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Minocycline is a second-generation, semi-synthetic tetracycline that has been in therapeutic use for over 30 years because of
its antibiotic properties against both gram-positive and gram-negative bacteria. It is mainly used in the treatment of acne
vulgaris and some sexually transmitted diseases. Recently, it has been reported that tetracyclines can exert a variety of
biological actions that are independent of their anti-microbial activity, including anti-inflammatory and anti-apoptotic
activities, and inhibition of proteolysis, angiogenesis and tumour metastasis. These findings specifically concern to minocycline
as it has recently been found to have multiple non-antibiotic biological effects that are beneficial in experimental models of
various diseases with an inflammatory basis, including dermatitis, periodontitis, atherosclerosis and autoimmune disorders
such as rheumatoid arthritis and inflammatory bowel disease. Of note, minocycline has also emerged as the most effective
tetracycline derivative at providing neuroprotection. This effect has been confirmed in experimental models of ischaemia,
traumatic brain injury and neuropathic pain, and of several neurodegenerative conditions including Parkinson’s disease,
Huntington’s disease, amyotrophic lateral sclerosis, Alzheimer’s disease, multiple sclerosis and spinal cord injury. Moreover,
other pre-clinical studies have shown its ability to inhibit malignant cell growth and activation and replication of human
immunodeficiency virus, and to prevent bone resorption. Considering the above-mentioned findings, this review will cover
the most important topics in the pharmacology of minocycline to date, supporting its evaluation as a new therapeutic
approach for many of the diseases described herein.

Abbreviations
AIDS, acquired immunodeficiency syndrome; Ab, amyloid b peptide; EAE, experimental autoimmune
encephalomyelitis; eIF-2a, eukaryotic initiation translation factor-2 alpha; FDA, Food and Drug Administration; FXS,
fragile X syndrome; HASMC, human aortic smooth muscle cell; HIV, human immunodeficiency virus; I/R,
ischaemia-reperfusion; MHC, major histocompatibility complex; SCI, spinal cord injury; SIV, simian immunodeficiency
virus; Th, helper T-cell; TLR, toll-like-receptor; VSMC, vascular smooth muscle cell

Introduction
Tetracyclines are bacteriostatic antibiotics that are considered
broad-spectrum antibiotics because they are active against
a wide range of aerobic and anaerobic gram-positive and
gram-negative bacteria, and against other microorganisms,
including Rickettsia, Chlamydia and Plasmodium spp., and
Mycoplasma pneumoniae (Figure 1). The mechanism of action
behind the antibiotic properties of tetracyclines is mainly
related to their ability to bind to the bacterial 30S ribosomal
subunit and inhibit protein synthesis. In an attempt to
improve their efficacy, various structural changes have been

employed, for example, ring D modification through carbons
7–9, which is the basis for the higher efficacy obtained with
the semi-synthetic compounds minocycline and doxycycline
(Nelson, 1998). Minocycline (7-dimethylamino-6-dimethyl-
6-deoxytetracycline) is a second-generation, semi-synthetic
tetracycline analogue that has been used for over 30 years
(Yong et al., 2004). It retains the efficacy against both gram-
positive and gram-negative bacteria and has been approved
by the Medicines and Healthcare Products Regulatory Agency
for the treatment of acne vulgaris, and by the US Food and
Drug Administration (FDA) for the treatment of some sexu-
ally transmitted diseases and rheumatoid arthritis (Good and
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Hussey, 2003; Blum et al., 2004). Minocycline shows a better
pharmacokinetic profile than the first-generation tetracy-
clines when used orally, being rapidly and completely
absorbed, even in elderly populations, with a longer half-life
and excellent tissue penetration, and an almost complete
bioavailability (Barza et al., 1975; Kramer et al., 1978; Klein
and Cunha, 1995). In addition, it is a highly lipophilic mol-
ecule that can easily pass through the blood–brain barrier
(Brogden et al., 1975), thus promoting its accumulation in
cells of the CSF and CNS (Aronson, 1980; Yrjänheikki et al.,
1999; Kielian et al., 2007) and enabling its use in the treat-
ment of many CNS diseases (Saivin and Houin, 1988; Wang
et al., 2003; Yong et al., 2004). Moreover, minocycline has a
good safety record when used chronically. Long-term treat-
ment with minocycline at dosages of up to 200 mg·day-1,
the highest dosage recommended by the US FDA, is generally
safe and well-tolerated in humans. Minocycline’s known and
most common side effects, including nausea, vertigo and
mild dizziness, occur mainly early after its administration
and disappear shortly following therapy discontinuation.
However, according to the British National Formulary, for
treatments continued for more than 6 months, it is recom-
mended to monitor every 3 months for hepatotoxicity, pig-
mentation and systemic lupus erythematosus, and it has been
advised that treatment should be discontinued if these
develop or if pre-existing systemic lupus erythematosus
worsens. The higher risk of lupus-erythematosus-like syn-
drome and irreversible pigmentation associated with mino-
cycline in comparison with other tetracyclines has limited its
extensive use in human infections, being currently indicated
just for the treatment of acne vulgaris (Williams et al., 1974;
Klein and Cunha, 1995).

The antibiotic properties of tetracyclines were initially
described in the late 1940s; but more recently, numerous
studies have focused on their non-antibiotic properties. In
fact, it has been reported that tetracyclines can exert a variety
of biological actions that are independent of their anti-
microbial activity, including anti-inflammatory and anti-
apoptotic activities, and inhibitory effects on proteolysis,
angiogenesis and tumour metastasis (Golub et al., 1991; 1992;
Greenwald and Golub, 1993; Sapadin and Fleischmajer,
2006). This is the case for minocycline (Zemke and Majid,
2004; Kielian et al., 2007), as it has recently been considered
beneficial for diseases with an inflammatory basis, including
rosacea, bullous dermatoses, neutrophilic diseases, pyoderma
gangrenosum, sarcoidosis, aortic aneurysms, cancer metasta-
sis, periodontitis and autoimmune disorders such as rheuma-
toid arthritis and scleroderma (reviewed in Sapadin and

Fleischmajer, 2006; Soory, 2008; Griffin et al., 2010). Minocy-
cline has also emerged as the most effective tetracycline
derivative regarding neuroprotection, an effect that has been
confirmed in experimental models of ischaemia (Yrjänheikki
et al., 1998; 1999; Koistinaho et al., 2005), traumatic brain
injury (Sanchez Mejia et al., 2001) and neuropathic pain
(Raghavendra et al., 2003; Mei et al., 2011), and of several
neurodegenerative conditions such as Parkinson’s (Du et al.,
2001; Thomas and Le, 2004; Abdel-Salam, 2008) and Hunt-
ington’s (Chen et al., 2000; Thomas et al., 2004) diseases,
amyotrophic lateral sclerosis (Zhu et al., 2002), Alzheimer’s
disease (Choi et al., 2007), multiple sclerosis (Brundula et al.,
2002; Nessler et al., 2002) and spinal cord injury (SCI) (Golub
et al., 1991; Yong et al., 2004; Festoff et al., 2006). These pre-
clinical studies have prompted the evaluation of minocycline
in clinical trials in patients with neuronal disease, where it
has shown promising neuroprotective properties (Lampl
et al., 2007). Moreover, the growing interest in minocycline
has led to evaluations of its therapeutic efficacy in many
other experimental disease models, such as inflammatory
bowel disease (Huang et al., 2009b; Garrido-Mesa et al.,
2011a,b), diabetes (Bain et al., 1997; Wang et al., 2003; Cai
et al., 2011), fragile X syndrome (FXS) (Paribello et al., 2010),
cardiac ischaemia (Scarabelli et al., 2004) and human
immunodeficiency virus (HIV) infection (Szeto et al., 2010;
Campbell et al., 2011) (Figure 2).

Many of these studies have proposed the mechanisms
that may be involved in minocycline’s anti-inflammatory,
immunomodulatory and neuroprotective effects. These
include (i) inhibitory effects on the activities of key enzymes,
like iNOS (Amin et al., 1997), MMPs (Golub et al., 1991) and
PLA2 (Pruzanski et al., 1992); (ii) reduction of protein tyrosine
nitration because of its peroxynitrite-scavenging properties
(Whiteman and Halliwell, 1997); (iii) inhibition of caspase-1
and caspase-3 activation (Chen et al., 2000); (iv) enhance-

Figure 1
Chemical structure of minocycline and its parent, tetracycline.

Figure 2
Clinical potential of minocycline due to its antibiotic activity; its
anti-apoptotic, anti-inflammatory and immunomodulatory proper-
ties; and the association of both its non-antibiotic and anti-microbial
effects.
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ment of Bcl-2-derived effects, thus protecting the cells against
apoptosis (Wang et al., 2003; Domercq and Matute, 2004;
Jordan et al., 2007); (v) reduction of p38 MAPK phosphoryla-
tion (Corbacella et al., 2004); and (vi) inhibition of PARP-1
activity (Alano et al., 2006). Tetracyclines’ well-known ability
of binding to Ca2+ and Mg2+ may account for some of these
biological activities via the chelation of these cations and
their transport into intracellular compartments (White and
Pearce, 1982) (Figure 3).

In this review, we aim to summarize the effects reported
for minocycline regarding its non-antibiotic properties in
different experimental models, thereby supporting its evalu-
ation as a new therapeutic approach for diseases associated
with a deregulated immune response. This compound may
have additional value in conditions in which an altered
immune response and a microbial aetiology are involved,
considering its ability to combine both immunomodulatory
and anti-microbial properties.

Effects of minocycline on dermatitis

As tetracyclines, including minocycline, have been reported
to reduce neutrophil chemotaxis (Esterly et al., 1978; 1984),
different studies have evaluated their effectiveness in
cutaneous inflammation. Ishikawa et al. (2009) reported
that minocycline, at concentrations similar to those ob-
tained therapeutically in serum (5 or 10 mM) (Agwuh and
MacGowan, 2006), reduced the protease-activated receptor
2-mediated production of IL-8, and thus attenuated the pro-
inflammatory process in epidermal keratinocytes. They pro-
posed that the ability of tetracyclines to chelate Ca2+ may
contribute to these effects, as protease-activated receptor 2
activation transiently increases intracellular Ca2+ levels in

keratinocytes, triggering the downstream binding of NF-kB to
DNA (Macfarlane et al., 2005; Stefansson et al., 2008). Open
clinical studies have confirmed minocycline’s efficacy in non-
infectious forms of dermatitis (Humbert et al., 1991), support-
ing its clinical use in various skin disorders, such as
inflammatory acne, rosacea, bullous dermatoses and neu-
trophilic dermatoses (Sapadin and Fleischmajer, 2006). Main-
tenance of remission in some of these conditions frequently
required concomitant administration of corticosteroids;
however, most of these reports were generally non-placebo-
controlled or uncontrolled studies, and included small
number of patients. Therefore, further evaluation of larger
numbers of patients in randomized, well-controlled studies is
still necessary. Finally, although minocycline is recom-
mended for the aforementioned skin disorders, current
therapy has moved towards the use of doxycycline, which
has a similar efficacy for the treatment of these conditions
with a reduced incidence of adverse effects, such as drug
hypersensitivity syndrome, hyperpigmentation and dizzi-
ness, frequently associated with minocycline therapy
(Bachelez et al., 2001; Sapadin and Fleischmajer, 2006;
Korting and Schöllmann, 2009).

Effects of minocycline on
periodontal disease

The pharmacological profile of tetracyclines, which combines
anti-microbial with anti-inflammatory and anti-apoptotic
properties, makes them suitable for periodontal disease treat-
ment, which is characterized by an inflammatory process in
addition to its well-known microbial aetiology (Soory, 2008).
At the levels conventionally detected in the plasma and gin-
gival crevicular fluid, minocycline causes a significant stimu-
lation of osteoblastic cells, whereas long-term exposure of
these cells to tetracyclines results in a proportional increase in
the mineralized bone matrix (Gomes and Fernandes, 2007).
These effects are achieved without affecting the survival and
protein expression of human gingival fibroblasts, epithelial
cells and periodontal ligament fibroblasts (Suzuki et al.,
2006). Taken together with their anti-microbial activity, these
effects may explain the efficacy, in particular of minocycline,
in reducing disease progression and promoting periodontal
healing when administered at doses of 100–200 mg·day-1 for
7–14 days (Kirkwood et al., 2007; Basegmez et al., 2011).

Effects on minocycline on
rheumatoid arthritis

Because of the anti-collagenase activity of minocycline ini-
tially described by Golub et al. (1983), and later confirmed by
Greenwald et al. (1987), in human rheumatoid tissue and
synovial cultures, many studies over the last four decades
have focused on its effects in rheumatoid arthritis. In the
adjuvant arthritis model of rheumatoid arthritis, tetracyclines
reduced collagenase activity in the inflamed tissue, although
they did not show anti-inflammatory effects in rats
(Greenwald et al., 1992). When combined with non-steroidal

Figure 3
Mechanisms involved in the anti-inflammatory activity of minocy-
cline: inhibitory effects on enzyme activities, like iNOS, MMPs,
COX-2 or PLA2; inhibition of apoptosis, through the inhibition of
caspase-1 and caspase-3 activation and the enhancement of Bcl-2-
derived effects; antioxidant properties and inhibition of immune cell
activation and proliferation.
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anti-inflammatory drugs in the same study, tetracyclines had
a synergistic effect, as evidenced by a total inhibition of
degradative enzyme activity and a normalization of radiologi-
cal bone damage. Similarly, they were shown to inhibit the
synthesis and/or activity of cartilage proteinases both in vitro
and in vivo (Arsenis et al., 1992). In another study, Zernicke
et al. (1997) reported that tetracycline derivatives could
reverse the deleterious effects of adjuvant disease on the
mechanical strength of the femur in rats. These studies led to
clinical trials with different tetracyclines, including minocy-
cline. Initially, two double-blind, placebo-controlled trials
were conducted: one by Kloppenburg et al. (1994) and the
minocycline in rheumatoid arthritis trial (Tilley et al., 1995).
The former demonstrated that minocycline had clinically
useful anti-inflammatory properties in patients with rheuma-
toid arthritis and was superior to the placebo, whereas no
clear conclusions could be drawn from the latter. A few years
later, Langevitz et al. (2000) summarized the results of two
previous open trials and three double-blind controlled
studies. They concluded that minocycline might be beneficial
in patients with rheumatoid arthritis, especially when admin-
istered early in the course of the disease or in patients with
only mild disease, showing beneficial effects with respect to
joint swelling and/or tenderness, laboratory parameters and
patient assessments. A meta-analysis from 2003 that summa-
rized the results from the clinical trials conducted until 2002
confirmed these beneficial effects (Stone et al., 2003). Despite
these promising results and the FDA approval of semi-
synthetic tetracyclines for rheumatoid arthritis, in a recent
review, Greenwald (2011) acknowledged that the weak anti-
inflammatory properties of tetracyclines are easily surpassed
by many other agents. Nevertheless, the potential of tetracy-
clines in osteoarthritis treatment still seems attractive and the
in vitro inhibition of cartilage degradation by minocycline
presents a solid rationale for forward progress.

Effects of minocycline on
CNS pathologies

As previously mentioned, minocycline, because of its high
lipid solubility (Good and Hussey, 2003), easily crosses the
blood–brain barrier (Brogden et al., 1975; Saivin and Houin,
1988; Yong et al., 2004), and in recent years, has been shown
to be beneficial in animal models of CNS diseases. Many of
these studies were initially based on minocycline’s ability to
inhibit microglia activation, a process that has deleterious
effects on neurogenesis and neuronal survival, which would
justify its potential effectiveness in the treatment of neuroin-
flammatory and/or neurodegenerative disorders (Yrjänheikki
et al., 1998; Chen et al., 2000; Du et al., 2001; Zhu et al., 2002;
Metz et al., 2004; Tomás-Camardiel et al., 2004). In fact, dif-
ferent in vitro studies have described minocycline’s ability to
block LPS-stimulated inflammatory cytokine secretion and
Toll-like-receptor (TLR)-2 surface expression in the BV-2
microglia-derived cell line and on microglia isolated from the
brains of adult mice. Minocycline also attenuated the mRNA
expression of inflammatory genes, including IL-6, IL-1b,
major histocompatibility complex (MHC) II and TLR-2
(Nikodemova et al., 2006; Henry et al., 2008).

Minocycline’s ability to mitigate cytokine expression in
the brain during systemic inflammatory events may be useful
in preventing cognitive and behavioural deficits. Indeed,
minocycline attenuates sickness behaviour and anhedonia
associated with LPS-induced neuroinflammation, in parallel
with a decrease in neuroinflammatory markers in the hippoc-
ampus and cortex and in indolamine 2,3-dioxygenase (IDO)
mRNA expression (Henry et al., 2008). These data are consist-
ent with those from another report showing a causal relation-
ship between IDO activity and acute depressive effects in
adult CD-1 mice. In that report, minocycline’s ability to
block IDO induction prevented depressive-like immobility
(O’Connor et al., 2009). In addition, the authors observed
that, while minocycline pre-treatment attenuated LPS-
induced brain IL-1b production, it had no effect on plasma
IL-1b levels, suggesting that minocycline has anti-
inflammatory effects within the brain, which accounts for the
recovery from sickness and the reduction in the frequency of
neurobehavioural complications.

Consistent with its anti-inflammatory properties, mino-
cycline has been reported to act as a neuroprotective agent in
models of both global and focal ischaemia, processes driven
by the infiltration of the ischaemic brain area by inflamma-
tory cells (Feuerstein et al., 1997; Koistinaho and Hökfelt,
1997). In a gerbil model of forebrain ischaemia, minocycline
prevented microglial activation, reducing the infarct size and
increasing the survival of hippocampal neurons, even when
treatment began after the ischaemic insult. These effects were
accompanied by a reduction of IL-1b-converting enzyme,
COX-2 and iNOS mRNA levels in the affected brain regions
(Yrjänheikki et al., 1998; 1999). Koistinaho et al. (2005)
showed that this effect of minocycline seemed to be MMP-
dependent, as this compound protected against permanent
cerebral ischaemia in wild-type mice, but not in MMP-9-
deficient mice. Moreover, Park et al. (2011) reported that
minocycline, similar to other MMP inhibitors, was effective
in treating neuroinflammation following experimental pho-
tothrombotic cortical ischaemia. In those studies, both pre-
and post-ischaemic minocycline treatment significantly
reduced the infarct size and the expression of neuroinflam-
matory mediators in the ischaemic cortex, confirming previ-
ous reports (Romanic et al., 1998; Koistinaho et al., 2005) and
clearly attributing this effect to MMP inhibition.

Reduction in the expression of inflammatory mediators
within the brain after minocycline treatment has been
repeatedly reported in pre-clinical studies, accounting for its
inhibitory effects on infarct size in ischaemia models and
positive effects on behavioural complications associated with
neuroinflammatory processes. Given these promising experi-
mental results, translational research is required to provide
new insights into the usefulness of minocycline in these CNS
pathologies.

The potential efficacy of minocycline in the treatment of
Parkinson’s, Alzheimer’s and Huntington’s diseases has been
proposed. Chen et al. (2000) evaluated minocycline’s effects
in the transgenic R6/2 mouse model of Huntington’s disease
and reported that minocycline delayed disease progression
and mortality. The mechanism was determined to be inhibi-
tion of caspase-1 and caspase-3 expression, and reduction of
iNOS activation, preventing the detrimental effect that these
enzymes exert in Huntington’s disease (Ona et al., 1999).
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Moreover, minocycline-treated mice showed significantly
inhibited generation of the endogenous Huntington cleavage
fragment and lower mature IL-1b levels in the brain. The
anti-inflammatory effects of minocycline may also account
for the beneficial effects observed in both in vitro and in
animal models of Parkinson’s disease. Minocycline was found
to prevent nigrostriatal dopaminergic neurodegeneration in
the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)
mouse model of Parkinson’s disease, an effect related to the
prevention of dopamine depletion in the striatum and
nucleus accumbens, and is associated with marked reductions
in iNOS and caspase-1 expression (Du et al., 2001). In a dif-
ferent study, minocycline’s ability to protect nigrostriatal
dopaminergic neurons was related to reduced MPTP-induced
activation of microglia, inhibition of mature IL-1b formation,
and NADPH oxidase and iNOS activation (Wu et al., 2002).
In addition, in vitro studies using primary cultures of
mesencephalic and cerebellar granule neurons (CGN) and
glia confirmed that minocycline inhibited 1-methyl-4-
phenylpyridinium (MPP+)-mediated iNOS expression and
NO-induced neurotoxicity. This effect was related to the inhi-
bition of p38 MAPK activation in CGN (Du et al., 2001).
Together, these results suggest that minocycline blocks MPTP
neurotoxicity in vivo by indirectly inhibiting MPTP/MPP+-
induced glial iNOS expression and neurotoxicity, most likely
by inhibiting the phosphorylation of p38 MAPK. In contrast
to these promising results, minocycline’s ineffectiveness
and/or deleterious effects have also been reported in studies
on animal models of Huntington’s (Diguet et al., 2003;
2004a; Smith et al., 2003) and Parkinson’s (Yang et al., 2003;
Diguet et al., 2004a) diseases. Therefore, minocycline seems
to have variable and even contradictory effects in different
species and models of these neurological disorders. Could
these discrepancies be due to differences in the mode of
administration and dose used? Additional experimental work
should be undertaken to determine whether minocycline has
a neuroprotective effect in Huntington’s and Parkinson’s dis-
eases before conducting further clinical trials (Diguet et al.,
2004b).

In view of the pathogenesis of amyotrophic lateral scle-
rosis, which has been related to up-regulation of the expres-
sion and the increased activity of different pro-inflammatory
signals, including caspase-1, caspase-3, iNOS and p38 MAPK
(Friedlander et al., 1997; Li et al., 2000), there is also a ration-
ale for minocycline to be beneficial in this disease. Indeed,
minocycline delayed disease onset and extended survival in
an experimental model of amyotrophic lateral sclerosis-
transgenic mice expressing the mutant human SOD1-G93A
transgene. In this model, minocycline inhibited mitochon-
drial permeability transition-mediated cytochrome c release,
a mechanism of action that was confirmed in vitro both in
cells and in isolated mitochondria (Zhu et al., 2002). Similar
findings were reported by Kriz et al. (2002) and Van Den
Bosch et al. (2002), who showed that minocycline delayed
the onset of motor neuron degeneration and muscle strength
decline and increased the longevity of amyotrophic lateral
sclerosis mice. Additional in vitro studies revealed that mino-
cycline reduced the apoptosis of cultured neurons from
patients with motor neuron diseases, including amyotrophic
lateral sclerosis (Tikka et al., 2002). As is the case for Hunt-
ington’s and Parkinson’s diseases, the usefulness of minocy-

cline in this neurological condition remains controversial,
however. Despite the promising results from these animal
models, a multi-centre, randomized placebo-controlled phase
III trial revealed minocycline to have a detrimental effect.
Amyotrophic lateral sclerosis patients treated with the drug
deteriorated significantly faster than patients in the control
group (Gordon et al., 2007).

Pre-clinical studies have confirmed that minocycline’s
pharmacological profile could be of interest in the treatment
of Alzheimer’s disease. The first report describing the effects
of minocycline in a model of Alzheimer’s disease appeared in
2004, describing the drug’s beneficial effects in an experimen-
tal Alzheimer’s disease model induced by i.c.v. injection of
m-p75-saporin in mice. Minocycline ameliorated cholinergic
cell loss and reduced the simultaneous activation of microglia
and astrocytes that occur after the administration of the
immunotoxin, and led to the down-regulation of transcrip-
tion of pro-inflammatory mediators and mitigation of cogni-
tive impairment (Hunter et al., 2004). Minocycline treatment
has also been reported to suppress microglial production of
IL-1b, IL-6, TNF and nerve growth factor in amyloid precursor
protein (APP) transgenic mice, but did not affect amyloid b
peptide (Ab) deposition in this model (Seabrook et al., 2006).
Moreover, Choi et al. (2007) reported that minocycline could
attenuate the phosphorylation of eukaryotic initiation trans-
lation factor 2 alpha (eIF-2a), which may ultimately impair
cognitive functions by decreasing the efficacy of the de novo
protein synthesis required for synaptic plasticity (Harding
et al., 2000; Chen et al., 2003; Taylor et al., 2005) and
caspase-12 activation, in Ab1–42-treated or C-terminal frag-
ments of APP (APP-CTs)-transfected differentiated PC 12 neu-
ronal cells. The increases in p-eIF2a were also attenuated by
minocycline administration in two animal models: Ab1–42

infused rats and Tg2576 mice, in which minocycline reduced
neuronal cell death, improved cognitive impairment and
attenuated the deficits in learning and memory (Choi et al.,
2007). Similarly, minocycline treatment was able to correct
behavioural impairments and lower levels of inflammatory
markers and Ab trimers in an early, pre-plaque inflammatory
process in an Alzheimer’s disease-like transgenic rat model
(Cuello et al., 2010). Ab accumulation was sufficient to induce
cognitive impairment and biochemical alterations in the cer-
ebral cortex and hippocampus in the absence of amyloid
plaques, together with up-regulation of pro-inflammatory
markers, such as MHC II, iNOS and COX-2, and these
responses were successfully arrested by minocycline (Cuello
et al., 2010). Thus, minocycline treatment ameliorates the
cognitive impairment and deficits in learning and memory
that characterize Alzheimer’s disease by a variety of actions,
and future work must aim to determine its usefulness in
patients.

Finally, and more importantly, increasing experimental
evidence suggests that minocycline, alone or combined with
other drugs, could ameliorate multiple sclerosis severity and
progression. This finding has been derived mainly on the
basis of the promising results obtained in an established
animal model of multiple sclerosis, the experimental autoim-
mune encephalomyelitis (EAE). In 2002, two different groups
described minocycline’s ability to attenuate the clinical and
histological severity of EAE, an effect associated with
decreased inflammation and the inhibition of microglial acti-
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vation (Brundula et al., 2002; Popovic et al., 2002). Popovic
et al. (2002) reported that minocycline administration, fol-
lowing a curative protocol, suppressed ongoing disease activ-
ity and limited disease progression in EAE induced in dark
agouti rats. Similarly, Brundula et al. (2002) showed that
minocycline, most probably because of its ability to inhibit
MMP activity, delayed the onset of clinical symptoms and
attenuated the severity of the neuroinflammation that
occurred in EAE, even when it was administered after the
onset of the clinical signs. Later, Nikodemova et al. (2007)
reported that minocycline treatment, when started at the
onset of the symptoms, considerably decreased the severity of
the clinical course of the disease by reducing both lesion
number and size. This effect was associated with a reduced
macrophage migration from the periphery into the CNS, thus
resulting in decreased leukocyte infiltration into the paren-
chyma of the spinal cord and decreased microglia MHC II
expression and proliferation. Moreover, these neuroprotec-
tive effects were improved when high minocycline concen-
trations were locally delivered into the CNS (Xue et al., 2010).

Minocycline was also effective in combination with ator-
vastatin, a statin previously reported to be effective in attenu-
ating clinical EAE in mice (Youssef et al., 2002). Combination
therapy caused greater reduction in disease severity than indi-
vidual drugs used alone, in both acute and chronic disease
phases, along with attenuation of inflammation, demyelina-
tion and axonal loss (Luccarini et al., 2008).

The mechanisms responsible for the pharmacological
actions of minocycline in EAE are its influence on T-cell
activity, its ability to inhibit microglial activation and its
neuroprotective effects. In vitro studies have revealed that
minocycline inhibited antigen processing for presentation to
human T-cells (Kalish and Koujak, 2004), T-cell proliferation
and production of inflammatory cytokines (Kloppenburg
et al., 1995; 1996), and T-cell transmigration across a
fibronectin matrix barrier, most likely via the inhibition of
MMPs. In vivo assays have found that this antibiotic promotes
immune differentiation from a type 1 helper T-cell (Th1) to a
type 2 helper T-cell (Th2) phenotype, thus modulating the
susceptibility to EAE (Popovic et al., 2002). Regarding micro-
glial activation, Popovic et al. (2002) found in relapsing-
remitting EAE that activated microglia were absent in rats
treated with minocycline. Moreover, minocycline inhibited
microglia MHC II expression and the subsequent reactivation
of T-cells, which resulted in attenuation of the clinical sever-
ity of EAE (Nikodemova et al., 2007) and reduced infiltration
of T lymphocytes into the CNS parenchyma (Brundula et al.,
2002; Popovic et al., 2002). In addition, the direct antioxidant
potential of minocycline attenuated reactive oxygen species
(ROS)-mediated neuronal and axonal destruction in vitro
(Wilkins et al., 2004) and its ability to chelate Ca2+ may
prevent the activation of calpains and preserve axonal integ-
rity, as observed in minocycline-treated EAE rats (Stirling,
2004; Yong et al., 2004; Maier et al., 2007). The success of
minocycline in multiple sclerosis treatment in experimental
models prompted its evaluation in phase I/II clinical trials in
humans. These confirmed its beneficial effects and found it to
be safe and well-tolerated (Metz et al., 2004; 2009; Zabad
et al., 2007). The results revealed that minocycline signifi-
cantly reduced relapse rates, MRI – active lesions, and local
brain atrophy. The trials also showed that the clinical

response to minocycline was accompanied by beneficial
immune changes that may be desirable in the control of
multiple sclerosis. Therefore, of all the neurological condi-
tions considered here, it appears that minocycline has the
most potential in the treatment of multiple sclerosis. Strong
experimental evidence supports minocycline’s ability to
reduce the severity and progression of the disease, which has
been confirmed by the clinical trials performed to date. Phase
III clinical trials should be conducted to determine the drug’s
potential for multiple sclerosis treatment.

Effects of minocycline on
neuropathic pain

The contribution of glial cells to the initiation of neuropathic
pain sensitization and peripheral nerve injury-induced neu-
ropathic pain has been well-characterized (Inoue and Tsuda,
2009; Zhuo et al., 2011). As mentioned earlier, minocycline
inhibits microglial activation in various pathological condi-
tions, without affecting astroglia and neurons (Yrjänheikki
et al., 1998 ; Tikka et al., 2001), and this may justify its
reported ability to reverse neuronal sensitization in neuro-
pathic animal models when applied to the spinal cord (Tikka
et al., 2001; Raghavendra et al., 2003). In fact, several studies
have revealed that minocycline can exert anti-nociceptive
effects on experimental neuropathic pain induced by periph-
eral nerve injury, inflammation or SCI, after both systemic
(i.p.) and local (intrathecal) administration (Raghavendra
et al., 2003; Hains and Waxman, 2006; Owolabi and Saab,
2006; Mika et al., 2007). Minocycline’s beneficial effects in
these cases are clearly enhanced when it is administered as
early as possible, especially during the initiation stage
(Ledeboer et al., 2005; Owolabi and Saab, 2006; Mei et al.,
2011). Similarly, minocycline has been recently found to
reverse microglial reactivity and thermal hyperalgesia sec-
ondary to sciatic neuropathy when injected into the ventral
posterolateral thalamus (LeBlanc et al., 2011). Special atten-
tion has been given to minocycline’s effects in the develop-
ment of diabetic neuropathy. Pabreja et al. (2011) recently
reported that the chronic administration of minocycline sig-
nificantly prevented cold allodynia and thermal hyperalgesia
in diabetic rats. This beneficial effect was associated with
decreased levels of pro-inflammatory cytokines and an
attenuated oxidative stress balance in the spinal cord of these
diabetic animals. Moreover, the beneficial effects of minocy-
cline in diabetes were associated with the prevention of
retinal complications, most probably because of the inhibi-
tion of diabetes-induced cytokine and cytotoxin production
(Krady et al., 2005). Consistent with this finding, Wang et al.
(2005) showed that minocycline inhibited the up-regulation
and increased release of IL-1b, TNFa and NO caused by bac-
terial LPS in retinal microglia. Cai et al. (2011) investigated
the neuroprotective mechanisms of minocycline against
diabetic brain injury and reported its ability to improve the
behavioural deficits caused by altered glucose metabolism in
diabetic rats. In addition, they demonstrated that the drug
down-regulates the increased Ab in the hippocampus by
inhibiting signal transduction molecules upstream of the
NF-kB pathway and by attenuating oxidative stress. The anti-
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nociceptive effects of minocycline have subsequently been
confirmed in different models of neuropathic pain (spinal
nerve transection, peripheral nerve injury, inflammation,
sciatic neuropathy and SCI), particularly when it was admin-
istered during the initiation stage, and have been attributed
to the inhibition of microglia activation. In diabetes, in addi-
tion to the amelioration of diabetic neuropathy, minocycline
prevented retinal complications and improved behavioural
deficits. Human trials have not yet been conducted, but based
on the available experimental data, minocycline therapy
seems like a rational approach for these conditions.

Effects of minocycline on SCI

Because the neuropathic pain and motor weakness that result
from microglia activation are believed to trigger nociceptive
hypersensitivity in SCI, minocycline could be a rational
approach for treating the complications of this condition
(Colburn et al., 1999). Support for this proposition comes
from the results of different studies that show that mino-
cycline may reduce neuropathic pain after SCI. However,
few data exist regarding minocycline’s ability to promote
motor recovery after SCI, rendering this possibility con-
troversial. In rodent models of SCI, minocycline administra-
tion significantly improved both hindlimb function and
strength, reduced the gross lesion size in the spinal cord and
induced axonal sparing. Minocycline-treated mice demon-
strated superior behavioural recovery than that shown by
methylprednisolone-treated mice, the approved treatment
for acute SCI in humans (Wells et al., 2003). In rats with SCI,
minocycline inhibited the release of cytochrome c from the
mitochondria, markedly enhancing long-term hindlimb
locomotion (Teng et al., 2004). More recently, Saganová et al.
(2008) showed that both short- and long-term treatment with
minocycline had a neuroprotective effect on the spinal cord
rostral to the injury epicentre. Previous data had indicated
that minocycline exerts a protective effect on white matter
and motor neuron number at sites both rostral, but also
caudal, to the lesion epicentre (Teng et al., 2004).

Minocycline has also been shown to improve functional
recovery after SCI through the inhibition of pro-nerve growth
factor production by microglia, thereby reducing oli-
godendrocyte death and apoptosis after traumatic SCI. It also
inhibited the expression of p75 neurotrophin receptors and
the activation of the Ras homolog gene family member A
(RhoA) after SCI (Yune et al., 2007). Furthermore, Festoff et al.
(2006) reported that minocycline might also exert a neuro-
protective effect in SCI by reducing microgliosis and inhibit-
ing caspase expression. A recent study reported minocycline’s
effects on motor neuron recovery and neuropathic pain in a
rat model of thoracic SCI (Cho et al., 2011). The study
revealed that, at post-operative day 2, the locomotor score
was higher and mechanical hyperalgesia was reduced in
minocycline-treated animals than in the corresponding con-
trols. The attenuation of neuropathic pain behaviour and
motor recovery correlated with reductions in microglia and
astrocyte activation respectively. Experimental data have sub-
sequently clarified that minocycline could be of benefit in
SCI in different ways: relieving pain and promoting motor
recovery after lesion development. However, clinical studies

evaluating its potential application in human SCI are still
missing.

Effects of minocycline on ischaemia

Minocycline’s ability to limit tissue damage in the kidney,
heart, lung and neural cells in the setting of ischaemia both
in vitro and in vivo has been documented (Yong et al., 2004;
Stirling et al., 2005; Sutton et al., 2005; Jordan et al., 2007).
When considering stroke, blood–brain barrier disruption
after stroke can worsen ischaemic injury by increasing
oedema and causing haemorrhage. Minocycline, probably
because of its ability to inhibit microglia activation, was able
to attenuate infarct volume and neurological deficits in mice
after experimental stroke, as a result of a marked reduction in
blood–brain barrier disruption and haemorrhage (Yenari
et al., 2006). Based on this preliminary evidence, clinical
studies in patients with stroke have been performed. Lampl
et al. (2007) reported that the oral administration of minocy-
cline (200 mg) for 5 days, with a therapeutic window of
6–24 h after stroke onset, promoted a better outcome com-
pared with the placebo. This beneficial effect could be asso-
ciated with significant blunting of ischaemic tissue oxidative
stress, consistent with previous reports (Kraus et al., 2005). In
another ischaemic condition, the myocardial ischaemia-
reperfusion (I/R) injury, in which the damage has been asso-
ciated with the activation of MMPs and serine proteases,
minocycline exerted a protective effect, as confirmed by
various pre-clinical studies. The evaluation in ex vivo heart
systems and cultured cardiac myocytes revealed minocy-
cline’s ability to affect apoptotic cell pathways (Scarabelli
et al., 2004). Various in vivo studies have also described the
cardioprotective effects of minocycline, as antibiotic pre- and
post-treatment of rats subjected to I/R resulted in a significant
reduction in infarct size, an effect that was accompanied
by a reduction in MMP-9 activity and oxidative stress
(Romero-Perez et al., 2008). These assays confirmed previous
results that the accumulation of tetracyclines in infarcted
myocardium was directly related to the degree of tissue
damage (Holman et al., 1973; Holman and Zweiman, 1975).
In fact, the levels of minocycline that accumulated in the
myocardium were several fold higher than those in the
plasma, with increased accumulation in ischaemic compared
with normal myocardium. Thus, it is possible that some of
the cardioprotective effects of minocycline may be attribut-
able to its high tissue levels, which allow for notable effects
on its targets: MMP-9 inhibition and ROS-scavenging,
together with anti-apoptotic effects. In a more recent study,
the protective effect of minocycline against myocardial
ischaemia and I/R injury was also attributed to inhibition of
the expression of high mobility group box 1 (HMGB1), a
protein that has been also found to act as an early mediator
of inflammation and cell damage during I/R injury (Andrassy
et al., 2008; Hu et al., 2010). PARP-1 inhibition has also been
proposed as a possible mechanism underlying minocycline’s
cardioprotective activity (Tao et al., 2010). During myocardial
I/R injury, there is an increase in reactive oxygen and nitro-
gen species that leads to oxidative DNA damage and the
activation of nuclear repair enzymes, such as PARP-1, which
promote DNA repair under normal conditions, but which
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could lead to cell death if excessive (Zhang and Niu, 1994; Yu
et al., 2002; Alano et al., 2006). In cultured adult rat cardiac
myocytes in which I/R injury was simulated using oxygen-
glucose deprivation, minocycline, at micromolar concentra-
tions, significantly reduced cell death and biochemical
markers of PARP-1 activation and prevented mitochondrial
permeability transition (Tao et al., 2010). Moreover, minocy-
cline has also been reported to be effective in preventing
ischaemia-induced ventricular arrhythmias in rats. The inci-
dence of ventricular fibrillation, the duration and the number
of episodes of ventricular tachycardia plus unidentifiable and
low-voltage QRS complexes, and the severity of arrhythmias
were significantly reduced by minocycline treatment (Hu
et al., 2011). In that study, the authors postulated that the
anti-arrhythmic effect of minocycline may have been associ-
ated with activation of the PI3K/Akt signalling pathway and
mitochondrial KATP channels, which are known to participate
in the anti-arrhythmic effect of ischaemic or pharmacological
preconditioning during myocardial ischaemia (Végh and
Parratt, 2002; Gourine et al., 2005). Similar clinical benefits of
minocycline as those shown in stroke patients could be
expected in myocardial ischaemia patients, especially consid-
ering its cardiotropisms, antioxidant properties and cardio-
protective activity shown in experimental models, in vitro
and in vivo.

Effects of minocycline
on atherosclerosis

Various studies have proposed minocycline to prevent
atherosclerosis, in relation to its cytoprotective effects in vas-
cular cells. Accordingly, minocycline has been shown to
protect against diabetic microvascular complications (Krady
et al., 2005) and to reduce neointima formation in macro-
vascular disease following acute vascular injury of the rat
carotid artery (Pinney et al., 2003). In these studies, a reduc-
tion in the number of vascular smooth muscle cells (VSMC)
was seen after minocycline treatment, which was attributed
to an inhibition of MMP activity and cytokine-induced
VSMC migration (Pinney et al., 2003; Yao et al., 2004).
Moreover, minocycline has been shown to inhibit VEGF-
induced MMP-9 mRNA transcription and protein activation
in human aortic VSMCs in vitro (Pinney et al., 2003; Yao
et al., 2004). More recently, Shahzad et al. (2011) showed
minocycline to reduce plaque size and vascular stenosis in
diet-induced atherosclerosis through a PARP-1 and p27Kip1-
dependent mechanism. In vitro assays revealed that minocy-
cline reduced the proliferative process in different cell types,
including human aortic smooth muscle cells (HASMC) and
murine primary aortic VSMCs. These data may explain the
lower number of VSMC observed within atherosclerotic
plaques of ApoE-/- high-fat diet (HFD) mice treated with
minocycline (Shahzad et al., 2011). These authors also estab-
lished that minocycline’s anti-proliferative effect in VSMC
depended on p27Kip1, as it induced in vitro expression in
both VSMCs and HASMCs, and in atherosclerotic plaques
analysed ex vivo. Of note, the knockdown of p27Kip1 in
primary mouse aortic cells abolished the anti-proliferative
effect of minocycline. In addition, minocycline reduced

poly(ADP-ribose) formation, a marker of PARP-1 activity, in
plaques of the truncus brachiocephalicus of ApoE-/- HFD
mice and markedly reduced PARP-1 expression, particularly
in low-density lipoprotein-treated HASMCs. The reduction of
atherosclerotic plaque size after minocycline treatment,
mainly due to its anti-proliferative effects on VSMCs, suggests
a potential application of minocycline on vascular complica-
tions. However, no clinical trials have been conducted yet.

Effects of minocycline on inflammatory
bowel disease

The effects of minocycline on experimental colitis were first
described in 2009 by Huang et al. (2009b), who reported its
ability to prevent and treat dextran sodium sulphate-induced
colitis, significantly diminishing the mortality rate and
attenuating the severity of the disease. These beneficial effects
were associated with reduced iNOS and MMP expression
in the intestinal tissue. Supporting these observations,
Garrido-Mesa et al. (2011a) confirmed the intestinal anti-
inflammatory effect of minocycline in experimental models
of colitis in both mice and rats, showing it to have a higher
efficacy than other antibiotics like metronidazole, tradition-
ally used to treat human inflammatory bowel disease,
although it was devoid of immunomodulatory properties
(Perencevich and Burakoff, 2006). That study proposed that
minocycline’s ability to modulate both the immune and the
microbiological parameters of the disease contribute to its
beneficial effects. Regarding the latter, these studies revealed
that the imbalance in the composition of the intestinal
microbiota that characterizes experimental colitis was
restored after minocycline treatment, while the other antibi-
otics tested did not show this effect. Furthermore, in a mouse
model of reactivated colitis, the association of minocycline
with the probiotic Escherichia coli Nissle 1917, which has been
reported to show beneficial effects in these intestinal condi-
tions (Schultz, 2008), exerted a greater intestinal anti-
inflammatory effect than the individual treatments and, in
addition, was able to attenuate the reactivation of the colitis
(Garrido-Mesa et al., 2011b). Therefore, combined immu-
nomodulatory and anti-microbial properties of minocycline
could be very useful in the treatment of multifactorial con-
ditions, like inflammatory bowel disease.

Effects of minocycline on
allergic asthma

Recently, Joks et al. (2010) demonstrated that minocycline
can suppress ongoing human and murine IgE responses,
without affecting those of IgM, IgG and IgA. In addition,
they also reported that minocycline strongly suppressed the
in vitro induction of the memory IgE antibody-forming
responses of spleen and mesenteric lymph node cells
from BPO-KLH sensitized mice. The suppression was dose-
dependent and IgE isotype-specific (Joks et al., 2010). More
recently, it has been described that minocycline suppressed in
vitro IgE production by peripheral blood mononuclear cells
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(PBMCs) from asthmatic subjects, whereas there was no
change in IgE levels in PBMC cultures from non-asthmatic
subjects. The presence of both CD4+ and CD8+ T lymphocytes
was found to be required for the minocycline-mediated sup-
pression of IgE responses by PBMCs of allergic asthmatic
humans. Finally, these minocycline-mediated decreases in
IgE responses were associated with the suppression of p38
MAPK in the T lymphocytes of these patients (Joks and
Durkin, 2011a,b). These effects may account for the im-
provement observed in allergic asthmatic patients after
minocycline treatment in a randomized, double-blind,
placebo-controlled, crossover study (Daoud et al., 2008). In
that trial, the patients’ asthma symptoms and spirometric
outcomes were significantly improved, and their oral steroid
requirements reduced, findings that indicate the potential
usefulness of minocycline for treating asthma.

Effects of minocycline on HIV infection

Several in vitro studies have shown minocycline’s ability to
inhibit HIV activation, proliferation and viral replication in
microglia, macrophages and lymphocytes (Si et al., 2004;
Zink et al., 2005; Nikodemova et al., 2007). Similarly, it has
also been shown to reduce virus infection and immune
responses in several experimental models (Si et al., 2004; Zink
et al., 2005; Follstaedt et al., 2008; Ratai et al., 2010; Szeto
et al., 2010). One of the first studies describing this potential
use of minocycline in HIV infection was performed in a
simian immunodeficiency virus (SIV) macaque model
of HIV-associated neurological damage (Zink et al., 2005).
Minocycline-treated SIV-infected macaques were noted to
have less severe encephalitis, reduced expression of CNS
inflammatory markers and reduced axonal degeneration. In
addition, the authors found that treatment with minocycline
significantly decreased the viral load in the CSF and plasma
and cytotoxic lymphocyte infiltration into the brain. In vitro
assays revealed that minocycline also decreased p38 activa-
tion and HIV replication in primary human lymphocytes, in
association with a reduction in MCP-1/CCL2 production
(Zink et al., 2005). These findings led to a study focusing on
whether minocycline might improve performance in cogni-
tively impaired HIV-infected subjects by the Acquired Immu-
nodeficiency Syndrome (AIDS) Clinical Trials Group (http://
clinicaltrials.gov/ct2/show/NCT00361257). In this setting,
Szeto et al. (2010) demonstrated minocycline to have signifi-
cant anti-HIV effects in primary human CD4+ T-cells. Antibi-
otic treatment reduced single-cycle replication, reactivation
from a primary CD4+ T-cell-derived model of HIV latency and
viral RNA expression after de novo infection with the reference
strain HIV NL4-3. These ex vivo experiments described, for the
first time, the ability of minocycline to decrease virus expres-
sion from the resting CD4+ reservoirs of HIV-infected patients
during highly active anti-retroviral treatment (HAART) and
that the anti-HIV effects of minocycline applied to both
laboratory and clinical strains of HIV (Zink et al., 2005).
Minocycline has been shown to have many effects on CD4+

T-cells that impair HIV by reducing its permissiveness and
reactivation from latency. It has been shown to alter T-cell
activation, blunting changes in the expression of activation/
proliferation markers and cytokine secretion, which are criti-

cal for the activation pathways that regulate HIV replication.
However, minocycline has also been shown to affect HIV
replication, as it dose-dependently decreased the level of pro-
ductive virus by inhibiting DNA integration or transcription.
All these data support the proposition that minocycline
would be effective as a novel maintenance therapy in com-
bination with HAART (Szeto et al., 2010).

In addition to the effects of minocycline on CD4+ T-cells
and viral replication, the decreased monocyte/macrophage
activation caused by this antibiotic can also play a neuropro-
tective role in SIV-AIDS. Ratai et al. (2010) reported, in a
non-human primate model of accelerated neuro-AIDS, that
none of the minocycline-treated animals developed SIV
encephalitis. More recently, Campbell et al. (2011) also con-
cluded that, not only its effects on T-cells, but also its inhibi-
tory effect on monocyte activation, correlate with neuronal
protection in SIV neuro-AIDS. The authors observed that the
reduction of viral replication in CD14+ monocytes in vitro
after minocycline treatment was directly related to impaired
traffic of these cells into the brain. Therefore, there was a
correlation between the expansion of activated monocytes
and neuronal protection with minocycline. This may result
in decreased replication or abundance of CD14+CD16+ target
cells for HIV and SIV in vivo, as shown in a rapid model of
SIV-neuropathogenesis in rhesus macaques. In this model,
minocycline treatment resulted in neuronal protection: it
reduced the activation of monocytes and their accumulation
in the lymph nodes of treated animals, and inhibited the
expression of several markers critical for monocyte traffic and
function (CCR2, CD163, CD11b and CD64). These results
indicate that the anti-viral effects of minocycline are linked
to its ability to reduce the activation of monocytes and their
permissiveness to viral infection.

Unfortunately, despite the evidence mentioned earlier, a
small pilot study reported that minocycline failed to modu-
late CSF HIV infection or immune activation in chronic
untreated HIV-1 infection (Ho et al., 2011). The chronic infec-
tion of the patients enrolled in the study could have pre-
sented a level of immune activation and viral replication that
minocycline was too weak to modify, as it showed little effect
on CNS or systemic macrophage activation and CSF infec-
tion. In addition, the absence of encephalitis meant that
there might have been little CNS disease to target. Differences
in the species (human compared with macaques) and in the
disease targets (the duration of the disease and the presence
of encephalitis) should be considered. Furthermore, the
authors acknowledged limitations in the design of their study
(e.g. its small size, short duration and the absence of an
untreated control group) that could have led to a type II error
and a reduced power to detect effects of minocycline. Never-
theless, the usefulness of minocycline’s neuroprotective
properties in the treatment of HIV-infection associated cog-
nitive impairment was also ruled out by a clinical trial
recently conducted by Sacktor et al. (2011). Considering these
outcomes and the limitations of the aforementioned trials,
larger studies are needed to fully test the effectiveness of
minocycline on these measures in AIDS patients. Moreover,
given the effects of minocycline reported in vitro and in
experimental models (Zink et al., 2005; Szeto et al., 2010),
there may still be a basis for further study, for example, in
well-treated patients in which the level of immunoactivation
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is partially attenuated or in combination with anti-retroviral
drugs.

Effects of minocycline on autism

FXS is the most common genetic determinant of cognitive
impairment and autism spectrum disorders (Koukoui and
Chaudhuri, 2007; Penagarikano et al., 2007). Minocycline has
been revealed recently as a new possible FXS drug treatment,
based on the evidence from various studies involving either
experimental animals or humans. In a mouse model of FXS,
minocycline promoted the maturation of hippocampal den-
dritic spines to normal morphology and repressed anxiety
and memory defects, effects that may be related to the spe-
cific inhibition of MMP-9 (Bilousova et al., 2009). In addition,
Siller and Broadie (2011) showed, in a Drosophila model of
FXS, that neural circuit architecture defects were alleviated by
minocycline treatment, which effectively restored the normal
synaptic structure. Their results support minocycline as a
promising potential FXS treatment and confirmed that
it might act via MMP inhibition, as previously reported
(Bilousova et al., 2009). In fact, minocycline has been effec-
tive in FXS patients, as reported in an open-label add-on trial
on FXS patients, which revealed that a wide variety of symp-
toms were improved by minocycline treatment, including
irritability, stereotypy, hyperactivity and inappropriate
speech subscales (Paribello et al., 2010; Utari et al., 2010).

Effects of minocycline on osteoporosis

Minocycline benefits bone physiology in several ways. In
ovariectomized aged rats, a model for post-menopausal oste-
oporosis, minocycline was able to both increase bone forma-
tion and decrease bone loss in trabecular bone, with a similar
efficacy as that observed with oestrogen therapy (Williams
et al., 1996). In a subsequent study, minocycline treatment
prevented the decrease in bone mineral density induced after
ovariectomy and abolished the detrimental effects induced in
the femoral trabecular bone area (Williams et al., 1998). In
that study, minocycline showed dual effects, modestly reduc-
ing bone resorption while substantially stimulating bone for-
mation. In addition, minocycline was found to stimulate the
colony-forming efficiency of marrow stromal cells derived
from ovariectomized rats, possibly explaining its stimulatory
effect on bone formation. Of note, in a rat model of
synchronized osseous remodelling, minocycline significantly
impaired the disorganization of both the osteoid seam and the
layer of osteoblasts, preserved the synthetic activity of oste-
oblasts and inhibited interstitial collagenase activity and thus
bone resorption (Klapisz-Wolikow and Saffar, 1996). Finally,
the natural osteotropism that characterize tetracyclines
increases their effectiveness in inhibiting MMPs produced by
osteoclasts or bone tumour cells (Saikali and Singh, 2003).

Effects of minocycline on cancer

Degradation of the extracellular matrix by MMPs is a critical
phenomenon in cancer invasion and metastasis (Hua et al.,

2011). Considering the potent inhibitory effects of tetracy-
clines against MMPs, their anti-cancer potential has been
studied in a variety of cancers, including melanoma, lung,
breast and prostate cancers (Lokeshwar, 2011). Minocycline
has been shown to inhibit in vitro invasion and experimental
pulmonary metastasis in mouse renal adenocarcinoma
(MRAC-PM2) cells (Masumori et al., 1994). In addition, the
i.p. administration of minocycline reduced the number of
metastatic nodules in the lung when MRAC-PM2 cells were
i.v. injected to mice. Minocycline also suppressed the type IV
collagenolytic activity of these cells, which can contribute to
the suppression of their metastatic potential (Masumori et al.,
1994). Considering its osteotropism, minocycline was highly
effective in inhibiting MMPs produced by tumour cells in the
bone (Saikali and Singh, 2003). Moreover, when combined
with celecoxib, minocycline inhibited the osseous metastasis
of breast cancer in nude mice, by increasing tumour cell
death and decreasing tumour expression of MMP-9 and VEGF
(Niu et al., 2008). In addition, minocycline has recently been
shown to be a promising new candidate for adjuvant therapy
against malignant gliomas, as it reduced glioma growth both
in vitro and in an experimental mouse model, an effect that
was associated with a strongly attenuated expression of mem-
brane type 1 MMP (MT1-MMP) in glioma-associated micro-
glia (Markovic et al., 2011). Furthermore, minocycline has
been described to inhibit tumour growth in the xenograft
tumour model of C6 glioma cells. This effect was associated
with an induction of autophagic cell death, although mino-
cycline still induced cell death through the activation of
caspase-3 when autophagy was inhibited (Liu et al., 2011).
Therefore, these experimental data confirm that the anti-
proliferative, anti-angiogenic and matrix-stimulatory activi-
ties displayed by minocycline increase its anti-metastasic
and anti-tumour potential. Moreover, minocycline may
benefit patients undergoing standard cancer chemotherapy
by alleviating drug-induced gut damage. In a model of
5-fluorouracil-induced small intestinal mucositis, minocy-
cline protected mice from gut injury. Body weight loss, diar-
rhoea and villi measurements were improved by minocycline
treatment, which also repressed the expression of TNFa, IL-1b
and iNOS, decreased the apoptotic index, and inhibited
PARP-1 activity in the mouse small intestine. In addition,
minocycline treatment appeared to enhance the anti-tumour
effects of 5-fluorouracil in tumour CT-26 xenograft mice
(Huang et al., 2009a).

Conclusions

In summary, minocycline has long been used as an antibiotic
for acne vulgaris, perioral disease and cutaneous sarcoidosis,
and it is currently used for the treatment of inflammatory
diseases such as rheumatoid arthritis. However, minocycline
has now been demonstrated to have anti-inflammatory,
immunomodulatory and neuroprotective effects. Various
studies in animal models and some clinical trials have con-
firmed the beneficial effects and safety of minocycline, alone
or combined with other drugs, as a promising therapeutic for
diseases with an inflammatory background. Multiple mecha-
nisms of action have been proposed for minocycline, which
stands out as a drug affecting multiple targets. Its antioxidant
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properties, calcium chelation and ability to inhibit pro-
inflammatory enzymes such as iNOS or MMPs may have
prominent roles in its beneficial effects in most of the diseases
considered in this review. However, other tetracyclines, espe-
cially doxycycline, have been reported to share some of these
properties, yet have not exhibited a similar efficacy in the
same models. Therefore, it seems that it is minocycline’s
multiple targets that makes it such an outstanding drug
among the tetracyclines. In addition, minocycline has been
shown to display several attractive advantages that deserve
our attention: it is generally considered a safe drug in
humans, with a known side-effect profile; it is relatively inex-
pensive, which makes it suitable for long-term use in these
diseases; and, lastly, it is established as an oral therapy, being
well absorbed (95–100%) and reaching most of the compart-
ments of the body, including the CNS. Although a better
understanding of the mechanisms involved in the action of
minocycline in vivo is required before its therapeutic potential
can be accurately assessed, the encouraging results and attrac-
tive merits of this antibiotic indicate that it will have poten-
tial as a therapeutic approach for treating many of the
diseases described in this review.
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