, protectins and maresins, collectively coined SPM, which potently 

stimulate cessation of PMN infiltration and enhance macrophage uptake of apoptotic cells, 

debris and microbes -- has opened a new focus on resolution pathways and innate immune 

mechanisms to attain homeostasis (Fig. 1B). This review focuses on the role of LM in 

resolution that now function in other systems including host-defense, nervous, reproductive, 

and muscle and exercise, giving promise for SPM, their pathways and related products in 

resolution physiology and pharmacology.

2. Elucidation of Pro-Resolving LM and the Newest Additions RvD3 and 

MaR1 Pathway

Key to this recent paradigm change is identification of novel families of autacoids that 

include resolvins, protectins, their aspirin-triggered forms and maresins, providing evidence 

that resolution is orchestrated by LM (Fig. 2 and Box 1). From this, it’s evident that 

resolution programs of acute inflammation hold promise and remain largely uncharted [7] 

(Fig. 1). Challenges ahead are whether we can harness these novel LM that stimulate 

resolution (i.e. agonists of resolution coined resolvents [1, 11, 12]) and their resolution 

mechanisms. Dietary n-3 supplements are widely used, but <25% are directed by health care 
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providers [13]. Clinical trials with n-3 PUFA show mixed results [14], suggesting that fatty 

acids themselves are not highly suitable to consider as drugs, given their many metabolic 

fates in humans. Hence, it is critical for public health to establish mechanisms that underlie 

their essential health requirements.

Box 1

Specialized Proresolving Mediators (SPM): Anti-Phlogistic Pro-Resolving 
Actions (see Figure 1, Panel B)

SPM Defining Bioactions

• Temporal biosynthesis with leukocyte exudate traffic

• Cessation of PMN infiltration; Stop signals to limit further PMN recruitment 

and PMN-mediated tissue damage

• Enhance macrophage phagocytosis of apoptotic PMN, cellular debris and 

bacteria killing

• SPM possess broad anti-inflammatory & pro-resolving actions at both 

transcriptional and translational levels

Counter-regulate & Reduce Cardinal Signs of Inflammation

• Prostaglandins (COX-2 expression) and leukotrienes (LTB4, LTC4, LTD4)

• PAF formation and actions

• Chemokines and cytokines (TNFα, IL-1β, IL-6, IL-8, IL-12, etc.)

• NFκB associated gene products

• Growth factors (VEGF)

• Extracellular ROS

• Edema

Activate

• Local NO, PGI2 production via endothelial cells

• Heme oxygenase (HO-1) induction

• Macrophage phagocytosis (bacteria, microbial particles) and efferocytosis 

(apoptotic cells)

• Macrophage IL-10 production

• Enhance PMN phagocytosis, phagolysosomal ROS, microbial killing and 

clearance

• IL-1ra production

• Adiponectin
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Using a systems approach with resolving exudates, we elucidated new essential PUFA-

derived SPM pathways [4, 15]. Their biosynthesis and complete stereochemistry of each 

major resolvin (RvE1, RvD1, RvD2, RvD3 and RvD5) and protectin -- their potent 

bioactions (reviewed in [16]), now independently confirmed by many worldwide -- are the 

focus of increasing interest given that SPM control the magnitude and duration of 

inflammation, infection and tissue injury (Fig. 2, Table 1). The structures (Fig. 2) and 

nanogram actions of resolvins are extended to many pathologies including vascular [17], 

airway, dermal, renal, ocular, pain, cancer, fibrosis and wound healing [18]. This is also the 

case for neuroprotectins/protectins; each has actions throughout the body; vide infra.

Within self-limited exudates, RvD3 displays a unique timeframe compared to RvD1 and 

RvD2, appearing late in resolution, suggesting a key role of RvD3. RvD3’s complete 

stereochemistry was recently established [11], and confirmed its potent anti-inflammatory 

and proresolving actions [4]. Macrophage biosynthesis of MaR1 and its potent proresolving 

and tissue regenerative actions (Fig. 2) are established [12], and involve a 13S,14S-epoxide-

maresin intermediate that is also active and stimulates M1 to M2 phenotype-switch [12]. 

Also, both n-6 docosapentaenoic acid (DPA) and its n-3 form are substrates for SPM [19, 

20]. Since n-3 DPA accumulates in certain individuals and is converted to potent n-3 

immunoresolvents from each of the SPM families, it is likely n-3 DPA-derived SPM are 

compensatory in humans since they share resolvin and protectin actions [20].

Maresins are produced by macrophages from docosahexaenoic acid (DHA) and exert potent 

proresolving and tissue homeostatic actions. Maresin 1 (MaR1; 7R,14S-dihydroxy-

docosa-4Z,8E,10E,12Z,16Z,19Z-hexaenoic acid) is the first identified maresin. Recently, we 

demonstrated formation, stereochemistry, and precursor role of 13,14-epoxy-

docosahexaenoic acid, an intermediate in MaR1 biosynthesis. The 14-lipoxygenation of 

DHA by human macrophage 12-lipoxygenase (hm12-LOX) gave 14-hydro(peroxy)-

docosahexaenoic acid (14-HpDHA), as well as several dihydroxy-docosahexaenoic acids, 

implicating an epoxide intermediate formation by this enzyme (see Table 2 and references 

within for the role of LOX and the SPM in mouse diseases). Using a stereo-controlled 

synthesis, enantiomerically pure 13S,14S-epoxy-docosa-4Z,7Z,9E,11E,16Z,19Z-hexaenoic 

acid (13S,14S-epoxy-DHA) was prepared, and its stereochemistry was confirmed by NMR 

spectroscopy. When this 13S,14S-epoxide was incubated with human macrophages, it was 

converted to MaR1. The synthetic 13S,14S-epoxide inhibited leukotriene B4 (LTB4) 

formation by human leukotriene A4 hydrolase (LTA4H) to a similar extent as LTA4 but was 

not converted to MaR1 by this enzyme. 13S,14S-epoxy-DHA also reduced arachidonic acid 

conversion by hm12-LOX and promoted conversion of M1 macrophages to M2 phenotype, 

which produced more MaR1 from the epoxide than M1. Together, these findings establish 

the biosynthesis of the 13S,14S-epoxide, its absolute stereochemistry, its precursor role in 

MaR1 biosynthesis, and its own intrinsic bioactivity. Given its actions and role in MaR1 

biosynthesis, this epoxide is now termed 13,14-epoxy-maresin (13,14-eMaR; Fig. 2, Panel 

C) and exhibits new mechanisms in resolution of inflammation in its ability to inhibit 

proinflammatory mediator production by LTA4 hydrolase and to block arachidonate 

conversion by human 12-LOX rather than merely terminating phagocyte involvement.
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Further, PCR mapping of 12-lipoxygenase (12-LOX) mRNA sequence in human 

macrophages and platelets showed that they are identical. This human 12-LOX mRNA and 

enzyme are expressed in monocyte-derived cell lineage, and enzyme expression levels 

increase with maturation to macrophages or dendritic cells. Recombinant human 12-LOX 

gave essentially equivalent catalytic efficiency (kcat/KM) with arachidonic acid (AA) and 

DHA as substrates. Lipid mediator metabololipidomics demonstrated that human 

macrophages produce a novel bioactive product 13,14-dihydroxy-docosahexaenoic acid in 

addition to MaR1. Co-incubations with human recombinant 12-LOX and soluble epoxide 

hydrolase (sEH) demonstrated that biosynthesis of 13,14-dihydroxy-docosahexaenoic acid 

(13,14-diHDHA) involves the 13S,14S-epoxy-maresin intermediate produced from DHA by 

12-LOX, followed by conversion via soluble epoxide hydrolase (sEH) [21]. This new 13,14-

diHDHA displayed potent anti-inflammatory and pro-resolving actions, and at 1 ng reduced 

neutrophil infiltration in mouse peritonitis by ~40% and at 10 pM enhanced human 

macrophage phagocytosis of zymosan by ~90%. However, MaR1 proved more potent than 

the 13R,14S-diHDHA at enhancing efferocytosis with human macrophages. Taken together, 

the present findings demonstrate that macrophages produced a novel bioactive product 

identified in the maresin metabolome as 13R,14S-dihydroxy-docosahexaenoic acid, from 

DHA via conversion by human 12-LOX followed by sEH. Given its potent bioactions, we 

coined 13R,14S-diHDHA maresin 2 (MaR2).

3. Aspirin vs. Nonsteroidal Anti-Inflammatory Drugs: Friends or Foes of 

Resolution?

PG are central to the vascular response, permitting diapedesis of PMN and monocytes to 

leave postcapillary venules, and their production via COX-1 and COX-2 is critical for 

initiation and timely resolution (Fig. 1) [22, 23]. PGE2 and PGD2 each evoke pro-

inflammatory and anti-inflammatory responses that depend on location. PGE2 enhances 

LTB4-mediated PMN extravasation and tissue injury that is blocked, for example, by lipoxin 

A4 (LXA4) and its aspirin-triggered epimer 15-epi-LXA4 [24], illustrating a pro-

inflammatory PGE2 function in skin and ability of 15-epi-LXA4 stable analogs to stop PMN 

infiltration and tissue injury. Temporal LC-MS-MS-based profiling demonstrated the switch 

from PG and leukotriene production to appearance of lipoxins within inflammatory exudates 

(Fig. 1). PGE2 or PGD2 added to human PMN increase 15-LOX type I translation from 

mRNA stores in a cAMP-dependent manner, increasing LX biosynthesis [22].

Inhibition of COX-2 delays resolution [23] because prostaglandins play critical roles in 

resolution and are initiators of LM class switching (Fig. 1), a process involving utilization of 

omega-3 for resolvins and other SPM. In mapping resolution, it became clear that initiation 

of inflammation signals its end [15] and that leukocyte traffic in and out of pus permits 

prostanoids to signal biosynthesis of resolution mediators (Figure 1 & 2).

Disruption of physiologic LM class switching has deleterious consequences in mouse 

arthritis [25] and in humans [26]. To pinpoint, critical steps and mechanisms of SPM action 

within inflammation-resolution, we introduced quantitative indices [27] that are now widely 

used [28–30]. Resolution indices identified agents that disrupt or delay resolution (resolution 

interval, Ri), including COX-2 and lipoxygenase inhibitors [27, 28], lidocaine [31]. By 
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contrast, specific SPM, e.g. resolvins, lipoxins and protectins, shorten Ri by limiting PMN 

recruitment and stimulating macrophage efferocytosis (Fig. 1, Table 1) and bacterial killing 

[27, 29, 32, 33]; pinpointing the PMN-monocyte sequence needed for tissue repair and 

regeneration [12]; and glucocorticoids, specific cyclin-dependent kinase inhibitors, statins, 

annexin peptides and aspirin are resolution friendly [29, 34–36].

Aspirin and NSAIDs inhibit prostanoid biosynthesis, but aspirin is an irreversible inhibitor 

that acetylates COX, and NSAIDs are considered reversible inhibitors [2]. Aspirin 

acetylation of COX-2 modifies the catalytic domain, blocking PG-biosynthesis, which is 

well known, yet remains active producing 15R-HETE from arachidonic acid, 18R-HEPE 

from EPA and 17R-HDHA from DHA in cells carrying COX-2. These are transformed by 

leukocytes to aspirin-triggered lipoxins [35], aspirin-triggered resolvins [3, 4] and aspirin-

triggered protectins [37]. Each AT-SPM is a potent mediator that stops PMN infiltration and 

enhances macrophage cleanup, giving a shortened Ri. COX-1 doesn’t produce appreciable 

aspirin-triggered epimers. NSAIDs that inhibit both COX-1 and COX-2, and selective 

COX-2 inhibitors prevent their production [3].

Low-dose aspirin triggers 15-epi-LXA4 in skin blisters in humans (75 mg aspirin daily/10 

days) to reduce PMN infiltration [28]. In a randomized controlled study of 128 healthy 

volunteers, low-dose aspirin (8 weeks daily, 81 mg) increased plasma 15-epi-LXA4. Low-

dose aspirin thus enhances production of aspirin-triggering mediators in humans while 

inhibiting thromboxane, giving a net change [38] favorable for pro-resolution, where distinct 

resolution-phenotypes emerged [39, 40].

4. Microparticles and New Players in Local SPM Biosynthesis

Microparticles (MP) are membrane-derived vesicles produced by a range of cell types and 

contribute to human pathologies. MP from self-resolving exudates display anti-

inflammatory and proresolving capacity [41]. Resolution-MP enhance efferocytosis [41, 42] 

and carry pro-resolving signals including hydroxy-SPM-precursors esterified in 

phospholipids [41]. Secretory PLA2 (sPLA2) releases these precursors from MP for 

conversion by leukocytes [41, 42]. Since nanomedicines are of wide interest [43], we used 

resolution-MP and their ability to shorten Ri in mouse peritonitis as a basis for biomimicry 

to construct humanized nanoparticles containing LXA4 analog or AT-RvD1 [41]. These 

nano-proresolving medicines (NPRM) carrying SPM or SPM-analogs, enhance wound 

healing of human keratinocytes and are protective in a mouse model of temporomandibular 

joint disease [41]. There are currently limited treatments for TMJ diseases, and importantly 

NPRM display reduced nanotoxicity. Along these lines, NPRM containing a novel lipoxin 

analog (benzo-lipoxin A4, bLXA4) promote hard and soft tissue regeneration in periodontitis 

in the Hanford miniature pig. NPRM-bLXA4 markedly reduces inflammatory cell infiltrate 

into chronic periodontal disease sites and increases new bone formation [44]. These findings 

offer a new therapeutic tissue-engineering approach for the treatment of chronic osteolytic 

inflammatory diseases.

New microfluidic chambers that permit visualization of cell-cell interactions between 

leukocyte subpopulations (i.e. human PMN and monocytes) and distinguish phlogistic vs. 
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nonphlogistic leukocyte behavior are ideal to screen SPM individually or incorporated 

within humanized NPRM [41, 45]. Single cell screening with microfluidic devices permits 

optimization for enriching MP with SPM and production of NPRM as well as viewing 

neutrophil-monocyte interactions [45] essential for appreciating signals used in the PMN-

monocyte sequence (Figure 1).

Platelet-MP transfers its 12-LOX to mast cells for LX-biosynthesis [46] (see Figure 2, Panel 

B). Platelet-MP are taken up and enhance LXA4 production, which reduces colitis in mice, 

suggesting that platelet-derived MP signal immune regulation via LXA4 [46]. MP can also 

transfer substrate and intermediates to macrophages (MΦ) during efferocytosis enhancing 

SPM biosynthesis, demonstrated by transfer of deuterium label from precursors to labeled-

SPM [42]. Myeloid cells at different stages display agonist- and phenotype-specific LM 

profiles. For example, human PMN from healthy peripheral blood produce predominantly 

LTB4, while apoptotic PMN produce PGE2, LXB4 and RvE2 signals for resolution [42].

Both M1 and M2 macrophages display specific markers and pathways specialized to their 

functions of MΦ subpopulation in inflammation, its resolution and cancer [47]. Human M2 

macrophages possess increased Arg1, 15-LOX [48], other markers and specific LM 

signature profiles. M2 produce SPM with lower LTB4 and PG than M1. Both engulf 

apoptotic PMN, modulating their LM profiles. In M2, LTB4 is down-regulated and SPM are 

increased [42], suggesting M1 and M2 subpopulation [47, 48] produce functional LM 

signatures that can impact both physiologic and pathophysiologic states [42]. Secreted PLA2 

group IID is a proresolving PLA2 expressed in CD11c+ dendritic cells and macrophages 

giving rise to RvD1 and PGJ2 in lymphoid tissue, controlling hypersensitivity [49].

Eosinophils are well appreciated in parasitic infections and allergic responses. In severe 

asthma, PD1 is present in human exhaled breath condensates [30] and is decreased in human 

eosinophils from patients with severe asthma [50]. Human eosinophils are a major source of 

PD1, and at nanomolar concentrations, reduce adhesion molecules (CD11b and L-selectin), 

eotaxin-1/CCL11 and chemotaxis without affecting degranulation, superoxide generation or 

cell survival. Impaired PD1 in severe asthmatic patients may contribute to persistence and 

disease severity (Box 2). Eosinophils also stimulate resolution in mouse peritonitis via SPM 

initiated by mouse eosinophils [51]. LC-MS-MS-lipidomics identified LXA4, RvD5, 17-

HDHA and PD1 eosinophil production [51] and RvE3 (Fig. 2) that limit PMN infiltration 

and regulate MΦ [50, 52]. Hence, via their ability to produce SPM, eosinophils contribute to 

resolution. To support this, Arita and colleagues found eosinophil depletion leads to a deficit 

in resolution rescued by PD1 or eosinophil restoration. Thus, cellular traffic to inflammatory 

loci has a dynamic impact on LM signatures and specific SPM metabolomes activated 

within local milieu.

Box 2

General Points on Specialized Pro-resolving Mediators: What’s Established

• Mouse resolving exudates: Temporal relationships and in vivo actions

Air pouch, peritonitis, ischemia-reperfusion injury: sterile and bacterial 

infections
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• Structures of endogenous mediators elucidated: Total organic synthesis

Confirmation of potent actions and complete stereochemical assignments

• Human cellular biosynthesis:

– apoptotic PMN, microparticles, Macrophages M1 and M2;

– PMN-interactions with resident endothelial and epithelial cells; PMN-

Platelets

• Human Pathology – Present Yet Diminished SPM: Examples of failed 
resolution

Asthma [163–165] Localized aggressive periodontitis [166]

Adipose [167] Multiple sclerosis patients [106]

Alzheimer’s disease brain [89, 96] Rheumatoid arthritis, synovial [168]

Breath condensates [30, 169] Scleroderma [133]

Cystic fibrosis, nasal polys in cystic fibrosis [170] Ulcerative colitis [171]

• Conserved structures: fish (trout, zebrafish, anchovy), mouse, rabbit, human

• Tissue Regeneration: RvE1, MaR1

• Human Blood: RvE1, RvE2 and 17R/S-HDHA, RvD1, RvD2 and 17-epi-RvD1

• Human Milk; high levels of SPM: LXA4, RvD1, RvD2

• Clinical development and human trials: RvE1 mimetics

Ocular indications; Phase III clinical trial

5. SPM Cellular Actions in Disease Models: Receptors and Resolution 

Mechanisms

SPM are now investigated in animal models of infection (Table 1 and Table 2 for disease 

models) by investigators worldwide (reviewed in [18]). These include airway, dermatologic, 

ocular, pain and organ-specific inflammation and tissue injury resulting from collateral 

damage from excess PMN [18]. The low SPM-doses required to stop ongoing inflammation 

and promote resolution rely on GPCR receptors via amplifying intracellular signals. Several 

SPM receptors are identified using library screening, labeled-ligands for specific binding 

(stereospecific nM Kd) and functional cellular responses. SPM in general do not utilize Ca2+ 

mobilization in leukocytes for signal transduction but rather activate phosphorylation 

demonstrated using genetically engineered mice (see Table 3). RvE1 specifically binds to 

ChemR23 [53] and BLT1 to evoke pro-resolving responses. RvE1 activation of ChemR23 

enhances macrophage phagocytosis via phosphoprotein-mediated signaling [54]. RvE1 

blocks LTB4 binding and also signals via BLT1 to promote apoptosis of PMN for their 

clearance by MΦ [55] (LTB4-BLT1 signals PMN survival). PMN RvE1 signaling involves 

blocking survival signals, an important difference for PMN in the innate response, where 

they must undergo timely apoptosis and MΦ efferocytosis to achieve homeostasis.
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RvD1 binds and activates human GPR32 and shares human and murine LXA4 receptor 

(ALX/FPR2) to evoke rapid impedance change with recombinant receptors. Transgenic 

mice overexpressing human ALX-FPR2 require less RvD1 to stop inflammation [56], and in 

receptor-deficient mice, RvD1 is apparently without leukocyte actions [57]. Resolution 

involves specific miR, regulated by SPM receptors [56, 58, 59]. RvD1-GPR32 upregulates 

miR-208 and IL-10 as well as miR-219, which decreases LTB4 via regulation of 5-

lipoxygenase [58].

miR regulation by SPM is an example of long-term SPM-receptor signaling. SPM receptors 

acutely signal as well. For example, recombinant RvD1-GPR32 blocks histamine receptor 

(H1)-stimulated increases in intracellular Ca2+ in CHO cells via rapid stimulation of 

phosphorylation of H1 receptor that stops Ca2+ mobilization [60]. This form of SPM 

signaling, first documented with conjunctival goblet cells and RvD1, is also functional in 

salivary glands [61], is likely to be relevant in human PMN, which rapidly stop and change 

shape on exposure to SPM [45].

In addition to RvD1 and LXA4, ALX/FPR2 is also activated by peptide pro-resolving 

mediators, e.g. annexin A1, as well as pro-inflammatory peptides, at much higher 

concentrations [36]. This capacity of ALX/FPR2 involves ligand-biased receptor activation 

with heterodimerization of ALX with related FPR dictating pro-inflammatory signaling, and 

ALX homodimer gives pro-resolving signaling [36]. LXA4 also enhances ALX/FPR2 

promoter activity, which has a mutation of interest in human disease [62].

RvD3 and RvD5, related to RvD1 (Fig. 2), can also activate human GPR32 [11, 32]. Given 

the temporal production of these SPM in vivo (Fig. 2), these findings underscore that SPM 

produced locally at distinct times can impact different target cell types and receptors in a 

spatial-temporal dependency.

Both EPA and DHA activate GPR120 to signal responses of THP-1 cells [63], which are 

apparently not activated by resolvins. GPR120 is also a candidate taste receptor [64], 

requiring fatty acid (μM concentration) to evoke Ca2+ mobilization [65] that appears 

unrelated to SPM-resolution mechanisms, which are active at picomolar-nanomolar levels 

[42, 66].

6. Infectious Exudates and Resolution Programs in Host Defense

RvE1 and LXA4 each reduce severity of periodontal disease in rabbits by enhancing P. 

gingivalis clearance, causative organism in this infection [67, 68]. While anti-inflammatory 

actions of SPM were established in sterile mouse models [3, 4], the relation between 

resolution and infection is of interest because of the known eventual immunosuppressive 

actions of anti-inflammatory drugs [69]. Surprisingly, RvD2 protects mice from cecal 

ligation-puncture (CLP)-induced sepsis [33], with potent actions enhancing phagocytosis 

and bacterial killing (Table 1, Box 1). In self-limited live E. coli infections, resolution 

programs are activated in mice and host PD1, RvD5 and RvD1 are elevated [32]. When 

added back to mouse phagocytes, human MΦ or PMN, SPM enhance bacterial phagocytosis 

and killing as well as clearance [32, 33, 70]. Of interest, SPM acting on the host lower 

antibiotic doses needed to clear infections.
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LXA4 is also protective in CLP in rats, reducing bacterial burden and pro-inflammatory 

mediators via a MΦ NFκB-mediated mechanism reducing systemic inflammation [71]. 

Aspirin-triggered-LXA4 increases phagocytosis of E. coli in a PI3K-and scavenger receptor-

dependent manner, and ALX/FPR2 is upregulated in patients with Crohn’s disease and 

enhances bacterial clearance [72]. Mycobacterium tuberculosis infections also engage 

resolution programs via activating LTB4-LXA4 production, regulating host responses in 

zebrafish, mice and humans [73, 74]. Given importance of rising microbial resistance, 

activation of resolution programs and SPM-pathways could provide new anti-microbial 

approaches.

Herpes simplex virus causes ocular infections that lead to stromal keratitis with viral-

initiated immunopathology. RvE1 and PD1 are each potent and topically active in this 

infectious mouse model, reducing pro-inflammatory mediators and stimulating IL-10 [75, 

76]. H5N1 virus lethal dissemination activates genes in mice tracked to LX biosynthesis, 

where sustained inflammation inhibits LX-mediated anti-inflammatory host responses that 

permit viral dissemination [77]. H1N1 activates host resolution-metabolome increasing PD1 

[78]. Host protectins display antiviral activity blocking replication of H5N1 influenza virus. 

During the time course of H3N2, a low-pathogenicity strain of influenza, anti-inflammatory 

mediators are produced with infection that correlates with resolution and SPM-related 

pathway-markers [79]. In children with acute post-streptococcal glomerulonephritis, 

resolution phase is associated with LXA4 and diminished LTB4 [80]. Pro-resolving actions 

of SPM also extend to yeast infections, e.g. Candida, where RvE1 enhances yeast killing 

and clearance [81]. Innate immunodeficiency syndromes are linked to mutations in innate 

receptors. For example, X-linked lymphoproliferative syndrome type-2 is associated with 

deficiency in X-linked inhibitor of apoptosis protein (XIAP). Mice deficient in XIAP are 

highly vulnerable in Candida albicans infection. RvD1 rescued Xiap(−/−) mice from lethal 

C. albicans infection, suggesting the potential therapeutic value of RvD1 in the treatment of 

innate immunodeficiency syndromes [82]. These results enforce the notion that treating the 

host during infection with host-directed pro-resolving molecules could open new 

opportunities in host-pathogen struggles [32, 70, 83].

7. Tissue Regeneration and Healing

LXA4 stimulates reepithelialization of cornea in a gender-specific fashion [84]. RvE1, RvD1 

and RvD2 each stimulate dermal wound healing, reducing neutrophilic infiltration and 

stimulate reepithelialization of skin wounds when applied to the wound site [85]. Most 

notably, they reduce the time required for dermal wound closure. D-series resolvins 

stimulate diabetic wound healing [86, 87].

Given the role of macrophages in wound healing and organ regeneration, the macrophage-

derived SPM maresin pathway stimulates tissue regeneration. The maresin pathway and 

MaR1 (Figure 2) are also produced by planaria Dugesia tigrina, a Platyheminthes used in 

regeneration studies. RvE1 and MaR1 reduced regeneration time (speed of regrowing head 

segments). In the presence of inhibitor of MaR1 biosynthesis, regeneration index is reduced 

and rescued with addition of MaR1. Given the importance of tissue regeneration in trauma 
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and microbial invasion and infection, it is not surprising that SPMs play role(s) in 

stimulating organ regeneration [12].

8. Neuroinflammation, Pain, and Cognition

Resolvins and protectins are produced in mouse brain tissue [4, 88] and in human brain [89]. 

These include human microglial cells, where they reduce cytokine expression [4, 88] and 

their production by trout brain cells indicates SPM are conserved from fish to humans [90]. 

In mouse ischemic stroke, resolvins, protectins and their aspirin-triggered forms are 

produced [91], where they are protective, down regulating excess leukocyte infiltration, and 

reduce local neuronal injury, COX-2 induction, IL-1β and NFκB. Thus, in brain, DHA is 

precursor to neuroprotective signaling pathways evoked by ischemia-reflow tissue injury. 

Given its potent actions to reduce neuroinflammation and protect neural cells, we coined this 

10,17-dihydroxy-protectin (a docosatriene) neuroprotectin D1 with Bazan and colleagues 

when biosynthesized and acting in neural tissues and retinal epithelial cells [92].

DHA is enriched in brain, synapses and retina, where its protective role is appreciated, yet 

its role as a precursor to novel local mediators in resolution and in neuroprotection is still 

emerging. Bazan and colleagues showed potent protective roles of NPD1 in the nervous 

system, reducing stress pathways that lead to cell death and increase cell survival, and in 

several ocular models of important diseases NPD1 targets microglia [4, 93]. Aspirin-

triggered DHA metabolome biosynthesizes 17R-NPD1/PD1 that reduces human PMN 

transmigration, and enhanced MΦ efferocytosis [37] and attenuates cerebral ischemic injury 

[94]. AT-NPD1 reduces brain edema in the penumbra and subcortical lesion size, infarct 

volumes are reduced ~60–80%, and improves neurological scores [94]. Hence, new findings 

focus on unesterified DHA in neural tissues as an important determinant in brain SPM 

biosynthesis and neuroinflammation [95].

In human Alzheimer’s disease (AD), brain NPD1 is reduced [89], implicating that its loss 

contributes to neurodegeneration. Indeed, resolution-pathway (SPM-receptors and products) 

are diminished in brain from AD [96]. LXA4 and RvD1 are reduced in cerebrospinal fluid 

and hippocampus that correlated to mini-mental state examinations in these patients, which 

together provide further evidence that failed resolution mechanisms may contribute to 

human disease and cognitive function [96]. RvD1 added to leukocyte-derived MΦ from AD 

patients reduces their pro-inflammatory phenotype and enhances their ability to promote 

phagocytosis of amyloid-beta (Aβ) [97], suggesting that resolvins promote clearance of Aβ 

deposition to reduce inflammation in AD. Human MΦ from patients with amyotrophic 

lateral sclerosis, a neuronal degenerative disease, demonstrates that RvD1 reduces their 

output of pro-inflammatory cytokines and chemokines that contribute to neuroinflammation 

[98]. RvD1 reduces IL-6 and TNFα by ALS-MΦ and is ~1,000 times more potent than DHA 

[98]. Hence, resolvins are protective and are likely to play pivotal roles in homeostasis in 

brain and peripheral tissues, each with selective functions that can impact 

neuroinflammation, its resolution and cognitive function.

Given the potent actions of resolvins and protectins in neuroinflammation, several groups 

investigated LX in neurologic systems. LXA4 also displays potent neuroprotection, reducing 
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PMN infiltration, astrocyte activation, TNFα and IL-1β in a rat model of cerebral artery 

occlusion and ischemia [99], reduces β-amyloid-induced IL-1β and TNFα in cortex and 

hippocampus of mice [100], is neuroprotective in cerebral ischemia-reperfusion injury in 

rats [101, 102] and reduces leukotrienes as well as ERK phosphorylation, which limits local 

neuroinflammation partly mediated by ALX/FPR2 [101]. In experimental stroke, PPAR 

agonist rosiglitazone is neuroprotective via increasing LXA4 and reducing leukotriene B4 

[103]. In rat cerebral ischemia/reperfusion, LXA4 reduces infarct size and improves 

neurologic scores that are only partially attributed to receptor ALX/FPR2, and induces Nrf2 

expression and nuclear translocation as well as heme oxygenase HO-1 [104], suggesting that 

both receptor-mediated pathways and Nrf2 expression contribute to neuroprotection. LXA4 

is produced in brain and is protective via CB1 cannabinoid receptor [105] as an endogenous 

allosteric enhancer. LXA4 enhances affinity of anandamide, potentiates endocannabinoids 

and protects from spatial memory loss induced by β-amyloid peptide [105, 106].

Inflammation can evoke pain that may persist, and each SPM displays targeted actions that 

resolve pain signals. Lipoxins reduce pain in murine models, LXA4 receptor (ALX/FPR2) is 

on spinal astrocytes, and local spinal LXA4, LXB4 or their metabolically stable analogs 

reduces inflammation-induced pain [107]. LXs reduce thermal hyperalgesia with as little as 

10 μg/kg given i.v. or 0.3 nmol (1 μL/h, 20–24 h) intrathecal (i.t.) [107]. Each SPM dampens 

pain, having specific targets of action [108] first demonstrated with RvE1 and RvD1 for 

inflammatory pain involving both central and peripheral sites of action [109]. RvE1 

administered i.t. in mice is more potent than morphine or COX-2 inhibitor. RvE1 receptor 

(ChemR23) is in DRG, where RvE1 regulates pERK-dependent TRPV1inhibition and 

TNFα-mediated hyperalgesia centrally, and in postsynaptic neurons RvE1 inhibits glutamate 

and TNFα stimulation of NMDA-R and mechanical allodynia [109].

RvD1 inhibits TRPA1, TRPV3 and TRPV4 channel activation expressed in HEK cells in 

nanomolar-micromolar range, cultured sensory neurons and keratinocytes as well as displays 

analgesic properties in pain behavior [110]. AT-RvD1 appears specific for TRPV3 [111], 

and NPD1/PD1 (0.1–10 ng) blocks spinal LTP, reducing TRPV1-dependent inflammatory 

pain without affecting basal pain responses [112]. NPD1 also reduces TNFα-dependent pain 

hypersensitivity [112] and protects against neuropathic pain after nerve trauma in mice 

[113]. RvD2 inhibits TRPV1 (IC50 0.1 nM) and TRPA1 (IC50 2 nM) in primary sensory 

neurons. RvE1 selectively blocks TRPV1 (EC50 = 1 nM), and RvD1 inhibits TRPA1 (IC50 9 

nM). RvD2, RvE1 and RvD1 (Fig. 2) each differentially regulate TRPV1 and TRPA1 

agonist-elicited acute pain and synaptic plasticity in spinal cord [114].

MaR1 inhibits TRPV1 currents in neurons and blocks capsaicin-induced inward current 

(IC50 0.49 nM), diminishing inflammatory and chemotherapy-evoked neuropathic pain in 

mice [12]. RvD1 reduces postoperative pain [115], and both AT-RvD1 and 17R-HDHA 

reduce adjuvant-induced arthritis in rats and associated pain [116], reducing NFκB and 

COX-2 expression in spinal cord, and within arthritic joints reduce TNFα and IL-1β. In 

addition to leukocytes and microglia, the currently known SPM-GPC receptors are present 

on neuronal bodies (DRG), nerve terminals (skin and muscle) and synaptic terminals, where 

they regulate specific TRP channels. For example, RvE1-ChemR23 (ERV) interaction in 

DRG regulates TRPV1, but not via direct activation of channels like endocannabinoids 
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[108] or other lipids that act to directly bind TRP channels in micromolar range; rather each 

SPM activates specific GPCR in pico-nanomolar range to regulate TRP channels involved in 

pain signaling.

Direct comparisons between LXA4 and AT-RvD1 in rat mechanical hypersensitivity in 

inflammation-induced pain indicate that both effectively reduce hypersensitivity and pro-

inflammatory mediators from astrocytes [117]. Cognitive decline following major surgery or 

critical illness is a major public health concern. Cognitive decline results from local 

increases in pro-inflammatory mediators. Systemic AT-RvD1 prophylaxis improves 

memory decline in a mouse surgery model and protects from postoperative neuronal 

dysfunction. AT-RvD1 reduces IL-6 and stimulated endogenous LXA4 [118], implicating 

positive feed-forward mechanisms in resolution. A human randomized trial of n-3 PUFA 

dietary intervention in chronic headache found increasing n-3 PUFA associated with 

reduced headache-pain and increased RvD2, 17-HDHA and 18-HEPE (pro-resolving 

pathway markers) [119] suggesting local SPM may reduce headache pain in humans as in 

animal models of pain and behavior.

9. Cross-talk between SPM and nervous systems

In zymosan-initiated acute peritoneal inflammation, vagus nerve regulates local expression 

of netrin-1, an axonal guidance molecule that activates resolution. Vagotomy reduces local 

SPM and delays resolution. In netrin-1(+/−) mice, resolvin D1 (RvD1) was less effective in 

promoting resolution of peritonitis compared with Ntn1(+/+). Netrin-1 and RvD1 display 

bidirectional activation in that they stimulated each other’s expression and enhanced 

efferocytosis [120]. These results indicate that the vagus nerve regulates both netrin-1 and 

SPM, which act in a bidirectional fashion to stimulate resolution, providing evidence for 

local neuronal control of resolution.

It was reported recently that in the mouse fibromyalgia-like model induced by reserpine, 

administration of AT-RvD1 and RvD2 significantly reduced mechanical allodynia, thermal 

sensitization and prevented the depressive-like behavior in reserpine-treated animals. 

Reserpine triggers a marked decrease of dopamine and serotonin (5-HT) levels. Long-term 

treatment with RvD2 prevents loss of serotonin in total brain, and AT-RvD1 leads to 

recovery of dopamine levels in cortex [121]. Therefore, D-series resolvins reduce painful 

and depressive symptoms associated with fibromyalgia in mice.

10. Reproductive System

In pregnant women, LXA4 is found in circulation at 24 weeks gestation and in lower levels 

in non-pregnant women [122–124]. Myometrial biopsies from pregnant women show ALX/

FPR2 present on myocytes and neutrophils with LXA4 reducing agonist-stimulated IL-6 and 

IL-8 in myometrium, which suggesting LX may stimulate resolution of local inflammation 

in both physiologic and pathologic labor in human parturition [122]. LXA4 also modulates 

estrogen receptor [125] and blocks embryo implantation [126]. In patients and in rat 

endometrium with ectopic endometriosis, ALX/FPR2 showed higher expression [127]. 

Since SPM like LXA4 counter-regulate pro-inflammatory cytokines (Box I), LXA4 reverses 

LPS-induced miscarriages down regulating both uterine and pro-inflammatory mediators 
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from placenta and mast cells in this tissue [123], and may be useful in endometriosis-related 

infertility [128]. During stress, the mechanism involves inactivation of glucocorticoids 

inhibiting LX-biosynthesis [123] controlling local inflammatory-homeostasis in pregnancy, 

suggesting a physiologic role for SPM (Fig. 3A).

In preeclampsia, LX counters pro-inflammatory factors produced in women that stimulate 

PMN adhesion to vascular endothelial cells [129], and LX appear to regulate implantation 

which may be useful in contraception. Certainly enzymes that produce SPM are in rat 

placental tissue and are regulated during gestation [130]. RvE3 in pregnant mice lowers 

local inflammatory milieu and incidence of preterm birth [131]. D-series resolvins RvD1, 

RvD2 and protectins (PD1 and 10S,17S-diHDHA, a.k.a. PDx; Cayman Chemical) are 

present in placenta and are increased with dietary omega-3 [130]. Another strategic location 

for SPM is in human breast milk [132], where they are orders of magnitude higher levels 

than inflammatory sites. LXA4, RvD1 and RvE1, identified in milk from mothers during the 

first month of lactation [132], may each have role(s) in neonatal immunity.

11. Organ Fibrosis

Unresolved inflammation, epithelial and microvascular injury can lead to excessive fibrosis 

that impairs organ function. In many organs such as lung and kidney, the cause is unknown 

and can lead to morbidity. Leukotrienes are profibrotic and in humans with scleroderma 

interstitial lung disease, the relationship between leukotrienes and lipoxins is imbalanced, 

with LXA4 in bronchoalveolar lavages at levels unable to counter-regulate profibrotic 

factors [133]. Aspirin-triggered-LX analog reduces bleomycin-induced pulmonary fibrosis 

[134], and both LXA4 and benzo-LXA4 reduce renal fibrosis [135]. RvE1 and RvD1 protect 

from renal fibrosis by reducing collagen I and IV, α-SMA and fibronectin [136]. Also, 

RvD1 reduces pro-inflammatory mediators generated by cigarette smoke exposure and 

pulmonary toxicants [137] that may reduce COPD-like fibrosis.

12. Cancer Resolution

Unresolved inflammation may link to predisposition to carcinogenesis and tumor 

invasiveness [3, 138]. RvD1 is chemopreventive in colitis-associated colon carcinogenesis 

in mice [139, 140]. With D. Panigrahy and colleagues, we found both RvD1 and RvD2 

reduce tumor growth in mice in nanogram amounts [141] and may be useful together with 

cancer chemotherapies.

13. SPM link Innate to Adaptive Immunity

Lymphoid tissue, e.g. mouse spleen, produces RvD1, 17-HDHA, PD1 [142] and LXA4 

[143] from endogenous sources, suggesting they’re strategically positioned to act on 

lymphocytes (Fig. 1). Both 17-HDHA and RvD1 increase human B cell IgM and IgG, a 

response not shared by PD1. 17-HDHA augments B cell differentiation toward 

CD27(+)CD38(+) antibody-secreting cell phenotype [142]. PD1 is biosynthesized by human 

T helper 2-skewed mononuclear cells via 16(17)-epoxy-protectin intermediate (Figs. 2 and 

3) and reduces T cell migration, TNFα and INFγ while promoting T cell apoptosis [144]. 

LXA4, RvE1 and PD1 each upregulate CCR5 expression on leukocytes that bind 
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chemokines, facilitating their clearance and resolution [145]. PD1 reduces CD4+ T cell 

infiltration into cornea [75], as does RvE1 in Herpes simplex viral infections [76]. RvD1 

reduces CD11b+ leukocytes and CD4+ and CD8+ T lymphocytes within the eye in uveitis 

[146]. RvE1 and RvD1 each regulate T-cell activation in choroid-retina [147]. RvE1 induces 

apoptosis of activated T cells via 2,3-dioxygenase induction in DC giving a new functional 

DC-subtype in resolution [148]. RvE1 reduces mouse CD4+ T cells and CD8+ T cells in 

atopic dermatitis [149].

14. Additional n-3 Pathways and Products

Identification of novel n-3 mediators and ability to profile using LC-MS-MS-based 

lipidomics [3, 4] opened the possibility for additional pathways that can convert n-3 to 

bioactive molecules. Recently, Hammock and colleagues found cytochrome P450 

epoxygenases convert DHA (Fig. 3B) to EET-like structures that inhibit VEGF and 

fibroblast growth factor 2-induced angiogenesis. When epoxydocosapentaenoic acids are 

given to mice with soluble epoxide hydrolase inhibitor, they are blocked from further 

metabolism, reducing ~70 tumor growth and metastasis [150]. Epoxyeicosatrienoic acids 

(EETs) evoke an opposite action in micromolar range, increasing tumor progression and 

angiogenesis [150]. These opposing actions are intriguing, because both the n-3 and n-6 

epoxy-products are present in healthy subjects with n-3 supplementation, that display a high 

degree of inter-individual variability in metabolite phenotyping of these pathways (Fig 3 B) 

using lipidomics [151].

In addition to epoxidation, p450 monooxygenases can convert PUFA to hydroxy-containing 

products similar to lipoxygenases, but via a different mechanism [152]. Some of these 

hydroxy p450-products (i.e. 17-HDHA) are converted in vivo to D-series resolvins [152]. 

EPA is substrate for prostanoid-like products, some of which exert potent actions; e.g., Δ12-

PGJ3 targets leukemia stem cells, activating apoptosis via Michael adducts [153] (Fig. 3B). 

Human leukocytes can also convert hydroxy-n-3 PUFA to electrophilic α,β unsaturated 

ketone derivatives that activate Nrf2-dependent gene expression and suppress NF-κB pro-

inflammatory-gene expression [154]. Oxidative stress promotes DHA conversion to 

neuroisoprostanes [155] as well as oxidized phospholipid derivatives that resolve 

neuroinflammation, uncovered using functional lipidomics [156] active in experimental 

autoimmune encephalomyelitis and brain lesions in multiple sclerosis.

15. Human studies

Since resolvins and protectins were first identified in mouse exudates, it was essential to 

establish their biosynthesis by human leukocytes and in human tissues [3, 4, 88]. RvE1 and 

RvE2 are produced in human blood [53, 70, 157], providing substrate is available. RvD1 

and RvD2 are also present in human blood at concentrations commensurate with their 

known bioactivities [158], and in human milk [132], identifications made possible with LC-

MS-MS and availability of SPM [16], thus opening the opportunity for rigorous assessment 

of their functional roles and potential in human physiology (Table 4, human SPM 

production).
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Muscle inflammation; resistance exercise—In an elegant study, Markworth et al. 

[26] demonstrated lipid mediator class switching in humans. Using a strenuous resistance 

exercise protocol, venous blood was collected during the time course post exercise and lipid 

mediators present in peripheral blood were identified using LC-MS-MS-lipidomics. Initial 

post-exercise recovery phase demonstrated the presence of prostanoids followed by 

leukotrienes, EETs and p450-derived eicosanoids, as well as LX, resolvins and protectins. 

Widely used NSAID for muscle aches and pains, ibuprofen, blocks exercise-induced 

prostanoids as well as reduces LTB4 and delays and diminishes the appearance of SPM. 

Resistance-exercise in humans illustrates the initial acute pro-inflammatory mediators and 

their link to resolution programs [26].

Lipoxin analogs were designed that are topically active [24], orally active, and efficacious in 

mouse and guinea pig skin inflammation, reducing edema, PMN and eosinophil infiltration 

and epidermal hyperproliferation [159] in preclinical models that could provide an 

alternative to using corticosteroids in certain settings. ATL analog is more potent than LTB4 

receptor antagonist or glucocorticoid [159]. One setting is pediatric use of steroids. In 

infantile eczema, topical 15(R/S)-methyl-LXA4 relieved severity and improved quality of 

life without apparent adverse events in a double-blind trial [160]. In these infants, AT-LXA4 

analog was as effective as a steroid mometasone. Also, inhaled LXA4 is safe and efficacious 

with asthmatic adults [161].

15.1. SPM resolution agonists in clinical development

RvE1, MaR1 and NPD1/PD1 are each in clinical development programs licensed by 

Brigham and Women’s Hospital/Partners Health Care. RvE1 mimetic is in development for 

ocular indications1, and NPD1/PD1 for neurodegenerative diseases and hearing loss2, given 

their broad ability to regulate inflammation without immunosuppression. Results from their 

pharmacology in animals [18] suggest treatment of inflammation-associated disease may be 

possible with SPM-agonists, which can reduce the use of inhibitors or antagonists that 

eventually can turn immunosuppressive [69].

16. New Pathway in Tissue Regeneration and Host Defense

Upon infection and inflammation, tissue repair and regeneration are essential in 

reestablishing function. We identified potent molecules present in self-limited infectious 

murine exudates, regenerating planaria, human milk as well as macrophages that stimulated 

tissue regeneration in planaria and are pro-resolving [162]. Characterization of their physical 

properties and isotope tracking indicated that the bioactive structures contained 

docosahexaenoic acid and sulfido-conjugated (SC) triene double bonds that proved to be 13-

glutathionyl,14-hydroxy-docosahexaenoic acid (SCI) and 13-cysteinylglycinyl, 14-hydroxy-

docosahexaenoic acid (SCII). These molecules rescued E. coli infection-mediated delay in 

tissue regeneration in planaria, improving regeneration intervals from ~4.2 to ~3.7 days. 

Administration of SC protected mice from second organ reflow injury, promoting repair via 

limiting neutrophil infiltration, upregulating Ki67 and Roof plate-specific spondin 3. At 

1Auven Therapeutics. RX 10045 – ocular inflammation. http://www.auventx.com/auven/products/rx10045.php
2Anida Pharma Inc. Neuroprotectin D1. http://www.anidapharma.com/lead-molecule.html
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nanomolar potencies these conjugates also resolved E. coli infections by limiting neutrophil 

infiltration, stimulating bacteria phagocytosis and clearance as well as efferocytosis of 

apoptotic cells. Together, these findings identify previously undescribed, conserved 

chemical signals and pathways in planaria, mice and human tissues that enhance host 

responses to contain infections, stimulate resolution of inflammation and promote the 

restoration of function.

17. Summation

Heat, redness, swelling, pain and loss of function are the cardinal signs of inflammation, 

each evoked by mediators, and an emerging body of evidence indicates that they are 

physiologically counterregulated by SPM. It’s when and where that counts for autacoids, 

and it’s important to emphasize that the first response of acute inflammation is ubiquitous 

and mounts throughout the body. Both n-6 and n-3 PUFA play critical and distinct roles in 

SPM biosynthesis of local mediators that are agonists; namely, immunoresolvents 

stimulating resolution by cessation of PMN influx and enhancing phagocytosis for clearance 

and containment, the hallmarks of resolution (Fig. 1). These are the defining SPM functions, 

with each SPM possessing additional nonredundant roles (Fig. 3) and more likely to be 

uncovered. At the cellular and molecular level, SPM counterregulate pro-inflammatory 

chemokines, cytokines and regulate adipokines; regulate miR, transcription and 

translocation, cell traffic and enhance microbial killing via GPCR-mediated mechanisms 

(Table 1). SPM are produced in humans (blood, milk and brain) where they can have 

physiologic actions because they are produced in levels that display potent selective actions 

in animals [17, 18]. SPM location within lymphoid tissues and actions with lymphocytes 

place them in strategic positions for communications from innate to adaptive immunity.

These exciting new findings from laboratories worldwide raise many questions on, e.g., 

whether SPM along with their local actions are also capable of evoking responses at sites 

distant from their origins. Ample n-3 and n-6 levels in humans are needed to biosynthesize 

PUFA-derived signals for the inflammatory response that evolved to protect the host. What 

are optimal levels of n-3 and n-6 PUFA needed to ensure local SPM-biosynthesis and 

eicosanoids required for timely resolution and homeostasis? Are there age- and gender-

related components in SPM-resolution programs? Can we personalize nutrition to optimize 

local SPM production using LM-metabolipidomic profiling? Is it possible to design 

therapeutic diets to increase SPM [119], related products [150], and/or use select SPM-

receptor agonists to control diseases? Is there a negative side to prolonged supraphysiologic 

SPM or related n-3-PUFA-derived products? The immediate future will bring evidence to 

address these fundamental questions now that the SPM structure and spatial temporal 

resolution-metabolomes are under intensive investigations.

SPM and new PUFA products (Fig. 5) emerge as key regulators in physiologic pathways in 

unresolved inflammation, obesity, cognitive decline, reproduction, neuroprotection and 

cancer, beyond PUFA roles in intermediary metabolism and membrane physical dynamics. 

Identification of SPM metabolomes and the appreciation that exudates drive resolution in 

part via SPM proresolving actions has set a new terrain in physiology. Moreover, SPM are 

now proven to have a wide range of actions that open a new vista for resolution physiology 
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and pharmacology, where the mediators and their precursors are vital in supplying chemical 

signals for catabasis to homeostasis.
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Abbreviations

17R-HDHA 17R-hydroxy-4Z,7Z,10Z,13Z,15E,19Z-docosahexaenoic acid

AT aspirin-triggered

AT-RvD3 4S,11R,17R-trihydroxydocosa-5Z,7E,9E,13Z,15E,19Z-hexaenoic acid

GPCR G protein-coupled receptor

LC-MS-MS liquid chromatography-tandem mass spectrometry

LM lipid mediator

LT leukotriene

LTB4 leukotriene B4, 5S,12R-dihydroxy-6Z,8E,10E,14Z-eicosatetraenoic acid

LXA4 lipoxin A4, 5S,6R,15S-trihydroxy-7E,9E,11Z,13E-eicosatetraenoic acid

LXB4 lipoxin B4, 5S,14R,15S-trihydroxy-6E,8Z,10E,12E-eicosatetraenoic acid

MaR1 maresin 1, 7R,14S-dihydroxy-docosa-4Z,8E,10E,12Z,16Z,19Z-hexaenoic 

acid

MΦ macrophages

PD1/NPD1 protectin D1/neuroprotectin D1, 10R,17S-dihydroxy-4Z,7Z,11E,13E,15Z,

19Z-docosahexaenoic acid

PMN polymorphonuclear neutrophil

PG prostaglandin

PGE2 Prostaglandin E2, 9-oxo-11R,15S-dihydroxy-5Z,13E-prostadienoic acid

PUFA polyunsaturated fatty acid

Rv resolvin

RvD1 resolvin D1, 7S, 8R,17S-trihydroxy-4Z, 9E, 11E, 13Z, 15E, 19Z-

docosahexaenoic acid)

RvD2 resolvin D2, 7S, 16R, 17S-trihydroxy-4Z, 8E, 10Z, 12E, 14E,19Z-

docosahexaenoic acid
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RvD3 resolvin D3, 4S,11R,17S-trihydroxydocosa-5Z,7E,9E,13Z,15E,19Z-

hexaenoic acid

RvD5 Resolvin D5, 7S,17S-dihydroxy-4Z,8E,10Z,13Z,15E,19Z-docosahexaenoic 

acid

RvE1 resolvin E1, 5S,12R,18R-trihydroxy-6Z,8E,10E,14Z,16E-eicosapentaenoic 

acid

RvE2 resolvin E2, 5S,18R-trihydroxy-6E,8Z,11Z,14Z,16E-eicosapentaenoic acid

SPM specialized pro-resolving mediators

TRP transient receptor potential
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Highlights

• Biosynthesis of specialized proresolving mediators (SPM)

• Functions of resolvins, lipoxins, protectins and maresins

• SPM actions in animal models of disease
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Figure 1. Lipid mediators in the acute inflammatory response and its outcomes
Panel A: LM play pivotal roles in the vascular response and leukocyte trafficking, from 

initiation to resolution. Eicosanoids are critical in initiating the cardinal signs of 

inflammation, and the specialized proresolving mediators (SPM), illustrated above, play key 

roles stimulating resolution (Panel B). Depicted are some roles of resolvins, protectins and 

maresins, SPM, in leukocyte trafficking, lipid mediator class switching, efferocytosis, 

resolving exudates to homeostasis and signaling to adaptive immunity via lymphocytes. 
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Failed resolution can lead to enhanced prostaglandin and leukotriene production and chronic 

inflammation that can lead to fibrosis. SPM (lipoxins, resolvins, protectins and maresins) 

counterregulate pro-inflammatory chemical mediators, reducing inflammation, and stimulate 

reepithelialization, wound healing, and tissue regeneration (see text for details).
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Figure 2. Production of SPM by resolving inflammatory exudates
Panel A depicts pus formation, e.g. a purulent exudate beginning with the postcapillary 

venule and the diapedesis of neutrophils as they are summoned by chemoattractants to leave 

the vascular circulation to combat invading microbes or foreign objects. The endothelial cell 

interactions with PMN are a site for E-series resolvin biosynthesis (see text for details). 

Panel B depicts the time course of self-limited acute inflammatory response, edema, 

followed by neutrophilic infiltration and nonphlogistic recruitment of monocytes/

macrophages from initiation (time 0) to resolution and the uptake of apoptotic PMN by 

resolving macrophages (rMΦ). Initial biosynthesis of SPM occurs at maximal neutrophilic 

infiltration through resolution in self-limiting responses. Structures of SPM: D-series 

resolvins, protectins and (Panel C) maresins. Depicted are resolvins D1–D4, which carry 

potent actions. 17-HpDHA is also precursor to 16,17-epoxide-protectin intermediate that is 

converted to protectin D1/neuroprotectin D1 and related protectins such as PDx, 10S,17S-

diHDHA. Panel C: Maresins are produced by macrophages via initial lipoxygenation at 

carbon-14 position by lipoxygenation and insertion of molecular oxygen, producing a 13S,

14S-epoxide-maresin intermediate that is enzymatically converted to maresin-1. The 
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stereochemistry of each bioactive SPM is established, and SPM biosynthesis in murine 

exudates and human tissues confirmed. See ref. [16] for citations of original reports, total 

organic synthesis and stereochemical assignments and the text for further details.
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Figure 3. New lipid mediators and biosynthesis routes
Panel A: SPM actions. Panel B: New routes for n-3 essential fatty acids (DHA, DPA and 

EPA) conversion via P450 cyclooxygenase, lipoxygenase and oxidative pathways.
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Table 1

SPM Shorten Resolution of Infections, Increase Survival and Outcomes in Murine Infection and Disease 

Models

SPM Increase Survival Disease Shorten Resolution Reference

LXA4 + Bacterial infections Walker et al. [71]

15-epi- LXA4 + Lung injury El Kebir et al. [172]

RvE1 + Colitis + Arita et al. [173]

+ Candida yeast + Haas-Stapleton et al. [81]

+ Acid-induced lung injury + Levy and Serhan [30]

RvD1, RvD5, PD1 + E. coli infection + Chiang et al. [32]

RvD1 + Acute lung injury + Wang et al. [174]

RvD2 + Cecal ligation and puncture sepsis + Spite et al. [33]

+ Burn wound + Bohr et al. [175]
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Table 2

Anti-inflammatory and tissue-protective roles: 12/15-LOX, 5-LOX and their products

(A) 12/15-LOX

Animal models Alox15 gene modification Actions/Phenotypes References

Periodontitis in rabbit Alox15 transgenic ↓ PMN-mediated tissue degradation and bone loss [67]

Cornea injury Alox12/15 deficient mice ↑ Inflammation
↓ Wound healing
↓ Corneal re-epithelialization
↓ Endogenous LXA4 production
↓ Heme-oxygenase 1
LXA4 rescues exacerbated inflammation and impaired 
wound healing in Alox15 deficient mice

[176, 177]

Atherosclerosis Alox12/15 transgenic mice Delayed atherosclerosis
↓ IL-17, CCL5, PGE2
↑ PD1

[178]

Alox12/15 deficient mice Accelerated atherosclerosis
↑ IL-12p40, CCL5
↓ LXA4 production in macrophages

Peritonitis Alox12/15 deficient mice ↓ 14-HDHA [179]

Arthritis Alox12/15 deficient mice ↑ Inflammatory gene expression
↓ LXA4 in inflamed synovia and macrophages

[180]

Collagen-induced arthritis COX-2 product PGE2 induces Alox12/15. PGE2 stimulates 
resolution via LXA4

[25]

Suture-induced chronic 
cornea injury

Alox12/15 deficient mice ↑ Inflammatory neovascularization [181]

Peritonitis Alox12/15 deficient mice Resolution deficit caused by eosinophil depletion was rescued 
by eosinophil restoration or the administration of PD1. 
Eosinophils from Alox12/15 deficient mice could not rescue 
the resolution phenotype

[51]

Dermal fibrosis Alox12/15 deficient mice ↑ TGF-β stimulated MAPK pathway
LXA4 counters TGF-β stimulated fibroblast activation

[182]

Endometriosis Alox12/15 deficient mice EPA administration decreased the number of lesions in 
controls but not in Alox12/15 deficient mice. Reduced levels 
of RvE3 after EPA administration in Alox12/15 deficient mice 
compared to control

[183]

Airway inflammation Alox12/15 deficient mice ↓ TLR7-mediated resolution of airway inflammation [184]

Peritonitis Alox12/15 deficient mice Low dose inhaled CO treatment reduces PMN infiltration in 
WT control, but failed to regulate PMN in Alox12/15 deficient 
mice

[185]

(B) 5-LOX deficient mice

Cellular systems Actions/Phenotypes References

Respiratory Syncytial Virus (RSV)-induced 
bronchiolitis

↑ lung pathology
Treatment of 5-LO(−/−) macrophages with LXA4 and RvE1, but not 
LTB4 or LTD4, partially restored expression of alternatively activated 
Mφ markers

[186]

Lyme arthritis (Borrelia burgdorferi infection) earlier joint swelling and an inability to resolve arthritis
↓ Macrophage phagocytosis of B. burgdorferi and efferocytosis
↓ PMN uptake of opsonized spirochetes

[187]

Suture-induced cornea injury ↑ inflammatory neovascularization coincident with increased VEGF-A 
and FLT4 expression

[181]

Mycobacterium tuberculosis infection ↓ LXA4 levels [188]

Toxoplasma gondii infection ↓ LXA4 levels [189]
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(B) 5-LOX deficient mice

Cellular systems Actions/Phenotypes References

↓ survival
↑ IL-12 and IFN-gamma

Semin Immunol. Author manuscript; available in PMC 2016 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Serhan et al. Page 42

Table 3

SPM receptors – Genetically modified mice

Receptor LM Agonist Genetic modification Actions/phenotypes References

ALX LXA4

RvD1
Transgenic mice Accelerated resolution with LXA4 and RvD1 in peritonitis [56]

Deficient mice RvD1 action (e.g. PMN trafficking, miR and cytokine regulation) is 
reduced in peritonitis

[56]

Deficient mice RvD1 actions (reduction of PGE2 and LTB4) is abolished in 
peritonitis

[57]

Deficient mice Reduced protection of 15-epi-LXA4 against intimal hyperplasia after 
carotid ligation

[190]

Deficient mice ↑ disease severity (hypothermia and cardiac dysfunction) in sepsis
↓ monocyte recruitment

[191]

ChemR23 RvE1 Transgenic mice Potentiated RvE1 actions in:
↓ PMN in peritonitis
↓ bone loss

[192]

Transgenic mice Heightened RvE1 response in:
↑ PMN phagocytosis of P. gingivalis
↓ PMN influx into the dorsal air pouch

[193]

BLT1 RvE1 (partial) Deficient mice RvE1 regulation of PMN infiltration is reduced [194]
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Table 4

SPM production in humans

SPM Disease/tissues Formation

Lipoxins & Aspirin-
triggered lipoxins 
(ATL)

Asthma Higher urinary ATL levels in aspirin-tolerant asthma than in aspirin-
intolerant asthma [164, 195, 196] and regulate NK cell and innate lymphoid 
cell activation [165, 197]

Alzheimer’s disease (AD) LXA4 levels are reduced in AD brain and CSF [96]

Colitis Elevated mucosal LXA4 promotes remission in Individuals with ulcerative 
colitis [171]

Type 2 diabetes Increased plasma ATL with intake of pioglitazone [198]

Rheumatoid arthritis LXA4 in synovial fluid from rheumatoid arthritis patients [168]

Localized aggressive periodontitis 
(LAP)

Less LXA4 in LAP whole blood compared to healthy individuals [166]

Peripheral artery disease Plasma levels of ATL are lower in patients with symptomatic peripheral 
artery disease [199]

Adipose tissues LXA4 identified in human adipocytes from obese patients [200]

Milk Lipoxins and resolvins at very high levels in the first month of lactation 
[132]

Resolvins Synovial fluid RvD5 present in synovial fluid from rheumatoid arthritis patients [168]

Blood (healthy volunteers) Plasma RvD1 and RvD2 identified with oral omega-3 supplementation 
[158]

Adipose tissues RvD1 and RvD2 identified in human adipocytes from obese patients [200]

Human plasma and milk RvE1 identified in human plasma [157] and milk [132]

Multiple sclerosis RvD1 was detected and upregulated in serum and cerebrospinal fluid in the 
highly active group [106]

Human IgA nephropathy RvE1 identified in patients supplemented with fish oil n-3 [201]

Peripheral blood (plasma and 
serum), lymphoid organs

RvD1, RvD2 and RvD3, identified in amounts within their bioactive ranges 
[202]

Protectin Asthma PD1 in exhaled breath condensates in asthma exacerbation [169]; decreased 
PD1 in eosinophils from patients with severe asthma compared to healthy 
individuals [50]

Embryonic stem cells PD1 produced in embryonic stem cells [203]

Multiple sclerosis NPD1 was detected in serum and cerebrospinal fluid in the highly active 
group [106]

Peripheral blood (plasma and 
serum), lymphoid organs

PD1 identified in amounts within their bioactive ranges. AT-PD1 is 
significantly increased with EFA and ASA intake [202]

Maresins Synovial fluid MaR1 identified in synovial fluid from arthritis patients [168]

Peripheral blood (plasma and 
serum), lymphoid organs

MaR1 identified in amounts within their bioactive ranges [202]
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