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The function of the blood–brain barrier (BBB) related to chronic pain has been explored for
its classical role in regulating the transcellular and paracellular transport, thus controlling
the flow of drugs that act at the central nervous system, such as opioid analgesics
(e.g., morphine) and non-steroidal anti-inflammatory drugs. Nonetheless, recent studies
have raised the possibility that changes in the BBB permeability might be associated
with chronic pain. For instance, changes in the relative amounts of occludin isoforms,
resulting in significant increases in the BBB permeability, have been demonstrated after
inflammatory hyperalgesia. Furthermore, inflammatory pain produces structural changes
in the P-glycoprotein, the major efflux transporter at the BBB. One possible explanation
for these findings is the action of substances typically released at the site of peripheral
injuries that could lead to changes in the brain endothelial permeability, including substance
P, calcitonin gene-related peptide, and interleukin-1 beta. Interestingly, inflammatory pain
also results in microglial activation, which potentiates the BBB damage. In fact, astrocytes
and microglia play a critical role in maintaining the BBB integrity and the activation of those
cells is considered a key mechanism underlying chronic pain. Despite the recent advances
in the understanding of BBB function in pain development as well as its interference in the
efficacy of analgesic drugs, there remain unknowns regarding the molecular mechanisms
involved in this process. In this review, we explore the connection between the BBB as well
as the blood–spinal cord barrier and blood–nerve barrier, and pain, focusing on cellular and
molecular mechanisms of BBB permeabilization induced by inflammatory or neuropathic
pain and migraine.

Keywords: pain, blood–brain barrier, blood–nerve barrier, blood–spinal cord barrier, neuropathic pain, migraine,

inflammatory pain and opioids

INTRODUCTION
The BBB is referred as a dynamic and functional structure that
separates the systemic circulation from the CNS. The BBB has

Abbreviations: ABC, ATP-binding cassette; ATP, adenosine triphosphate; BBB,
blood–brain barrier; BCRP (Bcrp), breast-cancer resistance protein; BNB, blood–
nerve barrier; BOLD, blood oxygenation level-dependent; BSCB, blood–spinal
cord barrier; CFA, complete freund’s adjuvant; CGRP, calcitonin gene-related
peptide; CIA, collagen-induced arthritis; CIP, lambda-carrageenan-induced inflam-
matory pain; CNS, central nervous system; CSD, cortical spreading depression;
EBA, endothelial barrier antigen; HIV, human immunodeficiency virus; HRP,
horseradish peroxidase; IASP, international association for the study of pain; ICAM-
1, intercellular adhesion molecule 1; IL-1β, interleukin-1 beta; MMPs, matrix
metalloproteinases; MRA, magnetic resonance angiography; MRP (Mrp), mul-
tidrug resistance protein; NMDA, N-methyl-D-aspartate; NSAIDS, non-steroidal
anti-inflammatory drugs; OM, ophthalmoplegic migraine; P-gp, P-glycoprotein;
PAG, periaqueductal gray; RA, rheumatoid arthritis; REZ, root entry zone; RM,
resident macrophages; tDCS, transcranial direct current stimulation; TENS, tran-
scutaneous electrical nerve stimulation; TJ, tight junction; TLR, toll-like receptor;
TMS, transracial magnetic stimulation; TNF-α, tumor necrosis factor-alpha; VEGF,
vascular endothelial growth factor; ZO, zonula occludens.

a crucial role in maintaining the proper neuronal function. It
is responsible for the brain homeostasis and protects the ner-
vous tissue from potential harmful substances, by limiting the
entry of certain molecules (except the small and lipophilic) into
the CNS (Rubin and Staddon, 1999). The “neurovascular unit”
comprises the endothelial cells, pericytes, and astrocytes end-
feet, embedded within their basal laminae. The interface between
blood and CNS is represented by the space between endothelial
cells/pericytes and astrocytic endfeet (Beggs et al., 2010). BBB
acts as a selective barrier due to the presence of complex TJs,
located between adjacent endothelial cells (Abbott et al., 2006).
The TJ protein complex establishes a physical barrier and lim-
its paracellular diffusion (Sanchez-Covarrubias et al., 2014). It
is formed via an intricate communication of transmembrane,
accessory, and cytoskeleton proteins. The transmembrane pro-
teins occludin and claudins are considered the primary seal of
the TJ (Fricker and Miller, 2004; Hawkins and Davis, 2005)
and dynamic interactions with the accessory proteins ZO 1, 2,
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3 permit the connection between TJ and the actin cytoskeleton
(Tsukamoto and Nigam, 1997). The biochemical barrier in the
BBB comprises mainly influx and efflux transporters, located in
the luminal and abluminal membranes of capillary endothelial
cells as well as metabolizing enzymes expressed intracellularly
(Hawkins and Davis, 2005; Ronaldson and Davis, 2013). ABC
transporters are among the largest family of transmembrane pro-
teins. They include P-glyprotein (P-gp), BCRP in humans and
Bcrp in rodents, and MRP 1–6 in humans and Mrp 1–6 in
rodents (Ronaldson and Davis, 2011; Radu et al., 2013). The
main structures that compose the BBB are illustrated in the
Figure 1.

Not all areas in the brain contain a BBB. Some areas where
the BBB is absent are: hypophysis, median eminence, area
postrema, preoptic recess, paraphysis, pineal gland, and endothe-
lium of the choroid plexus (Siegel, 1999). In the spinal cord,
the interface between blood and neural tissue is formed by
the BSCB functionally equivalent to the BBB (Xanthos et al.,
2012), while in the peripheral nerve, the perineurium, and the
endothelial blood vessels form the BNB. The BNB also acts
as a semipermeable membrane, regulating the microenviron-
ment homeostasis and providing “privileged” space for peripheral
axons and the corresponding supporting cells (Kanda, 2013;
Lim et al., 2014).

It has been reported that the BBB morphology and function
might be modulated and even disrupted in many neurologi-
cal diseases, including those caused by extrinsic factors, such
as meningitis (bacterial and viral) and encephalitis (e.g., her-
pes virus); intrinsic factors, such as ischemia/hypoxia, traumatic
brain injury, small vessel diseases (e.g., hypertension, diabetes),
and Alzheimer’s Disease; and more recently by pain disorders,
including peripheral inflammatory pain, neuropathic pain, and
migraine (Rosenberg, 2012). Tissue damage can produce an
intense release of signaling molecules from peripheral and cen-
tral neurons as well as from blood cells. Those substances include
IL-1β, TNF-α, histamine, and fractalkine. Moreover, other sub-
stances are released at the site of the injury, such as serotonin,
substance P, CGRP, and ATP. These are neurotransmitters of pri-
mary sensory afferents and are not only released during tissue
injury (Abbott et al., 2006; Basbaum et al., 2009; Clark and Malcan-
gio, 2014). Many such mediators can generate significant effects in
the CNS barriers (BBB, BSCB, and/or BNB). Equally important is
the ability of the BBB to control the influx of pharmaceutical com-
pounds into the CNS parenchyma, thus regulating the efficacy and
side effects associated with analgesic and antiinflammatory drugs
(Sanchez-Covarrubias et al., 2014).

A clear understanding of the structural and functional changes
that occur in the BBB following peripheral injury/chronic pain

FIGURE 1 | Schematic representation, illustrating the basic structural organization of BBB.
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will provide insights into the molecular mechanisms and patho-
physiological profile of different clinical pain disorders, which
would permit the development of more effective and perhaps safer
therapeutic approaches for chronic pain management.

HOW DOES INFLAMMATORY PAIN DISRUPT THE BBB?
There is accumulating evidence that inflammatory pain states
produce significant changes in the BBB permeability (Table 1).
This may affect the delivery of therapeutic components to the
brain, with great impact in the dosing regimens commonly used
to treat patients with chronic pain disorders. In one of the pio-
neer studies investigating the effects of peripheral inflammation
in the BBB function in vivo, three different models of subcu-
taneous inflammatory pain were examined (Huber et al., 2001).
The results showed significantly higher distribution of sucrose,

a membrane-impermeant marker, into the cerebral hemispheres
after peripheral inflammation produced by subcutaneous injec-
tions of formalin, λ-carrageenan, or CFA, representing acute,
short-term and long-term models of inflammatory pain, respec-
tively. Moreover, peripheral inflammation altered the expression
of TJ proteins. ZO-1 expression was significantly amplified in all
models analyzed, while occludin was significantly diminished in
the groups treated with λ-carrageenan or CFA. The decrease of
occludin expression reported in that study was later confirmed
in a model of chronic inflammatory pain, using CFA as the
inducer agent (Brooks et al., 2005). The same study reported
a huge increase in the expression of claudin-3 (450%) and
claudin-5 (615%). Nevertheless, changes in ZO-1 could not de
demonstrated. The discrepancies between both studies might be
explained by differences in the methodologies adopted. In another

Table 1 | Main findings of studies investigating changes in the BBB/BSCB associated with inflammatory pain.

Barrier Model Main outcomes Reference

BBB Inflammatory pain, produced by

subcutaneous injection of CFA,

λ-carrageenan (CIP) or formalin,

in sprague–dawley rats.

Peripheral inflammation led to an increase in the uptake of sucrose into

the cerebral hemispheres, in all models studied. Western blot revealed

changes in the TJ protein expression during peripheral inflammation.

Occludin decreased in the groups treated with λ-carrageenan or CFA,

while ZO-1 expression was increased in all inflammatory pain models.

On the other hand, Claudin-1 protein expression did not change

throughout the experiment.

Huber et al. (2001)

BBB Chronic inflammatory pain,

using CFA, in sprague–dawley

rats.

Decrease in the expression of Occludin. Significant increase in the

expression of claudin-3 (450%) and claudin-5 (615%) were also

demonstrated, but the same results were not obtained with zonula

occluden-1.

Brooks et al. (2005)

BBB CIP, in sprague–dawley rats. Increase in ICAM-1 RNA and protein expression in the thalamus, frontal,

and parietal cortices; which were correlated with augmented expression

of activated microglia.

Huber et al. (2006)

BBB CIP and perineural injection of

bupivacaine, in sprague–dawley

rats.

Changes in the BBB integrity induced by CIP were prevented by a

perineural injection of bupivacaine. This data suggests that nociceptive

input is necessary to the increased BBB permeability found in

λ–carrageenan models of inflammatory pain.

Campos et al. (2008)

BBB CIP and capsaicin, in

sprague–dawley rats.

Significant changes in occludin protein were observed in the lumbar

spine after λ-carrageenan but not after capsaicin administration.

Simultaneously, significant amounts of immunoglobulin G were seen in

the lumbar and thoracic segments of the spinal cord

Xanthos et al. (2012)

BBB CIP, in sprague–dawley rats. Structural changes in P-gp. McCaffrey et al. (2012)

BSCB Perispinal inflammation induced

by zymosan, in mice.

Perispinal inflammation led to changes in the reactivity of resident

astrocytes and microglia within the spinal cord but maintained the

integrity of the BSCB. Chronic pain did not develop.

Tenorio et al. (2013)

BBB CIP and diclofenac treatment, in

sprague-dawley rats.

Increased P-gp expression following peripheral inflammatory pain and

also after diclofenac treatment. Both peripheral inflammatory pain and

diclofenac treatment alone increased P-gp efflux activity, leading to a

reduced morphine brain uptake. Analgesia produced by morphine was

significantly reduced in animals pretreated with diclofenac, when

compared to those that received diclofenac and morphine concurrently.

Sanchez-Covarrubias et al. (2014)
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work, using the CIP model, paracellular permeability to [14C]
sucrose was detected in the BBB, which was also paralleled by
altered expression of occludin and ZO-1. However, intravenous
administration of λ-carrageenan did not significantly impact the
BBB permeability, indicating that the change in [14C] sucrose
permeability was due to either CIP induced inflammatory or neu-
ronal modulation of TJ (Huber et al., 2002). Furthermore, specific
regional microglia activation, measured by OX42 immunoreactiv-
ity, and changes in ICAM-1 expression have been shown after CIP
(Huber et al., 2006). Increased ICAM-1 expression, associated with
microglia activation, has been demonstrated in central-mediated
cerebral inflammation (Kyrkanides et al., 2002) and several studies
have highlighted the importance of microglia to the mechanisms
of neuropathic (Raghavendra et al., 2003; Tsuda et al., 2003; Coull
et al., 2005; Ji and Suter, 2007; Saegusa and Tanabe, 2014) and
acute inflammatory pain (Svensson et al., 2003; Ji et al., 2013).
Nonetheless, it is important to mention that there is evidence
that the augmented reactivity of astrocytes or microglia alone,
without simultaneous changes in the BSCB or BBB, is not suffi-
cient to generate and maintain a chronic pain state, after direct
lesion, or nervous system disease. This was demonstrated in an
experimental model of perispinal inflammation induced by the
TLR-2 agonist zymosan (Tenorio et al., 2013). Remarkably, the
previously reported regional effects of CIP in ICAM-1 expres-
sion and microglia activation occurred in brain areas that have
been extensively reported to be involved in pain processing and
modulation, such as the thalamus, frontal, and parietal cortices
(Apkarian et al., 2004; DaSilva et al., 2007a,b, 2008, 2012; DosSan-
tos and DaSilva, 2011; DaSilva and DosSantos, 2012; DosSantos
et al., 2012a; Wager et al., 2013), leading to the hypothesis that
the alterations seen in the BBB after CIP are possibly driven by
a central-mediated response conducted through the spinotha-
lamic tract. This hypothesis was further confirmed in a study
showing that CIP-induced changes in the BBB integrity can be pre-
vented by a perineural injection of bupivacaine 0.75%, implying
that nociceptive input is necessary to enhance the BBB per-
meability in λ-carrageenan-driven inflammatory pain (Campos
et al., 2008). Interestingly, the same study showed that bupi-
vacaine nerve block also decreased the thermal allodynia and
prevented variations in the expression of TJ proteins occludin,
ZO-1, and claudin 5, but did not alter the paw edema forma-
tion following λ-carrageenan injection. In summary, the results
indicate that the blockade of nociceptive input inhibits the func-
tional perturbations in the BBB barrier under inflammatory pain
conditions.

According to a recent study, peripheral inflammatory hyperal-
gesia is also responsible for a dynamic redistribution of P-gp and
caveolin-1 between endothelial subcellular compartments at the
BBB (McCaffrey et al., 2012). P-gp is described as the major efflux
transporter at the BBB. It combines ATP hydrolysis and drug efflux
to extrude drugs against concentration gradients (Miller, 2010).
In addition, it has been stated that increased functional activ-
ity of P-gp during inflammatory hyperalgesia leads to a greater
efflux transport of morphine, which could explain the reduced
ability of this drug to gain access to the brain under inflam-
matory pain conditions (Seelbach et al., 2007). Hence, changes
observed in the P-gp function after λ-carrageenan injection, have

a potential therapeutic implication, regarding the delivery of
analgesic drugs to the CNS, in particular opioids peptides, as
well as other classes of pharmacological agents applied to treat
peripheral inflammatory pain disorders. In addition to P-gp, it
seems that MRP4, another type of ABC transporter and target of
some NSADs, is also important for inflammatory pain (Lin et al.,
2008).

Despite the mounting evidence linking BBB disruption and
inflammatory pain, it is still controversial whether similar events
take place at the level of BSCB. For example, in one paper the
extravasation of Evans Blue, a dye that is classically used to measure
the BBB/BSCB integrity, was reported after 48 h of carrageenan-
induced inflammation (Gillardon et al., 1997) while in other
studies, carrageenan- or CFA-induced inflammation apparently
did not elicit Evans Blue dye leakage (Lu et al., 2009; Echeverry
et al., 2011). On the other hand, it seems that morphine pen-
etration in the spinal cord is facilitated by CFA or carrageenan
administration (Lu et al., 2009). In one experiment, testing the
effects of carrageenan (which produced mechanical and heat
hyperalgesia that peaked at 3–24 h and lasted for 72 h) or capsaicin
(which induced mechanical hyperalgesia, with peak at 2–3 h and
lasting for 24 h) on the BSCB, significant alterations in endothelial
cell occludin protein were seen in the lumbar spine, with a delayed
onset of 72 h after intraplantar carrageenan administration. How-
ever, the same alteration was not repeated after intraplantar
administration of capsaicin, which was intended to produce neu-
rogenic inflammation. Subcutaneous injection of carrageenan did
not generate significant effects on occludin protein either, illustrat-
ing that the changes observed were due to peripheral inflammation
rather than a systemic inflammatory effect (Xanthos et al., 2012).
The same study also tested the effects of intraplantar carrageenan
using IgG extravasation in the spinal cord, another method to
analyze BSCB breakdown. At the same time point that changes
occurred with occludin, significant quantities of immunoglobulin
G were found in the lumbar and thoracic segments of the spinal
cord, probably owing to extravasation. Nonetheless, acute admin-
istration of Evans Blue dye or sodium fluorescein was not detected
in the CNS parenchyma. Taken together, these findings suggest that
peripheral inflammation determines transient changes in BSCB.
At first glance, it would not be necessarily linked to the nocicep-
tive signaling. However, the results also highlight the importance
of using different methods to assess each particular mechanism
responsible for BSCB changes after transient pathologies, and it is
possible to speculate that changes induced by capsaicin in this spe-
cific study could not be detected by the methodology adopted. It
is also important to emphasize that there are significant structural
(Ge and Pachter, 2006) and functional (Prockop et al., 1995; Pan
et al., 1997) differences between the BSCB and the BBB, including
the presence of glycogen deposits in the superficial vessels of the
spinal cord, higher permeability to cytokines, and tracers, and the
expression of TJ proteins (Daniel et al., 1981; Prockop et al., 1995;
Pan et al., 1997; Sharma, 2005; Ge and Pachter, 2006; Radu et al.,
2013). All should be considered when evaluating the roles of BBB
and BSCB in chronic pain. Therefore, for a more complete evalu-
ation of all CNS barriers under inflammatory pain conditions, it
would be highly recommended to compare the behavior of both
the BBB and BSCB simultaneously, applying multiple procedures
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to detect disruption or changes in the permeability of both bar-
riers. Another important fact that must be considered is that the
presence of Evans Blue in the brain or spinal cord parenchyma
usually occurs with a considerable disruption of the BBB/BSCB.
It is likely that the BBB or BSCB permeabilization mediated by
inflammatory pain is a transient event, rather than an irreversible
phenomenon of disruption or “breakdown” (Brooks et al., 2005;
Radu et al., 2013).

There is growing evidence that acute and perhaps chronic
inflammatory pain influence the functional and molecular prop-
erties of the BBB and BSCB, though probably by distinct
mechanisms. The majority of the literature currently available
indicates a correlation between increased BBB permeability and
altered expression of some transmembrane TJ proteins that
collaborate to preserve the BBB integrity. Therefore, it seems
that peripheral acute or chronic inflammatory pain leads to a
reorganization of the TJ proteins and altered paracellular dif-
fusion, which may alter the delivery of therapeutic analgesic
and antiinflammatory substances to the CNS. As such, the
increased paracellular permeability and consequent CNS tox-
icity should be taken into consideration when deciding the
dosing regimens for patients affected by chronic inflammatory
pain.

It is important to mention that the results of the aforemen-
tioned studies linking BBB alterations and inflammatory pain
must be interpreted cautiously, since they provide indirect evi-
dence (e.g., changes in TJ protein expression or P-gp function)
obtained from experimental models of inflammatory pain, gen-
erated artificially, and usually performed during relatively short
periods. Hence, translational research is necessary to determine
the real impact of BBB dysfunction in chronic diseases with pain
of inflammatory origin, including chronic joint inflammation
diseases, irritable bowel syndrome, and multiple sclerosis. For
example, it has been widely recognized that a BBB pathology is
present in multiple sclerosis (Zlokovic, 2008), a concept that is
supported not only by experimental (Morrissey et al., 1996; Mor-
gan et al., 2007; Kooij et al., 2009; Reijerkerk et al., 2012) but also
clinical data (Plumb et al., 2002; Kirk et al., 2003; Minagar and
Alexander, 2003; Leech et al., 2007; Padden et al., 2007; Cramer
et al., 2014). BBB disruption has also been reported in CIA, an
animal model of RA, implying that this condition could pos-
sibly be related to a dysfunctional BBB (Nishioku et al., 2010).
As a matter of fact, it seems that RA increases the mortality
and morbidity due to cerebrovascular diseases (Watson et al.,
2003). Furthermore, it has been reported that the BBB impair-
ment seen in CIA is potentially mediated by S100A4 (Nishioku
et al., 2011). This small acidic calcium-binding protein, mem-
ber of S100 family, is also upregulated in the synovial fluid and
plasma of RA patients (Klingelhöfer et al., 2007), which per-
mits a clear connection between the results obtained with the
animal model of RA (CIA) and the clinical alterations seen in
RA patients. In addition, despite the limited information, the
decrease in the expression of TREK1, a TWIK-related potassium
channel-1 that is related to pain perception (Alloui et al., 2006)
and BBB regulation (Bittner et al., 2013, 2014), after colon inflam-
mation (La and Gebhart, 2011) suggests that the involvement of
the central nervous barriers in irritable bowel syndrome should

be further explored. In the future, correlations between exper-
imental outcomes and the results of controlled clinical studies
will allow researchers to scrutinize the chain of events that take
place in the CNS barriers in the presence of chronic inflammatory
pain.

DO THE CNS BARRIERS PLAY A PIVOTAL ROLE IN THE
PERIPHERAL AND CENTRAL MECHANISMS OF
NEUROPATHIC PAIN?
Neuropathic pain, according to the IASP taxonomy (Merskey
et al., 1994), revised in 2012 (http://www.iasp-pain.org/Education/
Content.aspx?ItemNumber=1698#Neuropathicpain), is defined
as “pain caused by a lesion or disease of the somatosensory
nervous system.” It affects approximately 2–3% of the general
population (Hall et al., 2006; Bouhassira et al., 2008) with ele-
vated costs to health systems and governments worldwide (Turk,
2002). However, this number can be even higher. Recently the
prevalence of pain with neuropathic characteristics has been esti-
mated to be between 6.9 and 10% (van Hecke et al., 2014).
Neuropathic pain is considered a clinical description and not a
diagnosis. It comprises several disorders, such as radiculopathies,
diabetic neuropathies, trigeminal, and postherpetic neuralgia.
Although the cellular and molecular mechanisms involved in
neuropathic pains have not yet been totally elucidated, there is
sufficient evidence that both peripheral and central mechanisms
are important. Among them are the release of inflammatory
mediators by activated nociceptors at the site of peripheral
injury, as well as central sensitization, which encompasses several
phenomena, e.g., alteration in glutamatergic neurotransmis-
sion/NMDA receptor-mediated hypersensitivity, disinhibition,
and neuron-glial interactions (DaSilva et al., 2008; Basbaum
et al., 2009; Gustin et al., 2011; DaSilva and DosSantos, 2012;
DosSantos et al., 2012b; McMahon, 2013; Wilcox et al., 2013).
There is also evidence that vascular events contribute to this
process.

Notwithstanding many classical works have focused on the
presence of local vascular disturbances following peripheral nerve
injury in different experimental models (Myers et al., 1981, 1985;
Powell et al., 1991), few studies have explored the specific cellular
and molecular processes underlying the vascular events that occur
in the presence of neuropathic pain (Table 2). To characterize the
impact of vascular disturbances in the mechanisms involved in
the generation of pain following neuronal damage, a recent study
explored the consequences of peripheral nerve injury, produced
by a partial ligation of the sciatic nerve, in the BNB functioning
(Lim et al., 2014). Overall, the outcomes give rise to the hypothesis
that neuropathic pain is, at least in part, associated with higher
distribution of molecules that cross a defective BNB, and act at the
peripheral nerve already damaged. According to the findings of
that study, nerve injury triggers a“breakdown”of the BNB,which is
associated with a long-lasting pain behavior. Additionally, It seems
that RM play a crucial role in this process. Shortly after periph-
eral nerve injury, RM cells that are sparsely distributed along the
nerves under basal conditions proliferate and start to express the
VEGF, which in turn, initiates the “breakdown” of the BNB. This
BNB breakdown permits the influx of blood borne macrophages
to the endoneurial space. Those infiltrated macrophages produce
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Table 2 | Summary of recent studies exploring the participation of nervous system barriers (BBB and BSCB) in the mechanisms of neuropathic

pain.

Barrier Model Main outcomes Reference

BSCB Peripheral nerve injury, lidocaine administration

and electrical stimulation of the sciatic nerve, in

sprague–dawley rats

Peripheral nerve injury produced a transient increase

in BSCB permeability. Such event did not occur when

lidocaine was administrated at the site of the injury.

Increases in the BSCB permeability also occurred

after electrical stimulation of the sciatic nerve at

intensity sufficient to activate C-fibers but not A-fibers

and after application of capsaicin to the nerve. It

suggests that the increase of BSCB permeability is

driven by activation of TRPV1-expressing primary

sensory neurons.

Beggs et al. (2010)

BNB Neuropathic pain, produced by partial ligation of

the sciatic, in mice.

Neuropathic pain related to trauma caused a

significant disruption of the BNB. VEGF was

expressed by RM. Intraneural injection of serum

obtained from animals with nerve injury or treated

with LPS generated mechanical allodynia in naive

animals. Intraneural injection of fibrinogen also

produced a decrease in mechanical thresholds when

applied to naive nerves. Such results evidence that

blood–borne molecules may contribute to neuropathic

pain mechanisms.

Lim et al. (2014)

several cytokines (e.g., IL-1β, TNF-α, and fibrinogen). Fibrinogen
probabaly has its effects linked to the activation of TLRs, especially
TLR-4. Another interesting finding with possible clinical implica-
tions is that ProTX-II, a peptide that blocks NAV1.7 ion channel
but does not pass the intact BNB, reversed the mechanical allo-
dynia in the experimental model of neuropathic pain, an effect
that is likely restricted to the site of nerve injury. Therefore, sub-
stances such ProTx-II with action restricted to peripheral nerves
with compromised BNB, and that do not present a significant
distribution to uninjured nerves (with preserved BNB), the brain
or the spinal cord, emerge as promising therapeutic options in
peripheral neuropathies, due to the limited side effects (Lim et al.,
2014). Noteworthy, in the specific case of ProTX-II, significant
effects would only have been reached in injured nerves, displaying
altered NAV1.7 expression. In fact, changes in the NAV1.7 expres-
sion have been previously demonstrated in trigeminal neuralgia
patients, indicating that such condition could be, at least in part,
considered a channelopathy (Siqueira et al., 2009). Mutations in
the gene encoding Nav1.7 have also been linked to paroxysmal pain
disorders (Fertleman et al., 2006; Han et al., 2006), illustrating its
importance to the mechanisms of neuropathic pain.

A disruption of BSCB integrity, illustrated by augmented
permeability along with astrocyte activation in the spinal cord,
has been shown in an animal model of neuropathic pain, with
chronic nerve constriction (Gordh and Sharma, 2006). In a more
detailed investigation, Beggs et al. (2010) have shown that both
chronic constriction injury (CCI; a model of peripheral nerve
injury) and stimulation of healthy primary afferent C-fibers are

capable of eliciting a surge in both the BBB and the BSCB perme-
ability, when assessed by Evans Blue dye or HRP. Nevertheless,
the most important outcome of that study was that capsaicin
applied to an uninjured sciatic nerve mimicked the effects of
CCI or C-fibers stimulation, supporting the concept that TRPV1-
expressing C-fibers could be responsible for the upsurge in the
BSCB/BBB permeability. Further clinical studies would be impor-
tant to confirm if a similar process occurs in patients afflicted
by neuropathic pain conditions, such as peripheral neuropathies,
trigeminal, and postherpetic neuralgias. If that is the case, it could
dramatically affect the penetration of analgesic agents into the
CNS, determining the efficacy of those drugs and also central-
mediated side effects. In the future, those findings could compose
the basis to the development of therapies that purposely augment
the BBB permeability by targeting the mediators involved in the
afferent-induced opening of the BBB/BSCB. In addition, based on
those results, it is possible to speculate that the clinical effects of
novel non-pharmacological treatments that have been applied to
treat neuropathic and other pain conditions, such as tDCS (Fregni
et al., 2006; Antal and Paulus, 2011; DosSantos et al., 2012a) or
TMS (Marlow et al., 2013; Leung et al., 2014) could be associated
with transient changes in the nervous system barriers. There is
recent evidence that endogenous opioids modulate the analgesia
produced by those methods of non-invasive brain stimulation,
through direct or indirect activation of brain areas important for
opioid-mediated anti-nociception, such as the PAG (de Andrade
et al., 2011; DosSantos et al., 2012a, 2014; Taylor et al., 2012).
Future therapeutic protocols, combining non-pharmacological
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and pharmacological agents could optimize the analgesic effects
obtained with single therapies. Indeed, TENS, which reduces sec-
ondary hyperalgesia by activation of opioid receptors (Sluka et al.,
1999; Kalra et al., 2001), has been successfully combined with
clonidine, an a2-adrenergic agonist, to provide effective reduction
of hyperalgesia in an animal model of peripheral inflammation
(Sluka and Chandran, 2002). Moreover, in a pilot clinical study,
prolonged pain relief was achieved by combining tDCS with a
NMDA agonist (D-cycloserine) in a case of orofacial pain refrac-
tory to pharmacological treatment (Antal and Paulus,2011), which
could perhaps be linked to transient changes in the BBB or BSCB.

IS MIGRAINE PATHOPHYSIOLOGY CORRELATED TO A BBB
DYSFUNCTION?
It has been estimated that approximately 11–12% of adults suffer
from migraine headaches (Rasmussen, 1995; Stovner et al., 2007).
The majority of patients report moderate to severe pain during the
attacks, with great impact in the quality of life (Lipton et al., 2007).
Migraine presents two subtypes, migraine with aura and migraine
without aura (Silberstein et al., 2005). Although a large number of
recent studies have tried to establish the migraine pathophysiol-
ogy (Bhaskar et al., 2013; Noseda and Burstein, 2013; Sarrouilhe
et al., 2014; Thissen et al., 2014), the role of the neural and vascu-
lar mechanisms in this process has been largely discussed in the
literature, (Asghar et al., 2011; Grände et al., 2014). As a matter of
fact, there is still a debate whether the source of the pain is in the
nerves around the cranial arteries, CNS or both (Goadsby et al.,
2009; Olesen et al., 2009).

It has been generally accepted that CGRP plays an impor-
tant role in the migraine pathophysiology (Bell, 2014). CGRP
is expressed throughout the CNS, particularly the striatum,
amygdala, colliculi, and cerebellum, as well as the peripheral
nervous system (Edvinsson, 2008). Recently, CGRP receptor
antagonists have emerged as promising drugs to treat migraine.
They could act either by blocking CGRP-induced vasodila-
tion of meningeal blood vessels or inhibiting CGRP-mediated
pain transmission in the CNS (Bell, 2014). Other approaches
to block CGRP effects include the use of CGRP antibodies
(Zeller et al., 2008), or specific CGRP-binding RNA-Spiegelmer
(Denekas et al., 2006). The fact that CGRP receptor antago-
nists, such as olcegepant and telcagepant, apparently require
very high doses to produce significant clinical effects in migraine
patients, raises the possibility that those promising compo-
nents have to cross the BBB in order to exert their effects
(Tfelt-Hansen and Olesen, 2011; Bell, 2014). Thus, according to
some authors, it could support the concept that CNS mechanisms
are predominantly involved in the migraine pathophysiology
(Tfelt-Hansen and Olesen, 2011). In fact, DaSilva et al. (2003,
2007b) have previously demonstrated specific cortical neuroplas-
tic changes in migraine patients. Conversely, the results of a
functional neuroimaging study have indicated that changes in
cortical blood flow, measured by BOLD signal variations, occur
during episodes of migraine with aura. In addition, dilatation
of both extracranial (middle meningeal) and intracranial (mid-
dle cerebral), as demonstrated by high-resolution direct MRA,
has been shown after a migraine attack induced by infusion
of CGRP. Remarkably, headache and vasodilatation occurred

at the same side and the administration of sumatriptan, a
selective antimigraine drug, not only reduced the pain but also
resulted in contraction of the middle meningeal artery (Asghar
et al., 2011). Collectively, those results suggest a key role of
cranial blood vessels in the migraine pathophysiology. In fact,
meningeal arteries lack BBB and represent much more per-
meable structures, compared with cortical vessels (Edvinsson
and Tfelt-Hansen, 2008; Grände et al., 2014). There have been
considerable advances in the understanding of the sequence
of events that lead to a migraine headache. Nevertheless, the
specific structural and functional alterations that occur in the
brains of patients affected by this disorder still need clarifica-
tion and BBB dysfunction has emerged as a possible mecha-
nism.

Although mild BBB opening has been previously reported in a
patient suffering a severe attack of familial hemiplegic migraine
type II (Dreier et al., 2005), the occurrence of BBB opening
or disruption during a migraine headache is still a matter of
debate (Radu et al., 2013). Migraine, as well as other neurolog-
ical disorders (which are out of the scope of this study) such as
epilepsy and cerebrovascular diseases, are characterized by a phe-
nomenon known as CSD (Martins-Ferreira et al., 2000). CSD is
a self-propagating wave of neuronal and glial depolarization first
described by Leão (1944) in the mid-forties . Brain edema and
plasma protein leakage, concomitant with altered expression of
proteins that are important to maintain the BBB integrity, such
as the EBA, ZO-1, and laminin (substrate protein of metallo-
proteinases – MMPs), were demonstrated in an animal model of
CSD (Gursoy-Ozdemir et al., 2004). In addition, albumin leakage
was suppressed by the injection of the matrix metalloproteinase
inhibitor GM6001, but did not occur in MMP-9-null mice. It
clearly indicates that the BBB disruption associated with CSD
depends on the MMP-9 activity. Although those results cannot
be considered exclusive of migraine, but rather related to the CSD
phenomenon (that also participates in the migraine mechanisms),
elevated plasma levels of MMP-9 have been reported in migraine
patients (Leira et al., 2007; Imamura et al., 2008; Martins-Oliveira
et al., 2012) and MMPs, especially MMP-2 and MMP-9, have been
linked to BBB disruption, as well as augmented influx of inflam-
matory cells into the CNS (Rosenberg et al., 2001; Gurney et al.,
2006; Yang et al., 2007; Bernecker et al., 2011). Furthermore, it has
been suggested that MMMP-2 plasma concentrations are higher
in migraine with aura than in migraine without aura (Gonçalves
et al., 2013) and increased MMP-9 activity has been reported
in women with migraine without aura (Martins-Oliveira et al.,
2012), suggesting that distinct mechanisms are involved in each
form of migraine. Nonetheless, the participation of MMP-9 in the
migraine pathophysiology is not completely accepted. According
to one study, plasma levels of MMP-9 should not be used as a
biomarker of migraine with aura (Ashina et al., 2010). In contrast,
the reduction in the plasma concentrations of MMP-3 found dur-
ing the early phase of headache migraine attacks suggest that this
isoform should be further investigated in migraine sufferers. How-
ever, the most important information derived from those works
is that MMPs might actively contribute to the migraine patho-
physiology, and perhaps other types of primary headaches, in a
mechanism involving CSD and BBB disruption. Nonetheless, it is
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important to state that not all primary headaches and subtypes of
migraine are necessarily related to CSD, MMPs, and BBB dys-
function and that many other mechanisms can play a role in
each particular condition. For example, there are studies show-
ing that gap junctions take part in the migraine pathophysiology,
being promising targets for future treatments (Sarrouilhe et al.,
2014).

Finally, an ischemic and reversible “breakdown” of the BNB
caused by a vasospasm of the vasa nervorum at the brainstem REZ
of the oculomotor (III), trochlear (IV), or abducens (VI) nerve
has been recently proposed as the pathogenic theory to explain
the clinical and neuroimaging findings of OM (Ambrosetto et al.,
2014). This is a rare form of episodic migraine-like headache
attacks, accompanied, or followed by ophthalmoplegia related to
paresis of the one or more of the following cranial nerves: III,
IV, or VI. This theory seems to provide a reasonable explanation
to the reversible focal thickening and enhancement of the cister-
nal tract at the REZ of the cranial nerve involved, usually the III,
especially when occurring in children (Miglio et al., 2010; Gelfand
et al., 2012). An intriguing fact is that the same alterations are
not observed in the adult form of OM (Lal et al., 2009). Accord-
ing to this theory, the discrepancies between children and adults
regarding the MRI findings in OM could reflect a differential mat-
uration, and consequently the effectiveness of the BBB in children
and adults (Ambrosetto et al., 2014).

Overall, the current literature points toward an increase in the
permeability or perhaps a “breakdown” of the BBB, with vascular
leakage in migraine patients, during the headache attack. This
process could be triggered by CSD, in an MMP-dependent pathway
(Table 3). Defining the pathophysiologic mechanisms that trigger
a migraine attack, especially regarding the changes that occur in the
BBB permeability are crucial not only to characterize the cascade
of events that occur during its ictal phase, but also to provide better
treatment choices, with lower side effects, for such a debilitating
disorder.

HOW CAN WE MODULATE THE BBB IN ORDER TO IMPROVE
THE DELIVERY OF ANALGESIC COMPOUNDS?
The majority of the substances currently available to treat mod-
erate to severe chronic pain (e.g., opioids, anticonvulsants, and
antidepressants) have their use limited due to the extensive
side effects reported. In addition, tolerance and dependence
can be developed over time, mainly with opioid analgesics
(e.g., morphine, codeine, oxycodone, and tramadol; McMa-
hon, 2013). Tolerance, for instance, prevents the long-term
administration of opioid agonists. Notwithstanding it has been
recognized that some complex phenomena, such as mu-opioid
receptor desensitization, impaired recovery from desensitization,
and impaired recycling after endocytosis (Williams et al., 2013)
are associated with morphine tolerance, it is possible that part
of the BBB components (e.g., pericytes and astrocytes) also
play a role in this process (Chen et al., 2012; Luk et al., 2012).
Not surprisingly, amitriptyline, a tricyclic antidepressant largely
prescribed for pain control, especially in chronic neuropathic
pain disorders, has been shown to attenuate astrocyte activa-
tion and consequently morphine tolerance (Huang et al., 2012).
Indeed, one the most important concerns in the treatment of

inflammatory as well as neuropathic pain is the deleterious
drug–drug interaction when other substances (e.g., non-steroidal
anti-inflammatory, NSAIDs) are combined with opioids anal-
gesics, resulting in ineffective drug dosing. This is especially
important, because chronic pain management often requires the
concurrent administration of multiple pharmacological agents
(Sanchez-Covarrubias et al., 2014). For instance, NSAIDs are fre-
quently co-administrated with opioids to treat postsurgical pain
(Oderda, 2012).

Particularly important in this context, is the P-gp, since it
constitutes one of the most important obstacles to the deliv-
ery of pharmacological agents to the CNS in several disorders,
such as epilepsy, HIV, and Alzheimer’s disease (Ronaldson et al.,
2008; Hartz et al., 2010; Potschka, 2012). As previously dis-
cussed in this text, a higher expression of P-gp observed in a
model of inflammatory pain after λ-carrageenan injection, cor-
relates to a lower transport of morphine in the CNS uptake,
which is related to a significant reduction of its analgesic effi-
cacy (Seelbach et al., 2007). Interestingly, not only inflammation
but also diclofenac administration has been proved to cause a
significant increase of P-gp expression in rat brain microvessels.
Additionally, sprague-dawley rats that were pretreated with this
drug revealed a lower morphine uptake (Sanchez-Covarrubias
et al., 2014). One possible explanation is the drug–drug inter-
action between NSAIDs and opioids, with a modulatory effect
of P-gp. Nevertheless, more data is needed to confirm this
hypothesis.

In addition to P-gp, it has been recognized that NSAIDs also
interact with other ABC transporters, mainly MRP4, and possibly
MRP1 (Reid et al., 2003; Rosenbaum et al., 2005; de Groot et al.,
2007). The data available supports that MRP4 has the ability to
produce a cellular release of prostaglandins and that some of the
most commonly prescribed NSADs (e.g., indomethacin, indopro-
fen and ketoprofen) act not only by inhibiting the synthesis of
prostaglandin, but also by inhibiting its release, acting at the level
MPR4 transporter (Reid et al., 2003).

Non-steroidal anti-inflammatory drugs are known to cross
BBB. However, according to some studies indomethacin shows
a greater passage through the BBB when compared to other
NSAIDs (Eriksen et al., 2003; Parepally et al., 2006). As a mat-
ter of fact, this drug is the first line therapy in the treat-
ment of some headaches, such as paroxysmal hemicrania and
hemicrania continua. The efficacy of indomethacin in those
disorders is so high that it is applied as a tool for differ-
ential diagnosis of those forms of primary headaches and a
positive response to indomethacin is mandatory for a defini-
tive diagnosis of hemicrania continua and paroxysmal hem-
icrania (Casey and Bushnell, 2000; Summ and Evers, 2013).
Indomethacin is also recommended to treat other primary
headaches (e.g., stabbing headache and primary cough headache;
Merskey et al., 1994; Summ and Evers, 2013). The capacity
to interact with MRP4 (Reid et al., 2003) and possibly MRP1
(de Groot et al., 2007), and consequently its high ability to
cross the BBB, are probably crucial characteristics that deter-
mine the significant clinical efficacy of indomethacin in primary
headaches (Summ and Evers, 2013). Although more infor-
mation is needed regarding the interactions between NSAIDs

Frontiers in Cellular Neuroscience www.frontiersin.org October 2014 | Volume 8 | Article 302 | 8

http://www.frontiersin.org/Cellular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


DosSantos et al. The blood–brain barrier and pain

Table 3 | Direct and indirect evidence that migraine pathophysiology is also correlated to a BBB dysfunction.

Barrier Model Main outcomes Reference

BBB Cortical spread depression (CSD) model, in

sprague–dawley rats and mice.

Direct evidence: brain edema and plasma protein

leakage, associated with altered expression ZO-1,

EBA, and immunoreactive laminin. Albumin leakage

was suppressed by the injection of the matrix

metalloproteinase inhibitor GM6001 and was not

found in MMP9-null mice. Such results indicate that

the BBB disruption related to CSD depends on the

MMP-9 activity.

Gursoy-Ozdemir et al. (2004)

BBB Familial hemiplegic migraine patients. Direct evidence: quantitative analysis of

gadolinium-enhanced MRI showed a mild, but

significant, left-hemispheric opening of the BBB,

preceding cortical edema.

Dreier et al. (2005)

BBB Migraine patients Indirect evidence: no differences in MMP-9 and

TIMP-1 levels were found between ictal and interictal

periods. However, lower plasma levels of MMP-3

were observed in the external jugular and cubital vein

during migraine attacks. Such results suggest that

plasma levels of MMP-9 might not be the most

recommended biomarker of BBB disruption in

migraine without aura. On the other hand, MMP-3

levels should be further investigated.

Ashina et al. (2010)

BBB Migraine patients Indirect evidence: higher MMP activity was associated

with migraine, independent of aura symptoms.

Bernecker et al. (2011)

BBB Migraine patients Indirect evidence: patients presenting migraine

without aura showed increased plasma

concentrations of MMP-9 concentrations than

migraine with aura patients.

Martins-Oliveira et al. (2012)

BBB Migraine patients Indirect evidence: patients with migraine with aura

exhibited grater plasma concentrations of MMP-2 and

MMP-2/TIMP-2 ratios than patients with migraine

without aura and controls. CC genotype for C−735T

polymorphism and the CC haplotype were linked to

higher plasma MMP-2 concentrations in the migraine

with aura group.

Gonçalves et al. (2013)

and the BSCB, it has been reported that in rats submitted
to spinal cord injury, a pretreatment with NSAIDs (e.g.,
indomethacin or ibuprofen) not only attenuates the changes
that occur in the spinal cord-evoked potentials immediately
after trauma but also contributes to the reduction of edema
formation and BSCB permeabilization (Sharma and Winkler,
2002).

Finally, some strategies have been applied to improve the
delivery of therapeutic compounds to the CNS. For exam-
ple, a conjugate of Angiopep-2 and neurotensin, called
ANG2002, induced a dose–dependent analgesia, in a for-
malin model of persistent pain (Demeule et al., 2014). The

regulated and reversible opening of the BNB has also been
explored in order to develop new strategies to enhance
drug delivery to the peripheral nervous system, improving
the efficacy and reducing the undesirable central effects of
some analgesic drugs, including opioids (Hackel et al., 2012).
Though the selective blockade of nociceptive fibers at periph-
eral sites of injury by analgesic drugs is prevented by the
BNB (Radu et al., 2013), it seems that the BNB is already
disrupted in cases of peripheral nerve injures (Lim et al.,
2014). Thus, the development of compounds with action lim-
ited to the peripheral nervous system would be of particular
interest.
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CONCLUSION AND PERSPECTIVES
There is mounting evidence that BBB/BSCB/BNB disruptions
participate in the complex mechanisms that initiate or main-
tain inflammatory, neuropathic pain, and migraine. Regarding
migraine, this process could be, at least partially, induced by
MMPs. BBB and BNB also play a crucial role in the drug–
drug interactions, with great impact in the efficacy as well as
central-mediated side effects of analgesic agents, especially opioids
peptides. Future perspectives include the complete characteriza-
tion of specific changes in the nervous system barriers in order
to establish the molecular mechanisms of each pain disorder. The
development of novel drugs to treat neuropathic pain, with effects
restricted to the peripheral nervous system would also be desir-
able. Finally, the contribution of polymorphisms affecting the
components of the BBB and the role of epigenetics in the altered
permeability of CNS barriers induced by chronic pain should be
further explored.
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