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Oxidative stress results from a cell or tissue failing to detoxify
the free radicals that are produced during metabolic activity.
Diabetes is characterized by chronic hyperglycemia that pro-
duces dysregulation of cellular metabolism. This review ex-
plores the concept that diabetes overloads glucose metabolic
pathways, resulting in excess free radical production and ox-
idative stress. Evidence is presented to support the idea that
both chronic and acute hyperglycemia cause oxidative stress
in the peripheral nervous system that can promote the devel-
opment of diabetic neuropathy. Proteins that are damaged by

oxidative stress have decreased biological activity leading to
loss of energy metabolism, cell signaling, transport, and, ul-
timately, to cell death. Examination of the data from animal
and cell culture models of diabetes, as well as clinical trials of
antioxidants, strongly implicates hyperglycemia-induced ox-
idative stress in diabetic neuropathy. We conclude that striv-
ing for superior antioxidative therapies remains essential for
the prevention of neuropathy in diabetic patients. (Endocrine
Reviews 25: 612–628, 2004)
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I. Introduction

OXIDATIVE STRESS OCCURS in a cellular system when
the production of free radical moieties exceeds the

antioxidant capacity of that system. If cellular antioxidants
do not remove free radicals, radicals attack and damage
proteins, lipids, and nucleic acids. The oxidized or nitrosy-
lated products of free radical attack have decreased biolog-
ical activity, leading to loss of energy metabolism, cell sig-
naling, transport, and other major functions. These altered
products also are targeted for proteosome degradation, fur-
ther decreasing cellular function. Accumulation of such in-
jury ultimately leads a cell to die through necrotic or apo-
ptotic mechanisms.

Chronic hyperglycemia causes oxidative stress in tissues
prone to complications in patients with diabetes (1, 2). Dia-
betes is an epidemic in developed countries. In the United
States, 16 million individuals are diabetic, and the number is
increasing at a rate of 5% per year. The major form of diabetes
in the population is type 2, which accounts for up to 95% of
diabetes cases in the United States (3). Among children, type
1 diabetes poses a greater risk, although this may change in
the future because the rate of type 2 diabetes in children and
adolescents is increasing (4). The microvascular complica-
tions of diabetes carry a high morbidity and, when coupled
with macrovascular complications, high mortality (5). The
most common microvascular complication is neuropathy.
Although exact prevalence depends on the diagnostic criteria
used to identify neuropathy, most studies suggest that 50%
of patients with a 20-yr history of diabetes, of both type 1 and
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type 2, have neuropathy (6, 7). Around 10% of these cases of
neuropathy are associated with abnormal sensations and
pain (8). The incidence of neuropathy increases with dura-
tion of diabetes and is accelerated by poor control (9).

The majority of work to date has focused upon the pe-
ripheral nervous system, and so, unless stated otherwise,
comments in this review refer to the peripheral nervous
system. One should note, however, that deficits in the central
nervous system are recognized as a feature of diabetes. Gen-
erally, spinal cord lesions are considered a rare event in
diabetes, although a recent study demonstrated overall slow-
ing of spinal cord potentials in a population of patients with
type 2 diabetes at 5–10 yr after disease onset (10). Studies in
diabetic rats suggest that the same signal transduction path-
ways that are implicated in peripheral neuropathy in the
dorsal root ganglia are also affected in the brain (11). Again,
attempts to unify the mechanisms that ultimately produce
neuronal degeneration point to at least a component of ox-
idative stress. Mild cognitive dysfunction is not uncommon
in adults with type 1 diabetes through a mechanism that
appears to be linked to the development of vascular com-
plications (12). Similarly, in patients that have Alzheimer’s
disease, development of type 2 diabetes with vascular com-
plications accelerates the brain deposition of amyloid protein
and neurofibrillar tangles (13).

The mechanisms underlying oxidative stress in chronic
hyperglycemia and the development of neuropathy have
been examined in animal models (14). This oxidative stress
is associated with the development of apoptosis in neurons
and supporting glial cells and so could be the unifying mech-
anism that leads to nervous system damage in diabetes (15,
16). This review explores the evidence for oxidative stress as
a significant mediator in the development of diabetic neu-
ropathy as well as the potential for prevention of complica-
tions through rigorous antioxidant therapy.

Although this review is mainly focused upon the loss of
neuronal function and survival as a cause of diabetic neu-

ropathy, it is important to consider other mechanisms that
contribute to the disorder. Neurons not only are lost in di-
abetes, but their ability to regenerate is also impaired, par-
ticularly the small-caliber nerve fibers (17). In patients with
diabetic neuropathy, both degeneration and regeneration are
present simultaneously, suggesting that the disorder is
highly dynamic (7). Over time, the balance between degen-
eration and regeneration shifts toward more degeneration,
and the aim of therapeutic regimens should be to restore the
balance on the side of regeneration. The inability to regen-
erate nerve fibers is related to the degree of neuropathy,
suggesting that therapeutic interventions to improve regen-
eration will be more effective at early stages of disease (17).
The mechanisms leading to loss of regeneration may include
impaired insulin action (18), loss of growth factor systems
(19), and decrease in specific isoforms of protein kinase C
(20). Schwann cells are important in the regenerative process,
and these also can be impaired in diabetes through hyper-
glycemia, hypoxia, and oxidative stress (reviewed in Ref. 21).
Understanding and the ability to intervene in oxidative
stress, therefore, may both prevent neuron degeneration and
promote regeneration (7).

II. The Chemistry of Oxidative Stress

Several free radical species are normally produced in the
body to perform specific functions. Superoxide (O2

�.), hy-
drogen peroxide (H2O2), and nitric oxide (NO) are three free
radical reactive oxygen species (ROS) that are essential for
normal physiology, but are also believed to accelerate the
process of aging and to mediate cellular degeneration in
disease states. These agents together produce highly active
singlet oxygen, hydroxyl radicals, and peroxynitrite that can
attack proteins, lipids, and DNA. Figure 1 illustrates the
different forms of ROS as well as showing examples of their
formation and removal within cells. These reactions are de-
scribed in more detail below.

FIG. 1. The charged states of oxygen and the formation and detoxification of oxygen radicals in cells. On the left, the various oxidative states
of the molecule are illustrated to assist the reader in understanding the terminology of free radicals. As molecular oxygen participates in
biochemical reactions in the cell, electrons are shuttled between molecules, and highly reactive intermediates are produced and then removed
through the activities of specific enzymes. These reactions are summarized in the schematic on the right.
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A. O2
�.

O2
�. is generated by the mitochondrial electron transfer

chain during the oxidation of reduced nicotinamide adenine
dinucleotide (NADH) to oxidized nicotinamide adenine
dinucleotide (NAD)� and also as a by-product of many en-
zymes that act as oxidases. Approximately 4% of electrons
that enter the respiratory chain lead to the formation of O2

�.

(22). The beneficial effects of O2
�. include regulation of vas-

cular function, cell division (23, 24), inflammation (25), ap-
optosis (26), and bactericidal activity of neutrophils (27).
Decreased levels of O2

�. can lead to an increased suscepti-
bility to bacterial infections, as illustrated in Down’s syn-
drome patients with elevated cytoplasmic superoxide dis-
mutase (SOD)1 (28). Thus, cellular levels of O2

�. are under
tight regulation. Excess O2

�. is removed through the activity
of a family of SOD enzymes that convert O2

�. to H2O2 and
oxygen.

O2
�. overproduction occurs in complication-prone tissues

when cellular metabolism is perturbed by excess glucose.
ATP synthase is inhibited, and electron transfer slows. This
can cause overproduction of O2

�. in two ways. First, the
half-life of highly reactive quinone intermediates is pro-
longed, increasing the release of electrons to combine with
molecular oxygen and form O2

�.. Second, when electron
transfer no longer can regenerate NAD�, the enzyme NADH
oxidase is activated and generates O2

�. as a byproduct
(Fig. 2).

B. Hydrogen peroxide (H2O2)

H2O2 is produced after the spontaneous or SOD-catalyzed
dismutation of O2

�. as well as many other enzymatic reac-
tions. Unlike O2

�., which remains at the site of production,
H2O2 can diffuse across membranes and through the cytosol
(29). This ROS is another component of leukocyte-mediated
defense against bacteria. Because H2O2 is a powerful oxi-

FIG. 2. Hyperglycemia activates many signaling mechanisms in cells. Four major pathways that can lead to cell injury downstream of
hyperglycemia are illustrated. 1) Excess glucose shunts to the polyol pathway that depletes cytosolic NADPH and subsequently GSH. 2) Excess
glucose also undergoes autooxidation to produce AGEs that impair protein function and also activate RAGEs that use ROS as second messengers.
3) PKC activation both further increases hyperglycemia and also exacerbates tissue hypoxia. 4) Overload and slowing of the electron transfer
chain leads to escape of reactive intermediates to produce O2

�. as well as activation of NADH oxidase that also produces O2
�.. A unifying

mechanism of injury in each case is the production of ROS that impair protein and gene function. TCA, Trichloroacetic acid; PAI-1, plasminogen
activator inhibitor-1. [Reproduced with permission from E. L. Feldman: J Clin Invest 111:431–433, 2003 (206).]
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dizing agent, cells express abundant catalase, glutathione
(GSH), and thioredoxin (Trx) that convert H2O2 to water.
When H2O2 reacts with free Fe2�, the iron is oxidized and
hydroxyl radicals are produced. There are many severe con-
sequences of hydroxyl radical production, including loss of
vasodilation that can lead to endothelial injury and tissue
hypoxia (30).

C. Nitric oxide (NO)

NO is generated through the activity of a cytosolic enzyme
known as NO synthase (NOS). There are both constitutively
expressed, calcium-dependent isoforms of NOS and an in-
ducible isoform that is associated with inflammation and cell
activation (31, 32). NO plays a major role in regulating vas-
cular tone by activating soluble guanylate cyclases that reg-
ulate ion channels. In addition, NO modulates cellular res-
piration through direct inhibition of cytochrome oxidase by
competitively occupying the oxygen-binding site (33). The
inducible form of NOS is increased in the arteries of diabetic
rats (34). Damaged neurons recover more slowly in the pres-
ence of NO, and conversely, NOS inhibitors promote neu-
ronal recovery from injury (35). NO is also believed to act as
a neurotransmitter (36). The dual role of NO as both bene-
ficial and detrimental is illustrated in stroke models. Under
ischemic insult, endothelial NO produces vasodilation that
can improve blood flow, but neuronal NO is produced
downstream of calcium dysregulation and can prevent en-
ergy generation in the mitochondria (37). More importantly,
NO acts as an antioxidant in certain environments and pre-
vents lipid peroxidation (38). However, when O2

�. increases,
NO reacts with the O2

�. to form peroxynitrite and becomes
a prooxidant.

III. Cellular Injury through Excess ROS Production

The production of ROS is under tight control in healthy
cells, but overproduction during metabolic dysfunction
leads to cellular injury. Although both O2

�. and NO are
relatively inert, when they combine they form the highly
reactive peroxynitrite that attacks and inhibits proteins and
lipids. In addition, both O2

�. and NO can attack iron-sulfur
centers of enzymes and other proteins to release iron atoms
and consequently inhibit enzyme/protein activities. There
are many important proteins that are exquisitely sensitive to
this type of inhibition including complexes I–III of the elec-
tron transfer chain, aconitase of the trichloroacetic acid cycle,
and biotin synthase (39, 40).

The formation of lipid, protein, and nucleic acid adducts
involves a complex chain reaction using a range of biological
substrates that contain reactive methylene groups. Interme-
diates in the chain reaction can have extremely high oxida-
tive ability and so cellular damage can be extensive. The
chemistry of these reactions has been reviewed previously
(41, 42). Lipids present in plasma, mitochondrial, and endo-
plasmic reticulum membranes are major targets of ROS at-
tack and peroxidation. End products of lipid peroxidation,
known as lipid peroxides, can be toxic to a cell and require
removal by GSH as described below. Similarly, proteins and
nucleic acids can be subject to peroxidation and nitrosylation.

Although these end products are not usually directly toxic to
the cell, accumulation of inactive proteins can overload the
ability of a cell to recycle them, and damage of DNA is known
to activate the mechanisms of apoptosis. In addition, accu-
mulation of modified proteins decreases their function, lead-
ing to severe loss of normal activity. Axonal transport can be
slowed, leading to decreased delivery of growth factors and
intermediates from the synapse to the cell body and resulting
in induction of apoptosis (43). Oxidative modification of
transcription factors not only leads to decreased expression
of many proteins such as apoptosis inhibitory factor, com-
plex I, and Bcl-2, but also results in increased expression of
stress proteins that may be proapoptotic, including cyclo-
oxygenase 2, poly-ADP ribose polymerase, and Jun kinase
(JNK) (44–47).

Production of ROS in all cells not only results in delete-
rious events but also can play a role in differentiation and
development. Redox status can have profound effects on
gene expression, so that oxidative stress increases growth
factors, stress response elements, and apoptosis pathways
(48). In contrast, certain proteins including cytokines, cyto-
chrome c oxidase, and enzymes involved in glucose respi-
ration are repressed by oxidative stress signaling (49).
Understanding of gene regulation by reactive oxygen inter-
mediates is rapidly expanding. Once the mechanisms are
more fully understood, the ability of a cell to respond to stress
by changing gene expression may provide an important ther-
apeutic target.

The most significant consequence of oxidative stress in
dividing cells may be DNA modifications that produce
genomic instability and mutations (50). Nondividing neu-
rons may suffer less from oxidative damage of DNA. Yet,
mitochondrial DNA is particularly sensitive to oxidative
damage (51), which would impair energy regulation and
thus would be critically important in high energy-requiring
neurons. Oxidative stress-mediated neuronal degeneration
is implicated in several types of neurodegenerative disease
(52–54). In nondividing cells like neurons, damage to pro-
teins and lipids may be more injurious than DNA damage,
because this may render proteins unable to perform axonal
transport and signaling (43). For example, synaptosomal
membranes as well as cytosolic proteins become oxidized,
and these changes can be correlated to alterations in brain
function (55). Loss of function in neurons rapidly promotes
necrotic or apoptotic mechanisms (53, 56).

IV. Cellular Antioxidant Defense

Antioxidants are defined as any compound that can do-
nate at least one hydrogen atom to a free radical, resulting in
the termination of radical chain reactions. An alternative type
of antioxidant is defined by its ability to prevent the initiation
of a free radical chain reaction rather than to terminate them.
This latter type of antioxidant is usually dependent upon the
ability to bind metal ions and includes ceruloplasmin, trans-
ferrin, and albumin (57). Cells must maintain the levels of
antioxidants, often defined as antioxidant potential, through
dietary uptake or de novo synthesis. Excess production of free
radicals can deplete the intracellular antioxidants, resulting
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in oxidative stress. Even brief, acute hyperglycemic episodes
such as an oral glucose tolerance test or a meal can decrease
the antioxidant capacity of plasma in both normal and dia-
betic subjects and increase oxidative stress in diabetic pa-
tients (58, 59). As a type 2 diabetic patient ages, increased
basal levels of free radical production and decreased anti-
oxidants are even further exacerbated by elevated plasma
glucose (60). Analysis of individual vitamin and enzyme
components of the antioxidant system in man reveals sig-
nificant changes in diabetes (61). Vitamins A and E and
catalase are decreased in both type 1 and 2 patients compared
with controls. Whereas GSH-metabolizing enzymes are de-
creased in type 1 but not type 2 patients, SOD activity is lower
in type 2 but not type 1. These changes do not correlate with
observed complications (61).

A. Dietary antioxidants

Water-soluble vitamin C and fat-soluble vitamin E to-
gether make up an antioxidant system for mammalian cells.
Vitamin C, or ascorbic acid, is considered the most important
antioxidant in plasma and forms the first line of defense
against plasma lipid peroxidation (62). Vitamin E is the ge-
neric description for all tocopherol and tocotrienol deriva-
tives that comprise the major lipophilic antioxidant of ex-
ogenous origin in tissues (63). Comparison of the isoforms of
tocopherol including dl-�-tocopherol, mixed tocopherols
(containing R,R,R-�-, R,R,R-�-, R,R,R-�-, and R,R,R-�-
tocopherol, d-tocopherols, and tocopherol excipient) and
Ronoxan MAP demonstrates no significant difference in an-
tioxidant capacity although the antioxidant activity of �-
tocopherol acetate is completely lost (63). Different proper-
ties of the isoforms have been identified, however.
Tocotrienol, but not tocopherol, inhibits angiogenesis of tu-
mors and is recommended as a dietary supplement to de-
crease tumorigenesis (64). Tocotrienol directly regulates the
activity of 12-lipoxygenase that may mediate neuronal ex-
citotoxicity, and so this compound possesses an additional
neuroprotective capacity distinct from antioxidant action
(65).

Interestingly, for the purposes of considering antioxidant
therapy against oxidative stress, antioxidants may act syn-
ergistically. In particular, ascorbate regenerates �-tocopherol
from the tocopherol radical to reduce the toxicity of tocoph-
erol intermediates (66). Dietary supply of these vitamins
leads to a rapid increase in concentration in plasma and cells
and a measurable increase in antioxidant potential (67, 68).
The use of vitamin supplements for prevention of diabetic
neuropathy will be discussed later in Section IX.

B. GSH

GSH is by far the most important antioxidant in most
mammalian cells. This ubiquitous tripeptide, �-Glu-Cys-Gly,
performs many cellular functions. In particular, the thiol-
containing moiety is a potent reducing agent. GSH is main-
tained at a concentration of 0.2–10 mm in all mammalian cells
(69). Many cells can synthesize GSH de novo by �-glutamyl-
cysteine synthetase first forming a �-peptide bond between
one cysteine and one glutamate residue. Next, glycine is

added by GSH synthetase. Neurons do not contain the �-
glutamylcysteine synthetase enzyme and so require the
dipeptide to be secreted from glial cells (70, 71).

The most significant role of GSH is as a water-soluble
antioxidant. Toxic lipid peroxides combine with two mole-
cules of GSH under the control of GSH peroxidase to form
an inert lipid hydroxyl group, GSH disulfide (GSSG), and
water. In addition, GSH is involved in amino acid transport,
deoxyribonucleotide synthesis, maintenance of functionally
important protein thiol groups in reduced form, and conju-
gation with toxic compounds such as xenobiotics under the
control of glutathione-S-transferase to promote their elimi-
nation from the cell (72, 73). After participation in redox
reactions, GSH is regenerated from GSSG by the enzyme
GSSG reductase using reduced nicotinamide adenine dinu-
cleotide phosphate (NADPH) as a cofactor.

Depletion of GSH in the cell renders it susceptible to ox-
idative injury (74). The agent 3-hydroxy-4-pentenoate spe-
cifically depletes mitochondrial GSH and enhances cell death
induced by prooxidants such as tert-butyl hydroperoxide
(75). In contrast, loading the cell, and particularly the mito-
chondria, with GSH can prevent neuronal apoptosis pro-
duced by ischemia (76) and excitotoxicity (77). Overexpres-
sion of glutathione-S-transferase in neuroblastoma cells
increases their resistance to oxidative stress (78).

C. Trx

Another small protein antioxidant within cells that can
maintain redox homeostasis is Trx. Similar to GSH, Trx is
regenerated by a NADPH-dependent reductase. In contrast
to the critical role GSH plays in chemical detoxification, Trx
is essential for maintenance of normal protein structure. Al-
though there is some redundancy between these small mol-
ecules, Trx has a more significant role in regulation of
catalytic activity, protein-protein interactions, trafficking, ac-
tivation, degradation, and transcription factors binding to
DNA (79). The concentrations of Trx are maintained in the
micromolar range in mammalian cells. Mitochondria express
distinct isoforms of Trx reductase and Trx synthetase; over-
expression of these isoforms confers resistance to prooxidant
stress (79).

Additional enzymes that catalyze the reduction of hydro-
gen peroxide or alkyl peroxide to water, or the corresponding
alcohol, are the peroxiredoxins. Detailed analysis of their
sequences indicates that these enzymes possess a Trx-like
fold and consequently are homologs of both Trx peroxidase
and GSH peroxidase (80). There are at least six isoforms of
the peroxiredoxin family that are differentially expressed in
mammalian tissues (81). These enzymes are rapidly induced
after oxidative stress and form part of the early stress re-
sponse (82).

D. Antioxidant enzymes

In addition to the enzymes that synthesize and maintain
antioxidant molecules such as GSH, specific antioxidant en-
zymes are expressed that detoxify free radical entities in cells,
tissues, and extracellular fluids. One of the most ubiquitous
of these is SOD. The three major isoforms of SOD are: cy-
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tosolic CuZn-SOD (SOD1), mitochondrial SOD (SOD2), and
extracellular SOD. Extracellular SOD is similar in structure
to SOD1 but is localized in the extracellular space. SOD
converts O2

�. to H2O2 and oxygen. Decreased expression of
SOD2 leads to decreased mitochondrial GSH and increased
oxidative stress (83). Complete knockout of SOD2 is lethal
within days of birth due to renal dysfunction (84).

Additional enzymes are present, each with specific ROS
targets. Catalase is a cytosolic enzyme that converts H2O2 to
water, and therefore its activity needs to be present when
SOD is active. Myeloperoxidase is a peroxisomal enzyme
that accelerates the conversion of H2O2 to highly reactive
singlet oxygen as part of cellular antibacterial function (85).
This enzyme activity is necessarily regulated through both
sequestration in the peroxisome and by chaperones, but is
rapidly translocated and activated after exposure to inflam-
matory mediators.

V. Production of ROS in Diabetes

One unifying mechanism of nervous system injury in di-
abetes lies in the ability of both metabolic and vascular insults
to increase cellular oxidative stress and impair the function
of mitochondria (16, 86). Recent studies have supported this
hypothesis, including in vivo and in vitro measurement of
oxidative stress in sensory neurons as well as neuronal pro-
tection by antioxidants. In vitro, application of 10–20 mm
glucose to dorsal root ganglia neurons leads to production of
O2

�. and H2O2 that leads to lipid oxidation and neuronal
death. This glucose-induced death is prevented by IGF-I, in
part through decreased ROS production (15). Further evi-
dence comes from feeding mice with a high-glucose diet. In
this case, the mice experience hyperglycemia that leads to
free radical production and oxidative stress (87).

There is a close correlation between oxidative stress in
diabetes and the development of complications. In type 1
diabetic patients, oxidative stress is evident within a few
years of diagnosis before the onset of complications. As the
disease progresses, antioxidant potential decreases, and
plasma lipid peroxidation products increase depending
upon the level of glycemic control (88). Type 2 diabetic pa-
tients have increased lipid peroxidation compared with age-
matched control subjects, as well as decreased plasma GSH
and GSH-metabolizing enzymes and antioxidant potential,
all of which relate directly to the rate of development of
complications (89–91). Similarly, oxidative stress is linked to
preclinical features of disease, such as vascular endothelial
activation that can lead to atherosclerosis (92). The early
increase of oxidative stress in diabetes is more pronounced
in women and may account for increased cardiovascular
disease in female patients (93).

Figure 2 outlines the potential mechanisms underlying the
production of excess ROS in the nervous system by high
glucose. Each of the potential pathways is discussed below.
A recent review on vascular cell biochemistry outlines
similar pathways as instrumental in mediating glucose-
mediated endothelial damage (94).

A. Advanced glycosylation end product (AGE)-mediated
ROS formation

Glucose at elevated concentrations undergoes nonenzy-
mic reactions with primary amino groups of proteins to form
glycated residues called Amadori products. After a series
of dehydration and fragmentation reactions, the Amadori
products are converted to stable covalent adducts known as
AGEs (95). These reactions are catalyzed by transition metal
ions. Diminished ability in diabetes to bind and sequester
transition metals so they are not free to act as catalysts may
exacerbate AGE formation. Treatment of diabetic rats with a
transition metal chelator can prevent diabetes-induced nerve
conduction deficits (96). Glycation of proteins is directly re-
lated to the concentration of glucose and therefore is pro-
duced through poor glycemic control. A number of common
foods contain AGEs that can increase the AGE-induced stress
in diabetic patients and promote nephropathy (97).

AGEs bind to a cell surface receptor known as receptor for
AGE (RAGE), a multiligand member of the Ig superfamily.
This binding initiates a cascade of signal transduction events
involving p44/p42 MAPKs, nuclear factor-�B, p21Ras, and
other intermediates (98, 99). Interaction of AGEs with RAGE
induces the production of ROS through a mechanism that
involves localization of prooxidant molecules at the cell sur-
face (100) and a key role for activated NADPH oxidase (101).
In neuronal cell lines, application of AGEs depletes GSH, but
this is prevented in the presence of antioxidants (102). An-
tioxidants or antibodies against RAGE prevent both oxida-
tive stress and the downstream signaling pathways that can
be activated by ligation of RAGE. AGE-mediated ROS pro-
duction is particularly implicated in blood vessel endothelial
activation and diabetic vascular complications (103, 104).

B. The polyol pathway

The enzyme aldose reductase converts toxic aldehydes to
inactive alcohols (2). Glucose is a poor substrate for aldose
reductase, but at high concentrations this enzyme converts
glucose to sorbitol, initiating the polyol pathway of glucose
conversion to fructose. Similar to GSH reductase, the enzyme
aldose reductase is dependent upon NADPH as a cofactor.
Therefore, excessive activation of the polyol pathway de-
pletes cytosolic NADPH and subsequently depletes GSH,
leaving the cell vulnerable to free radicals produced during
normal cellular functions such as electron transfer. In addi-
tion, accumulation of sorbitol produces a cellular osmotic
stress that also generates oxidative stress (105). This pathway
has been a target for therapies against diabetes complications
including neuropathy (106). Recent human genetic and bio-
chemical data link polymorphisms of the aldose reductase
gene to increased risk of diabetic complications, with the
principal allele associated with increased disease risk caus-
ing a 2- to 3-fold increase in aldose reductase gene expression
(106).

C. Protein kinase C (PKC) activation

The activation of the PKC pathway in hyperglycemia is
included here for completeness, although the contribution to
diabetic neuropathy is likely to occur through its effects in
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vascular blood flow and microvascular disease rather than
directly in neuronal cells. PKC has several unique structural
features that facilitate its regulation according to redox sta-
tus. Prooxidants react with the regulatory domain to stim-
ulate PKC activity, but antioxidants react with the catalytic
domain of PKC and inhibit its activity (107). Activity of PKC
is increased in the retina, kidney, and microvasculature of
diabetic rats, but there is no evidence for altered activity of
any of the PKC isoforms in the peripheral neurons (108, 109).
This suggests that the lipolytic pathway and production of
diacylglycerol are the main causes of PKC activation in non-
neuronal cell types (110). Once activated, PKC activates the
MAPKs that phosphorylate transcription factors and thus
alter the balance of gene expression (111). Specifically, it is the
stress genes such as heat shock proteins and c-Jun kinases
that increase after PKC activation and can lead to apoptosis
or vascular atherosclerosis. A role for PKC in inducing neu-
ronal degeneration possibly at the level of the endothelial cell
is implicated by three studies. Inhibition of PKC� reduces
oxidative stress and normalizes blood flow and nerve con-
duction deficits in diabetic rats (110, 112). High glucose
causes nuclear factor-�B activation in endothelial cells, lead-
ing to ROS formation, and cellular activation, an effect that
is prevented in the presence of a PKC inhibitor (113).

D. MAPK activities

All three classes of the MAPK, ERK1/2, JNK, and p38, are
activated in the dorsal root ganglia of diabetic rats. The
significance of these signaling pathways in the development
of diabetic neuropathy is not clear. Treatment with antioxi-
dants decreases the activation of ERKs, but increases JNK,
which may suggest that the ERKs are injurious and JNK is
protective (111). Yet, persistent activation of JNK is normally
associated with injury (114). Peroxynitrite-induced oxidative
stress activates p38 in neuroblastoma cells, and this leads to
growth arrest and apoptosis (115). At present, the studies of
MAPK involvement in neuropathy are mainly descriptive,
and mechanistic studies are required to clarify the role of
these signaling pathways.

E. ROS formation at the mitochondria

As mentioned earlier, O2
�. is a normal by-product of met-

abolic processes; therefore, when glycolysis, electron trans-
fer, and oxidative phosphorylation are chronically or acutely
overloaded, excess O2

�. produces oxidative stress. The im-
portance of these mechanisms in producing hyperglycemic
neuronal degeneration is highlighted in recent studies of
uncoupling proteins. Uncoupling proteins are a family of
proton carriers that are expressed at the inner mitochondrial
membrane and are responsible for proton leak across the
membrane into the cristae. Thus, these protons that were
pumped into the intermembrane space through electron
transfer bypass oxidative phosphorylation, and these two
processes are said to be uncoupled. Activity of uncoupling
proteins, therefore, decreases the inner mitochondrial mem-
brane potential and can relieve the stress of excess NADH
entering the electron transfer chain (116). Overexpression of
uncoupling proteins in cultured dorsal root ganglia neurons

significantly decreases both basal and hyperglycemia-
induced ROS formation and prevents glucose-induced neu-
ronal death (117). Interestingly, O2

�. can mediate the acti-
vation of mitochondrial uncoupling proteins in skeletal
muscle cells, demonstrating that this may be an innate mech-
anism for protection against excess activity-induced O2

�. in
muscle cell mitochondria (118).

Oxidative stress in the mitochondria critically alters en-
ergy regulation and survival through at least three mecha-
nisms. First, physiological levels of NO reversibly compete
with molecular oxygen for binding to cytochrome c oxidase,
producing reversible inhibition and acting as a regulatory
switch for electron transfer. In contrast, in the presence of
excess O2

�., NO is converted to ONOO.�, which competes
with molecular oxygen for irreversible binding to cyto-
chrome c oxidase. Thus, ONOO.� profoundly affects mito-
chondrial function and inhibits ATP synthesis (33, 119). Sec-
ond, mitochondrial oxidative stress through excess O2

�. and
ONOO.� production inhibits the import of essential proteins
to the mitochondria that are in turn degraded in the cytosol
(120). Finally, oxidative damage of existing inner membrane
proteins induces membrane permeability transition, a per-
meabilization of the mitochondrial inner membrane that pre-
cedes cytochrome c release and apoptosis (121).

The mitochondrial mechanisms of ROS production and
neuronal injury are activated within 1–2 h of hyperglycemic
insult and so may be the greatest contributor to diabetic
neuropathy (A. M. Vincent, L. L. McLean, C. Backus, and E. L.
Feldman, unpublished data). Many diabetic patients with
good overall glucose control still experience neuropathy, so
brief postprandial periods of hyperglycemia that produce
ROS but no significant AGE formation or polyol pathway
activation may be sufficient to injure neurons. Supporting
evidence for this conclusion is obtained in patients with
impaired glucose tolerance. Many patients with impaired
glucose tolerance have significant peripheral neuropathy,
and in some cases painful neuropathy is the presenting
symptom (17). We would infer that neuropathy in these cases
is most likely attributable to brief postprandial hyperglyce-
mic episodes. This suggests that the ability to prevent ROS
formation in the presence of short hyperglycemic episodes
could, at least partially, block the development of diabetic
neuropathy.

VI. Neuronal Response to Oxidative Stress

The antioxidant defense system of a cell is clearly not static
but can respond to environmental changes. In culture, vas-
cular endothelial cells up-regulate SOD, GSH peroxidase,
and catalase through increased gene expression over a period
of 3–10 d (122). Because glucose enters neurons via facilitated
concentration-dependent transport, neurons are likely more
susceptible to glucose flux and subsequent increased oxida-
tive stress. However, a study in 3- and 12-month streptozo-
tocin-treated rats with nerve conduction deficits did not
show changes in antioxidant enzymes except for increased
catalase at 12 months (123). The changes in antioxidant en-
zymes and antioxidant reserves in diabetes are discussed
under individual sections in Section VII.
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VII. Biomarkers of Oxidative Stress

Measuring biomarkers of oxidative stress is an essential
step toward better understanding the pathogenesis and de-
veloping treatments for diabetic neuropathy. There are sev-
eral approaches that may be adopted, including measure-
ments of the depletion of antioxidant reserves, changes in the
activities of antioxidant enzymes, free radical production,
and presence of protein, lipid, and DNA free radical adducts.
For the purposes of clinical assessment, measurements of end
products of free radical attack may be the most reliable de-
termination of the occurrence of oxidative stress because
enzyme activities and cellular antioxidants are likely to dis-
play transient changes. Yet, the other measures also have
utility depending on the nature of the study.

The presence of oxidative stress in biological fluids can
be simply assessed by examination of spontaneous visible
luminescence. This phenomenon is the result of oxidized
biomolecules with long half-life luminescent intermediates
(124). Measures of spontaneous luminescence were increased
in the urine of patients with known oxidative stress such as
hyperthyroid and muscular dystrophy patients or smokers
compared with healthy controls (125). At present, this
method is not routinely used in diabetes studies, because
more specific end points are selected.

A. Antioxidant reserves

Several assays are available for the measurement of total
antioxidant potential in clinical samples, including tissue,
plasma, and urine. The relative merits of these assay tech-
niques are reviewed elsewhere (126–128). The total radical
antioxidant potential assay clearly demonstrates that dia-
betic patients have lower antioxidant defenses and that total
antioxidant potential is a better indication of antioxidant
status than examination of individual antioxidants (129).
Measures of individual antioxidants often do not correlate
with glucose levels (88). In both clinical diabetes and exper-
imental in vivo and in vitro models, antioxidant potential
correlates with the degree of glycemic control and decreases
with prolonged diabetes (130, 131). This loss of antioxidant
potential is exemplified by demonstrations that the anti-
oxidant �-amino acid taurine is depleted in sciatic nerve after
6 wk of diabetes in rats (132). Dietary supplementation with
antioxidants increases the total radical antioxidant potential
measures in diabetic patients (133). Acute hyperglycemia in
type 2 diabetes increases plasma 8-isoprostanes without nec-
essarily changing overall antioxidant potential, suggesting
that short episodes of hyperglycemia are more closely linked
to free radical-mediated oxidative damage than prolonged
fasting hyperglycemia (134).

B. Antioxidant enzymes

The enzymes responsible for detoxifying free radicals or
regenerating antioxidant molecules can provide an indica-
tion of the level of stress experienced in a cell or tissue. These
enzymes are usually measured by in vitro activity assays,
although changes in transcription can also provide evidence
of cell stress. In long-term diabetes, catalase, GSH reductase,
GSH peroxidase, and SOD decrease in complication-prone

tissue (135). One study reports elevated CuZn-SOD activity
in the blood, although the increased activity did not correct
the deficiency of antioxidant capacity or hyperglycemia-
induced lipid peroxidation (136). The study suggested that
treatment with oral antidiabetic drugs was responsible for
decreases in GSH peroxidase and catalase below control
levels. In a cell culture model of peripheral neuron hyper-
glycemia, there is an initial increase in catalase and SOD as
the neurons attempt to respond to oxidative stress (A. M.
Vincent, L. L. McLean, C. Backus, and E. L. Feldman, un-
published studies). Initiation of apoptosis, however, occurs
within 3–6 h, after which the antioxidant enzymes rapidly
decrease. Different models of diabetes have produced con-
flicting data regarding increases or decreases in antioxidant
enzymes. In cultured vascular endothelial cells, glucose-in-
duced oxidative stress leads to increased mRNA for antiox-
idant enzymes for a period of 2 wk (122). NADH oxidase is
activated in the brain and kidney of diabetic rats but de-
creased in the liver (137). Because the purpose of this enzyme
is to regenerate NAD� from NADH to maintain redox status,
this finding strongly suggests that oxidative stress is occur-
ring in the non-insulin-dependent neurons and kidney cells.

C. Free radical generation

Measurement of free radicals is difficult in animal models
or clinical samples because of their transient nature. Hyper-
glycemia is closely associated with production of O2

�. and
peroxides in cell culture models (104). In these models, the
use of fluorescent probes can lead to reliable and reproduc-
ible measures of oxidative stress in real time. These cell-
permeable probes, which are retained in the cell following
the cleavage of an ester conjugate, increase fluorescence at a
specific wavelength after oxidation by free radical attack
(138, 139).

D. Protein, lipid, and DNA adducts

As already stated, the end products of free radical attack
are reliable and relatively straightforward indicators of ox-
idative stress. These modified cell components may be mea-
sured by several different techniques, including HPLC, gas
chromatography-mass spectroscopy, Western blotting, and
ELISA. Biopsy can be used for analysis of oxidized biomol-
ecules in tissues that are particularly at risk from diabetic
complications. These analyses can be performed not only on
tissue but also on plasma and urine. Urine analysis can reveal
nitrosylated proteins (140), lipid oxidation products such as
8-isoprostanes (141), and the DNA adduct 8-hydroxy-2-
deoxyguanosine (8-OH-2dG) (142). These three indicators,
along with other lipid adducts, i.e., malondialdehyde and
4-hydroxynonenyl and carbonyl derivatives of protein side
chains, constitute the most common markers of oxidative
stress in biological systems.

Generally, measures of antioxidants or oxidized end prod-
ucts are more consistently performed in plasma than urine
(143). The excretion of 8-OH-2dG in urine may be mislead-
ing, because this parameter is more strongly influenced by
the degree of oxygen consumption and activity of xenobiotic-
metabolizing enzymes (144). Blood cell 8-OH-2dG is in-
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creased in both type 1 and type 2 diabetic patients (145).
Nitrotyrosine increases and antioxidant status decreases to
similar extents in diabetic patients with or without compli-
cations, but oxidized proteins are significantly higher in di-
abetic patients with complications than in those without any
complications (146). This suggests that NO initiation of ni-
trosylation of proteins may be less significant in producing
complications than other free radicals. Nitration of proteins
can lead to rapid proteasomal degradation (147); therefore,
they can be removed from the cell and resynthesized. Car-
bonylated proteins and peptides are also inactivated by ox-
idative stress (148). Measurements of protein carbonyls are
highly sensitive, and they can be detected in the plasma of
both type 1 and type 2 diabetic patients even without com-
plications (149, 150).

VIII. Antioxidant Therapy for Diabetes
Complications

Ten years ago, the Diabetes Control and Complications
Trial demonstrated that good glycemic control is the most
effective means of decreasing diabetes complications in type
1 patients (2, 151). In another study, uncontrolled diabetes led
to pronounced oxidative stress that was reversed when pa-
tients attained glycemic control through treatment with glib-
enclamide or glicaxide (152). Nonetheless, continual tight
control is still a challenge in most cases. Therefore, additional
therapies that target the pathways leading to hyperglycemia-
induced complications are crucial for maintaining long-term
quality of life for diabetes patients. Given the hypothesis that
oxidative stress may mediate vascular, microvascular, and
specific tissue complications in diabetes, antioxidant therapy
remains a vital therapy that needs to be exploited. In addition
to antioxidants, aldose reductase inhibitors and growth fac-
tor therapies also may provide protection through reduction
of oxidative stress.

A. Aldose reductase inhibitors

As stated earlier, hyperglycemia-mediated activation of
the polyol pathway can produce oxidative stress that may
partially underlie diabetes complications. Aldose reductase
inhibitors have been tested in experimental diabetic neurop-
athy, primarily in the streptozotocin rat (153). The aldose
reductase inhibitor sorbinil corrects the early deficits in
peripheral nerve function with concomitant decreases in
parameters of oxidative stress (154). Similarly, the aldose
reductase inhibitor WAY-121509 corrects sciatic nerve con-
duction velocity and endoneurial blood flow and tissue sor-
bitol accumulation (155). Clinical trials of aldose reductase
inhibitors have mostly been disappointing, with a lack of
efficacy and unacceptable side effects (6). Zenarestat (Fuji-
sawa Pharmaceutical Company, Ltd., Osaka, Japan) is one
drug that was effective in type 1 (156) and type 2 (157)
diabetic animals. In a phase II clinical trial, zenarestat pro-
duced greater than 80% sorbitol suppression and improved
nerve conduction velocity slowing and small-nerve fiber
density in a 52-wk trial (158). However, a larger phase III trial
was suspended because of renal function disorders. The po-
tent aldose reductase inhibitor fidarestat (Sanwa Kagaku

KenKyusho, Nagoya, Japan) remains in clinical trial, as cur-
rent studies are showing therapeutic benefit both in strep-
tozotocin rats (159) and in diabetic patients (160, 161).

B. Nerve growth factor (NGF)

The justification for, and outcomes of, clinical trials using
NGF have been reviewed elsewhere (162). The discovery of
neurotrophic factors such as NGF raised the hope that these
agents could be used clinically to combat neurodegenerative
disease. Recent in vitro studies demonstrated that NGF can
prevent neuronal oxidative stress by increasing intracellular
concentrations of GSH (163), suggesting that altering cellular
redox potential may be an important function of NGF. NGF
also inhibits the up-regulation of NOS in injured neurons
(164). Early clinical trials were promising in patients with
diabetic neuropathy, but later phase III trials failed, probably
because of poor experimental design (162).

IX. Clinical Trials of Antioxidant Therapy in
Diabetes Complications

The strongest indicators for the role for oxidative stress in
diabetic neuropathy are the trials of antioxidants in both
animal models and patients. Animal models of diabetes have
limitations including a short life span compared with pos-
sibly decades of disease progression in human patients (165).
These data require careful analysis, because each therapeutic
agent may have effects outside of regulation of antioxidant
activity. For example, administration of the antioxidants vi-
tamin C or �-lipoic acid, as well as free amino acids, also
improves responses to insulin and thus can provide addi-
tional benefit to the proposed reduction of oxidative stress in
tissues (166–169). Vitamin E decreases blood glucose in type
1 diabetic rats through an unknown mechanism (170). Fol-
lowing a discussion of more prominent antioxidants, a num-
ber of other agents that have been tested in animal models
and/or the diabetes clinic are summarized in Table 1.

A. �-Lipoic acid

Probably the most extensively used antioxidant therapy
is �-lipoic acid (reviewed in Ref. 171). This agent can be
taken up in the diet and can cross the blood-brain barrier.
�-Lipoic acid is reduced in cells to the active dihydro-
lipoate, which potently regenerates other antioxidants
such as vitamin C, vitamin E, and GSH through redox
cycling. In rats, �-lipoic acid prevents the development of
nerve conduction deficits during 6 wk of diabetes after
streptozotocin treatment (172). In a similar model, this
compound maintains antioxidant and energy status in the
lens (173), prevents lipid peroxidation in the retina (135),
and maintains peripheral nerve conduction and blood
flow (174, 175). Lipoic acid significantly decreases evi-
dence of oxidative stress in multiple tissues (176, 177) and
also decreases diabetes-induced caspase 3 activation in
brain neurons in rats with experimental diabetes (178).
This is one piece of evidence that suggests that central and
peripheral nervous system defects can both be mediated,
in large part, by oxidative stress. In chronically glucose-
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fed rats as a model of type 2 diabetes, lipoic acid prevents
hypertension, hyperglycemia, hyperinsulinemia, and in-
creased mitochondrial O2

�. production (179).
�-Lipoic acid is licensed for use in diabetic patients in

Germany. Cross-sectional studies continue to demonstrate
that supplementation with �-lipoic acid significantly im-
proves antioxidant defense and decreases oxidative stress
even in patients with poor glycemic control (180). German
trials also suggest that treatment with �-lipoic acid im-
proves the microcirculation, suggesting protective effects
other than, or in addition to, decreasing cellular oxidative
stress (181). Larger multicenter randomized double-blind
placebo trials in Europe and North America have dem-
onstrated limited effects on neuropathic symptoms and
electrophysiological testing but suggest that longer-term
assessment of neuropathic deficits is merited (182, 183).
Slight improvements in cardiac autonomic neuropathy
were demonstrated in the DEKAN study (184), and the
drug was safe and well tolerated. A recent phase III clinical
trial, the SYDNEY trial, demonstrated that iv administra-
tion of �-lipoic acid rapidly and significantly improves
several neuropathic symptoms and nerve function in pa-
tients with stage 2 diabetic sensorimotor polyneuropathy
(185). This is strong support for the use of antioxidants in
the treatment of diabetic neuropathy, and the use of oral
�-lipoic acid is currently in a phase III clinical trial in the
United States.

B. Vitamins E and C

As a critical antioxidant for the protection of plasma lipids,
vitamin C will require supplementation under conditions of
prolonged or repeated prooxidant conditions such as hyper-
glycemia (62). Chronic administration of 1 g/d vitamin C in
aged type 2 diabetic patients decreases plasma free radicals
and increases cellular GSH levels over a period of 4 months
(186). Vitamin C supplementation alone shows limited ther-
apeutic benefit in type 1 diabetes (187) and is more com-
monly used in combination with vitamin E or other agents.
Uses of vitamin C in combination therapies are discussed
below.

Vitamin E has been more broadly examined in diabetes
models. Interestingly, the incorporation of vitamin E into
erythrocyte membranes is impaired in the hyperglycemic
state; therefore, decreased antioxidant defense may be fur-
ther exacerbated in poorly controlled diabetes (188). Rat
models of diabetes show some therapeutic benefit in the
presence of vitamin E therapy. Diabetes-induced suscepti-
bility to low-density lipoprotein peroxidation is prevented in
the presence of vitamin E (189). Dietary vitamin E supple-
mentation also improves fatty acid metabolism and de-
creases lipid peroxidation in tissues of diabetic rats (190) and
improves blood flow and nerve morphometric parameters in
the heart (191). In diabetic rats, vitamin E supplementation
prevents reactive astrocytosis in the brain that is associated

TABLE 1. Examples of the use of antioxidants against hyperglycemic injury

Antioxidant Experimental design Outcome Refs.

GSH STZ-treated rats, dietary GSH Suppression of diabetic-induced urinary 8-OH-2dG,
albuminuria, and increased tail-flick reaction time.

207

Coenzyme Q10 (Co Q) STZ-treated rats � ischemia, 7-d
treatment with Co Q ip

Decreased apoptosis of brain neurons 178

Aminoguanidine (AG) Alloxan-treated rabbits, AG in
drinking water

Decrease of diabetes-induced retinal lipid
peroxidation, also oxidant-induced apoptosis in vitro

208

Probucol STZ-treated rats, 1–2 months 1%
probucol in diet

Corrected sciatic nerve endoneurial blood flow;
improved diabetes-induced motor and sensory nerve
conduction deficits

209, 210

Taurine STZ-treated rats, 3 wk treated with
5% taurine in the diet

No changes in polyol pathway activation, corrected
lens lipid peroxidation, GSSG-GSH, NAD�-NADH,
and ADP-ATP ratios

211

N-Acetylcysteine STZ-treated rats, 8 wk 55 mg/d N-
acetylcysteine in drinking water

Decreased diabetes-induced motor nerve conduction
velocity, corrected erythrocyte GSH, and plasma
lipid peroxidation; corrected endothelial dysfunction

212, 213

Butylated hydroxytoluene STZ-treated rats, 2 months, 1%
dietary supplement

No change in glycemia or polyol pathway, corrected
motor and sensory nerve conduction velocity

214

Allopurinol 11 Type 2 diabetic patients with age-
matched controls in parallel study,
treated with 300 mg allopurinol/d
orally 1 month

Corrected blood flow deficits and decreased plasma
lipid peroxidation

215

Flavonoids 28 Type 1 diabetic patients in a
double-blind placebo controlled
study of Daflon 500

No change in glycemic control but decreased HbA1c,
increased GSH peroxidase activity, increased
plasma antioxidant potential

216

L-Arginine 30 Diabetic patients in a blind placebo
controlled study using 2 g/d L-
arginine for 3 months

Decreased urinary lipid peroxidation 217

Zinc 22 Type 1 diabetic patients, oral
administration of zinc gluconate
30 mg/d

Untreated patients developed zinc deficiency and
reduced activity of GSH peroxidase.

Supplementation corrected these deficits and plasma
antioxidant potential

218

In addition to the uses of vitamins E and C and �-lipoic acid that are described in more detail in the text, many antioxidants have been
examined in hyperglycemia. The upper section of the table contains studies performed in animal models of diabetes and the lower section shows
clinical trials in diabetic patients. STZ, Streptozotocin; HbA1c, glycosylated hemoglobin.
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with lipid peroxidation (192). Diabetes-induced changes in
antioxidant enzymes in different organs are corrected to
differing extents by vitamin E, but the combination of vita-
min E with another antioxidant, stobadine, provides superior
protection against deficits in these enzymes (193).

In healthy human subjects, �-tocopherol decreases evi-
dence of oxidative stress through low-density lipoprotein
oxidizability and presence of urinary F2-isoprostane (67). In
this regard, �-lipoic acid may be slightly more potent than
�-tocopherol in decreasing the same oxidative stress param-
eters, and there is no added benefit in combining the two
agents (67). Small clinical studies demonstrate improve-
ments in a variety of oxidative stress parameters in diabetic
patients receiving antioxidant vitamin supplements. Com-
bined oral vitamin C and E therapy reduces oxidative stress
in the eye (68) and improves vascular endothelial function in
type 1, but not type 2, diabetes (194). Plasma low-density
lipoprotein oxidation is decreased after treatment with high
doses (1632 mg/d) of vitamin E (195). Topical application of
vitamin E improves skin microcirculation and evidence of
ROS in type 2 diabetics (196). Finally, urinary 8-isoprostane
F2� and 11-dehydro-thromboxane B2 were decreased after
treatment with 600 mg/d vitamin E in a population of 85
diabetic patients (197). Direct correlations between improved
antioxidant status and the incidence of neuropathy have not
yet been made.

Despite many positive clinical trials using vitamin E, some
conflicting data exist for diabetes as well as other disorders
such as cancer and cardiovascular disease (198, 199). There-
fore, broad recommendations for the use of vitamin E and
other dietary supplements have not been established. One
caution for the preventive intake of �-tocopherol is the ev-
idence that supplementation with �-tocopherol produces
deleterious changes in the bioavailability of �- and �-tocoph-
erol. The different isoforms have different properties, such as
in vascular disease and antiproliferative effects, and so ad-
ditional research into the dietary application of vitamin E
isoforms is warranted (200, 201).

C. The future of antioxidant therapy in clinical trials

The clinical trials to date have provided strong evidence
that oxidative stress is a critical mediator of diabetes com-
plications including neuropathy. To improve future clinical
trials, previous studies should be closely examined. High
doses of single-antioxidant supplements may perturb the
antioxidant-prooxidant balance of cell systems (200, 202).
Therefore, mixtures of antioxidant therapies, possibly in
combination with trace elements and vitamins that enhance
metabolic processes, may provide a better therapeutic op-
tion. Monitoring of patients’ antioxidant reserves also may
identify development of deficits that could be ameliorated by
altering the therapeutic antioxidant regimen. Earlier discus-
sions in this review suggest that GSH may be the most
important tissue antioxidant. Therapies aimed at increasing
cellular GSH could target the GSH-synthesizing enzymes as
well as dietary increases of cysteine or its precursor
2-oxothiazolidine-4-carboxylate, as cysteine is the rate-
limiting substrate for GSH synthase (203). GSH is not taken
up well by cells, but an esterified form is, and this directly

increases the levels of GSH in tissues, plasma, and cerebro-
spinal fluid (69). Another review of the literature regarding
the use of botanicals and dietary supplements in diabetic
peripheral neuropathy concludes that evening primrose oil,
�-lipoic acid, and capsaicin have been most widely used, but
that their efficacy is not yet established (204).

X. Summary

Diabetic neuropathy probably arises from a combination
of microvascular and neuronal deficits. Oxidative stress can
contribute significantly to these deficits and may be a direct
result of hyperglycemia. Brief postprandial peaks in plasma
glucose are sufficient to generate hyperglycemic oxidative
stress. In contrast, acute glucose deprivation also causes ap-
optosis of peripheral neurons through a mechanism that at
least partially involves oxidative stress (205). Therefore, until
we can fully control blood glucose levels, therapies such as
antioxidants that are targeted against oxidative stress remain
our most promising approach to preventing neuropathy as
well as other complications in diabetes.
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