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Activation of microglia and expression of the inflammatory cytokine interleukin-1 (IL-1) in 
the CNS have become almost synonymous with neuroinflammation. In numerous stud-
ies, increased CNS IL-1 expression and altered microglial morphology have been used 
as hallmarks of CNS inflammation. A central concept of how CNS IL-1 and microglia 
influence functions of the nervous system was derived from the notion initially generated 
in the peripheral immune system: IL-1 stimulates monocyte/macrophage (the peripheral 
counterparts of microglia) to amplify inflammation. It is increasingly clear, however, CNS 
IL-1 acts on other targets in the CNS and microglia participates in many neural functions 
that are not related to immunological activities. Further, CNS exhibits immunological 
privilege (although not as absolute as previously thought), rendering amplification of 
inflammation within CNS under stringent control. This review will analyze current liter-
ature to evaluate the contribution of immunological and non-immunological aspects of 
microglia/IL-1 interaction in the CNS to gain insights for how these aspects might affect 
health and disease in the nervous tissue.

Keywords: cytokine, neuroinflammation, brain, neuromodulation, iL-1R1

iNTRODUCTiON

Changes in microglial morphology are one of the most common findings of neuropathology in almost 
all CNS diseases. Long regarded as the resident immune cells in the immunologically temperate 
environment of the CNS, the resting spider-shaped microglia become deramified and amoeboid in 
activated states (1). This shape shift has been observed in acute brain injury (2), various neurodegen-
erative diseases such as Alzheimer’s disease and Parkinson’s disease (3), CNS autoimmune diseases 
such as multiple sclerosis (MS) (4, 5), convulsive disorders such as epilepsy (6), and even affective 
disorders including major depression (7, 8), anxiety disorders (9), and autism (10). These evidences 
led to the hypothesis that microglial activation is a significant common cause of neuropathology 
in these diseases (11), although microglial morphological changes alone may not always reflect the 
precise activation status (12, 13) among the variegated states that these cells can adapt.

Another salient-related observation in CNS diseases is the increased expression of the inflam-
matory cytokine interleukin-1 (IL-1). IL-1 is a master regulator of inflammatory reactions in the 
immune system, capable of activating innate immunity by inducing the expression of numerous 
inflammatory cytokines and chemokines, eliciting leukocyte infiltration into the inflammatory loci, 
increasing phagocytic and bactericidal activity of immune cells, enhancing activity of the comple-
ment system, and facilitating the activation of the adaptive immune responses (14). Correlations of 
plasma or CNS levels of IL-1 and disease severities in the abovementioned CNS diseases have been 
widely reported (15–20), although there are also many reports that fail to show correlation between 
plasma IL-1 level and the presence of disease symptoms in these diseases (21, 22).

Combining increased IL-1 expression and microglial activation as a composite indicator of patho-
genesis in CNS diseases seems to be an attractive idea because it might overcome the shortcomings 
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of using each of them separately. In peripheral tissues, increased 
IL-1 expression is tightly linked with macrophage activation 
during inflammation (23); in the CNS, neuroinflammation may 
not display the entire panoply of peripheral inflammation, e.g., 
swelling may not occur during neuroinflammation, but increased 
expression of IL-1 by brain tissue together with morphological 
changes in microglia appear to be a frequently observed phenom-
enon in both human neuropathology and animal models of brain 
diseases (16, 24–28). Adding increased brain IL-1 expression 
to supplement microglial morphology changes would further 
specify that the changes in microglia are part of the inflammatory 
microgliosis.

The villainization of microglial activation and CNS IL-1 
expression, however, has been countered by the teleological 
argument: is the CNS designed to have microglial activation and 
IL-1 expression just to cause pathology (29)? Such incredulity 
has been substantiated by the facts that blocking inflamma-
tory microglial activation can lead to the exacerbation of some 
symptoms of certain CNS diseases (30–34) and clinical benefits of 
drug treatments for reducing microglial activation or IL-1 activity 
have been demonstrated recently in stroke patients (35), but the 
utility of this strategy for the treatment of the vast majority of the 
above-mentioned diseases remains to be firmly established after 
it has been advocated for at least 10 years.

Besides their pathogenic roles, functions of microglial acti-
vation and IL-1 expression in CNS development, repair, and 
physiological activity have been intensely studied recently. This 
endeavor has yielded tremendous advances, revealing many new 
areas of understanding on the non-immunological functions of 
IL-1 and microglia in the CNS (11, 36–39). These new findings 
in the realm of the positive contributions of microglia and IL-1 
in the CNS educe the critical inquiry: how would the immuno-
logical and the non-immunological aspects of IL-1 and microglial 
functions coordinate or disrupt each other to affect health and 
disease?

THe PROMiSeS AND LiMiTATiONS OF 
THe iNFLAMMATORY PARADiGM

Although current literature is beginning to shed light on the 
multifaceted roles played by microglia and CNS IL-1, the simple 
inflammatory paradigm, viz., increased CNS IL-1 expression 
together with microglial activation amplifies neuroinflammation 
and causes neuropathology, has accrued formidable experimen-
tal support. The following rationales have propelled the research 
in this area: (1) inflammatory process is designed to sequester 
and kill infectious pathogens and contain necrotic tissue dam-
age; this entails the induction of proinflammatory cytokines and 
chemokines, recruitment of leukocytes, and the production of 
bactericidal reactive oxygen species (ROS), all potentially neu-
rotoxic, (2) CNS is immunologically privileged site, bystander 
neuronal casualty from inflammation is likely to cause irreversible 
damage to this delicate tissue which lacks significant regenerative 
potential and expandable volume, and (3) neuroinflammation 
could lead to CNS autoimmunity resulting in attacks by immune 
cells to CNS antigens which are normally dormant.

The induction of CNS expression of proinflammatory cytokines 
including IL-1 has been shown in animal models of acute brain 
injury (40–43), Alzheimer’s disease (44, 45), Parkinson’s disease 
(25), CNS autoimmunity (46), anxiety disorder (47–50), major 
depression (51–53), and autism (54). In vitro studies were the 
first to show that inflammatory cytokines, especially IL-1 and 
TNF-α, can cause neuronal death by the direct effects of these 
cytokines on neurons or indirectly by glial production of neuro-
toxic substances (55–58). Similarly, a few chemokines have also 
been found to possess neurotoxic activity. CXCL4 (59), was the 
first to be identified in this regard; more recent studies also found 
CCL11 (60), CXCL2 (61) can exert neurotoxic effects on cultured 
neurons.

Neurotoxicity from infiltration of peripheral leukocytes has 
also been documented. Typically, in experimental conditions 
that resulted in leukocyte infiltration into the brain, the infil-
trated peripheral myeloid cells show higher expression levels 
of proinflammatory cytokines than resident glial cells (62–64). 
Thus, entrance of peripheral leukocytes into the CNS may rep-
resent a more severe type of CNS inflammation. Reduction of 
leukocyte infiltration by blocking vascular adhesion molecules 
or chemokine activity has been shown to improve outcomes in 
acute brain injury (65, 66) and CNS autoimmune diseases (67, 
68). Interestingly, although infiltration of peripheral leukocytes 
into the CNS is generally not a common observation in human 
affective disorders, this phenomenon occurs in several animal 
models of stress- or inflammation-induced depression and/or 
anxiety (69, 70). Preventing CNS infiltration of IL-1 expressing 
leukocytes protected animals from displaying depressive and/or 
anxiety-like behaviors in these models (64, 71).

Other studies demonstrated a pathogenic role of oxidative 
stress. Blocking inflammation-induced production of ROS 
or ROS activity alleviates neural damage in cerebral ischemia 
(72–74) and cerebral hemorrhage (75), reduces depressive and 
anxiety-like behaviors caused by peripheral inflammatory stimu-
lation (76), lessens certain symptoms induced in an Alzheimer’s 
mouse model (77). In addition, ROS production and antioxidant 
defense imbalance has been observed in acute brain injury 
(78, 79), inflammation-induced depression and anxiety, and 
neurodegenerative diseases (80, 81). These evidences support 
the hypothesis that oxidant/antioxidant imbalance downstream 
of IL-1-stimulated microglial activation is a common feature 
for both acute and chronic neuropathology and their attendant 
psychopathology (82, 83).

The possibility of bystander damage of CNS inflammation is 
best demonstrated in situations of CNS infection. Initially, post-
infectious neurological dysfunction was thought as a consequence 
of permanent damage caused by the invading pathogens and 
the specific immune responses to the pathogen (84). However, 
patients who survived CNS infection sometimes show deficits 
implicating brain regions beyond the foci of the initial infection 
(85) and animal studies show chronic neuroinflammation may 
persist after the acute infectious pathogens have been eradicated 
(86). Thus, off-target inflammatory activity may contribute to 
post-infectious neuropathology.

Further bolstering the case for malignant inflammatory effects 
are the findings that endogenous CNS antigens that normally do 
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not induce autoimmune attacks can be turned susceptible when 
CNS inflammation is present. In experimental autoimmune 
encephalitis (EAE), the brain endothelial receptor for IL-1 (IL-
1R1) and infiltration of myeloid cells expressing IL-1β was found 
to be required for the induction of illness (63). Because IL-1β-
expressing myeloid cells are involved in inflammatory activity, not 
antigen specific immunity, these results point to the importance 
of inflammation in facilitating autoimmune activity of the CNS. 
Dysregulation of microglia may also contribute to the patho-
genesis of PANDAS (Pediatric Autoimmune Neuropsychiatric 
Disorders Associated with Streptococcal Infections) which was 
thought to be caused by the induction of post-infectious cross-
reactive autoantibodies against CNS tissue (87–89). Therefore, 
neuroinflammation might augment autoimmune activity-related 
neuropathology.

A major recent advance in the field of inflammation is the dis-
covery of inflammasomes. Inflammasomes are protein complexes 
that act as intracellular sensors for the disruption of homeostasis 
(90). They include NOD like receptors and ASC (apoptosis-
associated speck-like protein containing a caspase recruitment 
domain). Inflammasomes regulate IL-1 and IL-18 activity by 
regulating caspase-1, which cleaves inactive pro-IL-1 and pro-
IL-18 to derive the active IL-1 and IL-18. This intermediate step 
allows preformed pro-IL-1 and pro-IL-18 to be quickly activated, 
ensures inflammation occurs through the priming stage (the 
synthesis of pro-IL-1 and molecules of the Inflammasomes) 
and the activation stage (the generation of mature inflammatory 
cytokines), thus providing a mechanism that requires “two-hit” to 
induce inflammation, allowing finer control of the timing and the 
magnitude of inflammatory cascade. In addition, inflammasomes 
are sensitive to stimulations by internal disturbance, such as mis-
folded or aggregated proteins and aberrant products of energy 
metabolism, broadening the range of inflammation inducers 
beyond infectious stimuli (90). In ischemic or hemorrhagic stroke 
models, expression of the NLRP3, a known microglial inflamma-
some (91, 92) component, was increased, and specific blockade 
of NLRP3 reduced stroke induced neural damage and functional 
deficits (93, 94). Several NLRP3 component proteins were also 
induced in the pathological tissues in Alzheimer’s disease (95). 
Aggregated or fibrillary α-synuclein, a known pathogenic factor 
for Parkinson’s disease also stimulates the activation of NLRP3 
(96). Activation of NLRP3 has been documented in depression 
and anxiety and both pharmacological blockade of NLRP3 or 
gene deletion of NLRP3 reduces depressive behavior and anxiety 
in animal models of these disorders (97, 98).

The inflammatory paradigm, increased brain IL-1 expression 
and microglial activation drives the progression of CNS diseases, 
has gained further momentum from studies that used drugs to 
inhibit IL-1 activity and/or microglial activation. A naturally 
occurring antagonist for IL-1 is the IL-1 receptor antagonist 
(IL-1ra). A recent meta-analysis shows treatment with IL-1ra 
reduces infarct volume by 36% in animal models of cerebral stroke 
with more reliable efficacy if the drug is delivered into the cerebral 
ventricle than into the blood (99). IL-1ra was also effective in 
blocking stress-induced depression and anxiety (51, 52, 100), 
and in improving clinical outcomes in experimental epilepsy 
(101, 102). Minocycline, a tetracycline derived antibiotics, has 

been found to inhibit inflammatory microglial activation (103). 
Specifically, activated microglia could differentiate into multiple 
activated states: the most inflammatory type is designated as M1 
and the most anti-inflammatory type is designated as M2. Besides 
changes in morphology, M1 microglia express inflammatory 
cytokines including IL-1, TNF-α, and iNOS, whereas the M2 
microglia express TGF-β, IL-4 or IL-10, and arginase 1. Treatment 
with minocycline selectively inhibits M1 microglial activation 
(104). Pretreatment with minocycline provides neuroprotec-
tion against excitotoxicity (105), oxidative stress (106), reduces 
symptoms in animal models of Parkinson’s disease (107), cerebral 
stroke (108), epilepsy (109), and stress-induced depression (110). 
In EAE, a model of MS, minocycline treatment was found to be 
effective in reducing disease severity and histological outcomes 
when used in combination with other conventional treatments 
(111–116) or alone (117, 118). The promise of using drugs against 
IL-1 and microglial activation to treat CNS diseases is attested by 
the current clinical trials that use IL-1ra to treat cerebral stroke 
(119–121), fatigue in Sojegren’s syndrome (122), and minocycline 
to treat cerebral stroke (123, 124), cerebral hemorrhage (125), 
Parkinson’s disease (126, 127), epilepsy (128), bipolar and treat-
ment resistant depression (129, 130), and schizophrenia (131). 
These trials have generated promising results, although large scale 
clinical tests are still needed. In human MS trials, minocycline 
treatment reduced MS lesion detected by MRI (132) and reduced 
the risk of conversion of patients with first demyelinating event 
from progressing to MS (133).

The notion that all CNS diseases can be effectively treated 
by inhibition of IL-1 driven microglial activation, of course, is 
overly simplistic. A dramatic cautionary tale is supplied by a 
study that investigated the role of IL-1β in Alzheimer’s disease. 
Beta-amyloid aggregation in this disease causes the formation of 
senile plaques. Transgenic overexpression of IL-1β unexpectedly 
reduced plaque formation, despite inducing robust neuroinflam-
mation (134). In another surprising study, chronic unpredictable 
stress induced depressive-like behavior; stimulating rather than 
inhibiting microglia provided anti-depressant effects (135). These 
results highlight the limitation of the inflammatory paradigm 
and suggest non-immunological functions of IL-1 and microglia 
should be examined.

iL-1 AND MiCROGLiA AS 
NeUROMODULATORS

The neurophysiological functions of IL-1 were first investigated 
in temperature-sensitive neurons because IL-1 was identified as 
the endogenous pyrogen that mediates fever after bacterial infec-
tion. In the temperature control center of the brain, the preoptic 
area of the hypothalamus, IL-1 decreased the sensitivity of warm-
sensitive neurons, but increased the sensitivity of cold-sensitive 
neurons, thereby modulating the thermoregulatory circuits in a 
manner consistent with its pyrogenic role (136, 137). This IL-1 
activity is not related to neuroinflammation but could be an 
indirect effect because it can be blocked by inhibitors of cyclooxy-
genase, which catalyzes prostaglandin production downstream of 
IL-1 signaling (138). IL-1 may even mediate neurophysiological 
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effects under sterile condition. A good example here is its role in 
regulating normal sleep. IL-1 is expressed in the brain with a diur-
nal rhythm, and increased expression of IL-1 is associated with 
increased spontaneous sleep whereas inhibition of IL-1 activity 
reduces sleep (139). Interestingly, neuronal IL-1 expression and 
indirect activation of neurons by CNS IL-1 may underlie the sleep 
promoting effects of IL-1 as it can promote synchronization of 
sensory neurons (140). Other indirect electrophysiological effects 
of IL-1 have been reported in neurons of the supraoptic (138) and 
paraventricular nucleus of the hypothalamus (141). Direct effects 
of IL-1 on neuronal excitability have also been reported (138); but 
the mechanism for this function remains unclear. IL-1 was found 
to inhibit Ca+ channel currents (142), reduce GABA A receptor-
mediated response (143), inhibit NMDA receptor-mediated 
synaptic transmission (144), activate non-selective cationic con-
ductance (145), potentiate voltage-dependent sodium currents in 
nociceptive neurons (146, 147), and increase voltage-gated potas-
sium currents (148), depending on the different types of neurons 
studied. In the dentate gyrus, IL-1 may facilitate or inhibit the 
generation of long-term potentiation (LTP) (149, 150), a critical 
neural mechanism for learning and memory. LTP occurs as per-
sistent increases of synaptic strength after high-frequency synap-
tic stimulation, thus potentially coding for learning or memory 
processes. Interestingly, the learning process itself causes hip-
pocampal expression of non-inflammatory levels of IL-1, which 
in term, helps maintain LTP (150, 151). These scattered reports 
of IL-1-mediated neurophysiological effect appear incongruent at 
first glance, but an emerging theme is IL-1 can modulate sensory 
system of the nervous system in order to modulate perception 
and learning. It should be noted that such modulation may have 
time-dependent and concentration-dependent variable effects. 
Acute IL-1 effects may heighten perception and learning whereas 
chronic IL-1 effects may reduce sensory function, retard learn-
ing, and cause fatigue (147, 148, 152–154). Similarly, low levels 
of IL-1 may facilitate memory whereas high levels of IL-1 or 
complete blockade of IL-1 signaling may impair memory (155). 
One difficulty in the past is to identify IL-1 receptor expressing 
neurons and the observed neuromodulatory effects of IL-1 may 
be attributed to the indirect action of IL-1 that might elicit neural 
active substances such as nitric oxide (156), ATP (157), or pros-
taglandins (145). Recently, we have developed a knockin mouse 
line that allowed the tracking of IL-1 receptor expression cells in 
a cell type specific manner. We now have unpublished results that 
show IL-1 type 1 receptor is preferentially expressed in numerous 
sensory brain regions.

Another neuromodulatory role of IL-1 is on neurogenesis. 
Reduced production of new neurons in adult hippocampus has 
been linked with the pathogenesis of depression (51). This role 
of IL-1 was initially observed in animal models of interferon-γ 
(IFN-γ) treatment. IFN-γ is used to treat hepatitis C but has the 
unfortunate side effect of causing depression. In a rat model of IFN-
γ-induced depression, hippocampal IL-1β expression and reduced 
neurogenesis in dentate gyrus was induced and administration of 
IL-1ra blocked these effects together with the depressive behavior 
(158). This mechanism is also operative in chronic stress induced 
depression: chronic mild stress was found to induce IL-1β expres-
sion in the hippocampus, reduce neurogenesis, and cause depressive 

like behavior in wild-type mice. These changes were absent in IL-1 
receptor knockout mice or transgenic mice that express IL-1ra 
in the brain (159). That IL-1 driven microglial activation may be 
involved in this phenomenon is further supported by the evidence 
that inhibition of NFκB activation blocked the antineurogenic 
and depressive effects of the stress (160). Brain IL-1 is known to 
induce microglial NFκB activation (161). It should be noted that 
chronic mild stress dose not induce leukocyte infiltration into 
the brain; thus this IL-1-mediated microglial activation may not 
represent an immunological neuroinflammation. In addition, the 
antineurogenic effect of IL-1 may also be concentration dependent 
as IL-1 can facilitate neuronal survival by promoting the expression 
of nerve growth factors (NGFs) (162).

Induction of neurotrophic factors is one of the early obser-
vations on IL-1-mediated non-immunological neural effects 
(163, 164). In traumatic brain injury, increased NGF expression 
follows the increased expression of IL-1 in the wounded tissue. 
Injection of IL-1ra blocked NGF and the associate neurore-
parative responses (165). IL-1 has also been found to stimulate 
neurotrophin-3 and brain derived neurotrophic factor, support-
ing neuronal survival and neurite growth (166, 167). However, 
interaction between IL-1 and the neurotrophic factors can also be 
a double-edged sword. Systemic IL-1, not central IL-1, have been 
reported to reduce hippocampal BDNF expression (168); while 
acute intracerebral IL-1 caused the expression of neurotrophic 
factors and neuroprotection, subacute IL-1 (4 days of IL-1 injec-
tion) caused the opposite effects (169); IL-1 can also increase 
neuronal vulnerability by increasing the surface expression of the 
p75 neurotrophin receptor (170).

Physiological activities of IL-1 in the brain also include neu-
roendocrine functions. Psychological and metabolic stress induced 
ACTH and glucocorticoid responses were reduced in IL-1 receptor 
knockouts or transgenic mice overexpressing brain IL-1ra (171). 
Intracerebral administration of IL-1 is known to induce CRH 
release (172) and psychological stress has been shown to induce 
brain IL-1 expression (173). Therefore, brain IL-1 could mediate 
physiological response to stress by stimulating the production of 
the immunosuppressive hormone glucocorticoid. In addition, 
IL-1 acting in the brain can stimulate brain metabolism despite 
hypoglycemia. Neuronal IL-1 synthesis was found to be induced 
by stimulation of AMPA receptors on neurons and the resulting 
release of IL-1 can stimulate glucose uptake by neurons in an 
autocrine or paracrine fashion (174). It is interesting to speculate 
that these physiological activities of IL-1 might coordinate with 
the immune activities of IL-1 such that hyper-inflammation may 
be prevented and brain energy usage may be spared even when 
immune activity might be energetically costly. It is interesting to 
note that the neuroendocrine function of IL-1 may be evolution-
ary conserved from invertebrates. In molluscs, CRF causes the 
production of biogenic amines as a stress response. This response is 
significantly reduced by IL-1 (175). Thus, this non-immunological 
IL-1 activity may have an ancient origin.

The non-immunological activities of microglia have been 
reviewed extensively. The readers are referred to these excellent 
reviews (11, 36, 176–178). Briefly, emerging evidences show 
microglia perform surveillance function during “resting state,” 
prune excessive synapse during development, contribute to adult 
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neurogenesis, support neuronal survival, and modulate neurotrans-
mission. Current research using advanced techniques in molecular 
biology, imaging and immunology has also identified significant 
heterogeneity in brain microglia in terms of morphology, gene 
expression profile, and cellular origin and fate (179). Some charac-
teristics of subsets of microglia appear to be tightly linked with the 
potential neural function of these cells. For example, microglia from 
neurogenic regions are capable of substantial proliferation whereas 
microglia from non-neurogenic regions are not (180). Analysis of 
microglial expression patterns suggests that microglia from cer-
ebellum and hippocampus appear immunologically more vigilant 
than microglia from other brain regions. Within Basal ganglia, 
microglia were found to show regional specific morphology, cell 
number, expression profile and activity relevant to motor activity 
and motion control, shaped by local cues (181). These findings 
demonstrate non-immunological functions of the microglia could 
be influenced by the specific neural circuitry they modulate. From 
this perspective, it is interesting to note that chronic unpredictable 
stress causes depression in association with a reduction of microglia 
numbers in hippocampus and stimulation of microglial activation 
by LPS or M-CSF restored microglia numbers and ameliorated 
stress-induced depression. In another study, chronic unpredictable 
stress was found to activate microglial cells in association with 
elevated CSF-1 expression in the prefrontal cortex (PFC), increase 
microglial phagocytosis of neuronal elements, and reduce dendritic 
spine density. Viral vector mediated knockdown of CSF-1 in the PFC 
blocked these effects and stress-induced anxiety- and depressive-like 
behavior (182). In neurodegenerative disease models, microglial 
production of proinflammatory cytokines and growth factors has 
been found to mediate neuroprotection against excitotoxicity (183, 
184). In addition, microglia-mediated synaptic stripping was found 
to be neuroprotective following acute neural injury (185, 186). On 
the other hand, abnormal synaptic pruning have been observed in 
obsessive-compulsive disorder (OCD), indicating this mechanism 
might be pathogenic in OCD (187). These findings show non-
immunological activities of microglia can be either neuroprotective 
or pathogenic depending on the specific circumstances.

THe BiG PiCTURe

The dizzying progress made in the field of CNS IL-1 and microglia 
has produced great excitement and confusion. It is clear CNS IL-1 
and microglia have both immunological and non-immunological 
functions. These two types of functions may be separated not only 
by the physical barrier, such as the blood brain barrier, but also 
by an invisible barrier: the activation threshold of inflammatory 
cytokines. For example, IL-1 is able to activate neurons at 1,000-
fold lower concentration than that is required for the activation of 
non-neuronal cells (188). It is possible that low levels of IL-1 acts 
in the CNS to perform non-immunological functions including 
non-immunological activation of microglia, which are involved 
in the remodeling of the CNS tissue. Higher concentration of IL-1 
could engage non-neuronal cells of the CNS to produce neuroin-
flammation. Interestingly, although microglia is the main source 
of IL-1 production in the brain without infiltrated leukocytes, IL-1 
does not directly stimulate microglial cell to produce IL-1 (189). 
Our unpublished results show IL-1 receptor is not expressed on 

resting microglia and CNS IL-1 induce microglia to produce 
IL-1 indirectly via cells of the blood-brain barrier and cells of 
CSF-brain barrier. The separation of the immunological and 
non-immunological functions of CNS IL-1 and microglia may 
be compromised during neural injury or aberrant neural activity. 
Thus the integrated perspective suggests that the disruption of the 
proper  separation and coordination of the immunological and 
the non-immunological functions of CNS IL-1 and microglia 
might be a new way to think about the pathogenic potential of 
these two critical factors in CNS diseases.

Another important insight is that the detrimental effects 
of IL-1 and microglial activation does not always stem from 
immunological functions of these factors. A series studies from 
Centonze’s group showed that IL-1 and TNFα can cause hyper-
excitation in neurons, causing excitotoxicity in MS (190). In addi-
tion, they found IL-1 could cause anxiety by blocking neuronal 
cannabinoid receptor 1-mediated control of GABAergic synapses 
(49, 100, 191, 192). Thus, aberrant non-immunological function 
of IL-1 can also contribute to disease progression.

The complex contribution of CNS IL-1 and microglia argues 
against a one size-fits-all approach to target these factors in 
treatment without careful considerations for the different phases 
of pathological processes. For acute brain tissue injury, block-
ing IL-1 activity and microglial activation at the early phase of 
the disease could be beneficial as this might dampen excessive 
neuroinflammation (15, 193); however, blocking later expres-
sion of low levels of IL-1 related to its promotion of clearing 
of debris and wound healing (194) may not be advisable. In 
chronic degenerative diseases, blockade of CNS IL-1 activity 
and microglial activation may also need to be titrated, such that 
the excessive activation of these factors may be attenuated, but 
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