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Abstract: The immune system is an efficient integrated network of cellular elements and chemicals
developed to preserve the integrity of the organism against external insults and its correct functioning
and balance are essential to avoid the occurrence of a great variety of disorders. To date, evidence
from literature highlights an increase in immunological diseases and a great attention has been
focused on the development of molecules able to modulate the immune response. There is an
enormous global demand for new effective therapies and researchers are investigating new fields.
One promising strategy is the use of herbal medicines as integrative, complementary and preventive
therapy. The active components in medical plants have always been an important source of clinical
therapeutics and the study of their molecular pharmacology is an enormous challenge since they
offer a great chemical diversity with often multi-pharmacological activity. In this review, we mainly
analysed the immunomodulatory/antinflammatory activity of Echinacea spp. and Curcuma longa,
focusing on some issues of the phytochemical research and on new possible strategies to obtain novel
agents to supplement the present therapies.

Keywords: immune system; immunomodulators; curcumin; curcumin analogues; Echinacea; signal
transduction pathways

1. Immune System and Immunomodulators

In everyday life, humans are exposed to harmful pathogens and environmental pollutants that
can affect the health status and homeostasis of the organism. The immune system (IS) is a complex
integrated network of cells, tissues, organs and soluble mediators, evolved to defend the organism
against any foreign insult that threatens the integrity of the organism. One of the key features of the
IS is its capability to distinguish between the self (own cells and tissues) and the non-self (foreign
molecules and microbes of the environment).

The IS involves many types of cells, tissues, and organs. In primary lymphoid organs,
bone marrow and thymus, the immune cells are produced and mature; while in the secondary
lymphoid organs, lymph nodes, spleen, tonsils and Peyer’s patches in the small intestine, the immune
cells circulate and reside during their lifetime. Phagocytic cells, which include monocytes, macrophages
and neutrophils, are the most abundant cells of the IS. These cells are capable to engulf and digest
pathogens and foreign molecules. Lymphocytes, the second most abundant cells of the IS, are important
in the normal immune response to infection and tumors but also in mediating transplant rejection and
auto-immunity [1]. They can be distinguished in two different types, called T- and B-cells. All immune
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cells arise from common hematopoietic stem cells (HSCs) in the bone marrow following haematopoiesis.
During the activation of an immune response, lymphocytes exponentially proliferate and differentiate:
B-cells turn into plasma cells, a sort of antibody factories that release thousands of antibodies into the
bloodstream, whereas T-cells differentiate into different subsets with different specialization [1].

The immune response is traditionally classified into innate and adaptive immunity covering
different and specific roles in the immune defence responses. The innate immune system provides
an imminent but incomplete defence against a foreign insult and it has not long-term memory [2].
This system includes phagocytic cells, the complement system and various classes of receptors utilized
by innate cells, such as toll-like receptors (TLRs). These receptors are a member of patter-recognition
receptors family (PPPs) and able to detect conserved pathogens-associated molecular patterns (PAMPs),
such as bacterial and fungal cell-wall components (i.e., lipopolysaccharides, bacterial lipopeptides and
β-glucans) [3]. Although with some exceptions, TLRs and the other PPPs allow innate cells to discern
self from non-self but lack the capacity to discriminate among the non-self-molecules. One exception
is represented by TLR5 that seems to be able to respond differently to the flagellins of pathogenic and
non-pathogenic bacteria [4]. The adaptive immune response is an antigen-specific system that includes
long-lived lymphocytes (memory cells) and their highly specialized receptors [5].

The innate and adaptive systems are not strictly separated but work closely together in a
fine-tuning machine. The innate system recognizes the infection and “alerts” the adaptive system
through the antigen presentation, that occurs thanks to the major histocompatibility complex (MHC)
proteins. The innate cells release also other chemicals signals, such as cytokines and chemokines,
to completely activate the adaptive system. Importantly, specialized B and T lymphocytes, known
as regulatory cells, manage and stop the immune response once the insult has been counteracted,
thus avoiding an excessive response of the IS [6,7].

Despite its high efficiency and specificity, the unbalance of immune responses can be responsible
of a plethora of disorders, such as allergy, autoimmune diseases, immunosuppression and AIDS [8,9].
Nowadays, epidemiological data provide evidence of an increase in immunological diseases.
This still-growing issue has led to the development of a particular class of molecules, overall called
immunomodulators, able to enhance or suppress the immune response in IS-mediated diseases.
Whereas immunostimulatory drugs have been developed for their potential applicability to infection,
immunodeficiency, and cancer, immunosuppressive drugs are employed to inhibit the immune
response in many immune-mediated diseases (i.e., in organ transplantation and autoimmune diseases).
Within this context, new and innovative approaches are needed to develop more effective treatments,
and nature may represent a source of inspiration.

2. Phytochemical Research

Scientific research on phytochemicals, the active components in medical plants, has always
been an important source of clinical therapeutics by offering a great chemical diversity with often
multi-pharmacological activity. Since ancient times, phytochemicals have been used in traditional
medicine for their properties and health benefits [10]. Many of these natural products have
pharmacological or biological activity that can be exploited in pharmaceutical drug discovery and
drug design. As an example, polyphenols produced by plants as secondary metabolites are the most
abundant antioxidants in the human diet. In the last years, a large number of studies demonstrated
the beneficial health effects of their dietary contribution [11–13]. Some plant extracts have been
proved to modulate the IS response and numerous phytochemicals, included not only polyphenols
but also polysaccharides, flavonoids and alkaloids, have been studied for their immunomodulatory
activities [14–18].

In this review, we focused on the immunomodulatory/antinflammatory activity of Echinacea and
turmeric, by analysing some issues of the phytochemical research and, as consequence, new possible
strategies to obtain novel agents to supplement the present therapies.
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3. Echinacea sp.

Echinacea is a genus of nine herbaceous flowering plants in the daisy family (Asteraceae;
Compositae), commonly called coneflowers, originating from eastern and central North America.
Echinacea species, parts and preparations have different uses. In particular, three species of Echinacea,
namely E. purpurea, E. angustifolia and E. pallida, have been used in Native Americans medicine
for centuries as a treatment for respiratory tract infections and inflammatory conditions, including
common cold, coughs, bronchitis, and inflammation of mouth and pharynx [19]. Fresh or dry herb,
dried rhizome and roots, and alcoholic extracts are commercially available, often combined with
ginseng, goldenseal, or garlic [20]. Echinacea preparations belong to the best-selling botanical drugs in
the USA and Europe [21].

Inexpensive and effective natural immunomodulators could be of great value in medicine;
however, lack of standardization to active ingredients, qualitative and quantitative changes in
preparations, lack of rigorous test for efficacy, all contributes to inconsistencies in published results
regarding immunomodulatory effects of herbal remedies. Several clinical trials have been carried
out with Echinacea preparations and there is evidence of both therapeutic inefficacy and efficacy,
depending on preparation and study design. Echinacea can be effective in reducing the duration and
severity of cold symptoms, but this effect is noted only with certain preparations of Echinacea, mainly
E. purpurea [19,22,23]. At this regards, it is interesting the study of Balan et al. [24], which comparing
three different E. purpurea-based remedies commercially available, namely IMMUNAL drops (succus
of E. purpurea), IMMUNAL FORTE tablets (E. purpurea herbae succus siccum) and ECHINACEA
FORTE drops (juice squeezed from fresh flowers of E. purpurea), demonstrated important differences
in the immunomodulatory effects exerted by the remedies in female Balb/c mice, with stimulation
(by IMMUNAL drops and ECHINACEA FORTE), inhibition (by IMMUNAL tablets and ECHINACEA
FORTE) and no effects with ECHINACEA FORTE on antibody production or with IMMUNAL
drops, depending on the product, highlighting how different preparations can have different
modulatory effects.

Echinacea is best known as an immunostimulant, and there are a series of studies that support
these immunomodulatory effects, with both increases in innate and specific immunity. However,
anti-inflammatory activities are also reported [19,23,25], and anti-viral and anti-microbial effects
have also been demonstrated, supporting its use in traditional medicine (see reviews [19,23,25]).
This broad spectrum of action indicates that the plant contains in its parts, e.g., leaves, flowers,
roots, different active ingredients and that depending on the preparation, e.g., water, alcoholic,
oil extracts or dried forms, different compositions are obtained, which can explain its different effects.
A thoroughly standardization and testing it is, therefore, critical prior to its use in various immune
system malfunctions, as the phytochemical profiles of distinct Echinacea products are highly variable,
depending on the harvested plant material, specie used, and extraction protocols.

The folk use of Echinacea is mainly meant to be therapeutic, not prophylactic, as in humans its
benefits lie in its ability to shorten the duration and lessen the symptoms of illness, with a post hoc
pooling of the available trial results suggesting a relative risk reduction of 10% to 20%, and not in its
ability to prevent illness [19,21,26]. Rondanelli et al. [23] also suggested a prophylactic use of highly
standardized Echinacea extracts, with a specific phytochemical profile (presence of the polysaccharide
PolinaceaTM, the phenylethanoid echinacoside and substantial lack of alkamides), as a self-care
remedy for the prevention of the common cold and to improve the immune response to influence
vaccination [23,27]. Authors suggest treatment over 4 months with 2400 mg/day for prophylactic use,
and a dose of 4000 mg/day during acute stages of colds, as beneficial for preventing/treating cool [23].

Several modulatory effects on immune system have been demonstrated on both innate and
acquired immunity (Table 1). Studies suggest that Echinacea stimulates immune functions in both
healthy and immune suppressed animals [26]. In macrophages, phagocytosis and cytokine production
(increased TNF-α, IL-1, IFN-β) have been enhanced following treatment with Echinacea extracts,
increased leukocytes mobility as well as activation of natural killer cells has also been reasonably
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demonstrated in animals and humans [19,28–30]. E. purpurea polysaccharide enriched extracts can
promote phenotypic and functional maturation of dendritic cells by modulation of JNK, p38 MAPK
and NF-κB pathways [31,32] (Figure 1); and can favour M1 macrophage polarization by modulation
of JNK pathway [33]. In the study of Wang et al. [32], dendritic cells treated for 24 h with whole
plant, stem plus leaf, flower, and root extracts of E. purpurea displayed reduced levels of HLA-DR
and CD32 expression in a dose-dependent manner compared to the control (untreated) cell samples,
with whole plant and stem plus leaf extracts showing the greatest CD32 inhibition compared to the
other preparations. These results suggest that whole plant and stem plus leaf extracts have the ability
to inhibit dendritic cell maturation. In the study of Fu et al. [33], Echinacea extract (100 µg/mL)
significantly activate murine bone-marrow derived macrophage by increasing the expression of CD80,
CD86 and MHCII molecules, and by upregulating markers of classically activated macrophages (M1),
including CCR7 and the production of IL-1β, IL-6, IL-12p70, TNF-α and NO. In the same study,
enhanced phagocytosis and intracellular bactericidal activity were observed [33]. Changes in the
numbers and activities of T and B cells have also been described as well as enhanced host resistance,
but data are less solid [24,28,30,34,35].

Studying the molecular pharmacology of herbal medicines is an enormous challenge due to the
fact that herbal extracts are multi-component drugs, working in concert, with multileveled modes of
action [36]. Several bioactive phytochemicals have been identified [37]. Among its active ingredients,
alkamides (e.g., dodeca-2E,4E,8Z,10Z-tetraenoic acid isobutylamide and dodeca-2E,4E-dienoic acid
isobutylamide), polyphenols (e.g., cichoric acid), and polysaccharides can be mentioned. The lipophilic
fraction of E. purpurea tinctures consists of more than 15 different N-alkylamides. N-Alkylamide
lipids can activate the cannabinoid receptor type 2, with a Ki value of approximately 60 nM, and are
supposed to have anti-inflammatory and immunomodulatory activities [38]. Ethanolic extract of
E. purpurea root and herbal extracts as well as N-alkylamide combinations have been shown to
produce synergistic pharmacological effects on the endocannabinoid system in vitro, to affect calcium
mobilization triggered by PMA, and peroxisome proliferator activated receptor-gamma [38–40],
and alkylamides from E. angustifolia have been demonstrated to inhibit cyclooxygenase and
5-lipoxygenase in vitro [41,42]. In addition, while the expression of the anti-inflammatory cytokine
IL-10 was significantly induced in human peripheral blood mononuclear cells, the expression of the
pro-inflammatory cytokine TNF-α was inhibited [38,39]. Caffeic acid derivatives, including cichoric
acid, caftaric acid, cynarin and chlorogenic acid are believed to be responsible for the wound-healing
actions of E. angustifolia roots [43]. Besides alkamides and phenolic compounds, the polysaccharide
arabinogalactan (75 kDa) from E. purpurea, with a structure resembling bacteria lipopolysaccharide,
has been identified as the main activator of macrophages [28]. While activating macrophages both
in vitro and in vivo, this polysaccharide did not activate B, failed to induce T cells to produce IL-2,
IFN-β or IFN-γ, and only caused a slight increase in T-cell proliferation [28]. In Jurkat T-cells,
cultured at high density (5 × 106/mL), treated with E. purpurea (10–250 µg/mL), containing 80%
polysaccharides, predominantly a 10 kDa entity, phenolic compounds, cynarin, cichoric and caftaric
acids, but no detectable alkylamides, showed a strong dose-dependent enhancement of production of
IL-2 and IFN-γ in response to PMA plus ionomycin was observed [44]. The extract alone had no effect.
The high-molecular weight polysaccharides (30–100 kDa) purified by E. angustifolia have also been
proposed as the anti-inflammatory principles of the plant in mice using the Croton oil ear test [41].
The root oil of E. angustifolia, containing 1,8-pentadecadiene, has been reported to inhibit tumor cell
growth in mice and rats [45].



Molecules 2018, 23, 2778 5 of 17

Table 1. Main significant immunomodulatory and antinflammatory effects of Echinacea in different
in vitro studies.

Source Model & Concentration Effects Ref.

In vitro studies

Arabinogalactan Isolated mice macrophages;
3.7–500 µg/mL

↑Macrophages activation
↑ IL-1, TNF-α, IFN-β [28]

E. purpurea extracts
Human Peripheral Blood
Mononuclear Cells;
≥0.1 µg/mL

↑ NK function [29]

E. purpurea extracts Bone Marrow-derived Dendritic Cells;
400 mg/mL

↑ JNK
↑ p38 MAPK, NF-κB [31]

E. purpurea extracts
Human Peripheral Blood
Mononuclear Cells;
≥10 µg/mL

↑ DCs differentiation
↓ HLA-DR, CD32 [32]

E. Purpurea polysaccharide enriched
extract

Bone Marrow-derived Dendritic Cells;
100 µg/mL

↑Macrophages activation, CCR7
↑ CD80, CD86, MHCII
↑ IL-1β, IL-6, IL-12p70, TNF-α, NO
↑ Phagocytosis and intracellular
bactericidal activity

[33]

Alkylamides from E. purpurea Human whole blood,
5 nM–5 µM

↑ Cannabinoid receptor type 2
↓ TNF-α, [38]

Alkylamides from E. purpurea
Human Peripheral Blood
Mononuclear Cells;
10 µg/mL

↑ Cannabinoid receptor type 2
↓ TNF-α,
↑ IL-10

[39]

Alkylamides from E. purpurea Jurkat T cells,
330 ng/mL ↑ PPARγ [40]

E. Angustifolia extract Porcine leukocytes;
50 µM (for its major constituent) ↓ Cyclooxygenase, 5-lipoxygenase [42]

E. purpurea extracts Jurkat T cells,
10–250 µg/mL ↑ IL-2, IFNγ [44]

Different wide-spectrum bioactive components have been identified, which on the one hand
indicate that Echinacea extracts have medical potential to be effective for the treatment and prevention
of cold and other upper respiratory tract infections and possibly other diseases, while on the other
side, the inconsistent results published indicate that effective doses and preparations need to be clearly
identified and standardized for a proper therapeutic or prophylactic use. Further studies are required
to determine the immunological and pharmacologic potential of Echinacea preparations.

There are still open questions related to long-term use of Echinacea. Although primarily
considered for therapeutic purposes, some authors suggest Echinacea for prophylactic use during the
winter time [23]. The consequences of Echinacea long-term use (years) are unknown. There were no
toxic effects associated with continuous ingestion of different Echinacea preparations for up to 6 months
(see review by [46]). Caution with immunostimulants is also warrant, as their use has been associated
with development or exacerbation of autoimmunity in genetically predisposed individuals [47,48].
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Figure 1. A schematic representation of the main molecular pathways linked to inflammatory and
immunomodulatory activities modulated by Curcumin and Echinacea. The solid red line indicates the
activation of the pathway, whereas the truncated red line indicates inhibition of the pathway. JAK: Janus
kinase; STAT: Signal Transducers and Activators of Transcription; SOCS: Suppressor of Cytokine
Signalling proteins; TLR-4: Toll-like Receptor-4; MyD88: Myeloid Differentiation primary response 88;
NF-κB: Nuclear Factor kappa B; MAPK: Mitogen-Activated Protein Kinase; COX-2: cyclooxygenase-2;
iNOS: inducible Nitric Oxide Synthase; HO-1: Heme Oxygenase-1; IL: Interleukin; TNF: Tumor
Necrosis Factor.

4. Curcuma Longa

Turmeric (Curcuma longa), also known as “Indian saffron” due to its brilliant yellow colour, is a
spice herb, member of the ginger family (Zingiberaceae) native to the Indian subcontinent and Southeast
Asia, having more than a two centuries old scientific history [49]. The worldwide main producer of
turmeric is India, which has been used as Ayurvedic remedy and flavouring agent since ancient times
(more than 4000 years) [50].

Depending on its origin and growth conditions, turmeric obtained from ground-dried root contains
different percentages of volatile and non-volatile oils, proteins, fats, minerals, carbohydrates, curcuminoids
and moisture. Commercially available curcumin is a combination of three molecules, together called
curcuminoids. Curcumin is the most represented (60–70%), followed by demethoxycurcumin (20–27%)
and bisdemethoxycurcumin (10–15%). Curcuminoids differ in potency, efficacy and stability, with no clear
supremacy of curcumin over the other two compounds or the whole mixture [51]. Besides curcuminoids,
the other active components of turmeric include sesquiterpenes, diterpenes, triterpenoids [52].

To date, many limitations have been recognized for a therapeutic use of curcumin: its poor
pharmacokinetic/pharmacodynamic properties, its chemical instability, its low efficacy in different
in vitro and in vivo disease models, its toxic profile under certain experimental settings [53] and the
very recently suggestion that curcumin may be part of a series of molecules recognized for their
interference with biological assays called pan assay interference compounds (PAINS) [54]. Different
formulations, changes in the way of administration, the development of nanotechnology-based



Molecules 2018, 23, 2778 7 of 17

delivery systems have helped to overcome the critical pharmaceutical issues linked to curcumin
pharmacokinetics to improve its therapeutic efficacy and give new hopes for a clinical application of
this natural compound [55].

Several preclinical and clinical data showed the effectiveness of curcumin in the prevention
and treatment of various human diseases including cancer, cardiovascular, inflammatory, metabolic,
neurological and skin diseases (reviewed in [56]). Among the different properties referred to curcumin,
one of the most studied is the anti-inflammatory profile that may be useful in both acute and
chronic inflammation.

The immunomodulatory abilities of curcumin arise from its interaction with various
immunomodulators, including not only cellular components, such as dendritic cells, macrophages,
and both B and T lymphocytes, but also molecular components involved in the inflammatory processes,
such as cytokines and various transcription factors with their downstream signalling pathways [57]
(Table 2).

Curcumin has been found to inhibit the immunostimulatory function of dendritic cells (DCs)
and to interfere in the myeloid DC maturation. These effects have been related to the suppression
of CD80 and CD86 expression, two co-working membrane proteins that provide stimulatory signal
necessary for T cell activation, and the impairment in pro-inflammatory cytokine production (IL-12)
due to inhibition of MAPK (Mitogen-Activated Protein Kinase) activation and NF-κB (nuclear factor
kappa B) translocation [58] (Figure 1). Furthermore, curcumin supplementation in rabbit diet (2, 4 and
6 g/kg) significantly increased serum levels of IgG and IgM, thus suggesting that curcumin can also
improve immune functions [59].

The JAK/STAT (Janus kinase/signal transducers and activators of transcription) signalling is a
signal transduction pathway directly involved in the cellular homeostasis and in the immune responses,
modulating a wide array of cytokines and growth factors involved in cell proliferation, differentiation,
cell migration and apoptosis [60]. In vitro concentrations of curcumin ranging from 20 to 50 µM have
been reported to inhibit STAT3 phosphorylation in multiple cell types [61,62]. This observation is
consistent with data reported by Liu et al. on the capability of curcumin to modulate STAT3 pathway in
a mice model with colitis induced by dextran sulfate sodium (DSS) [63]. A significant improvement in
the disease activity index and histological injure score compared with control group has been observed
following treatment with curcumin (50 mg/kg). Furthermore, also the myeloperoxidase activity
(MPO), an index of leukocyte infiltration, and the phosphorylation of STAT3 resulted significantly
reduced. Following the decreased DNA-binding activity of STAT3, also the expression of IL-1β
and TNF-α were significantly downregulated after treatment with curcumin [63]. More recently,
low concentrations (7.5 µM) of curcumin have been found to induce in vitro an anti-inflammatory
profile in DCs enhancing the phosphorylation and the activity of STAT3, thus suggesting a biphasic
effect of curcumin on STAT3 modulation depending on the range of curcumin concentrations [64].
This observation is quite intriguing and has been also observed when curcumin has been used together
with opioids, the drugs of choice for the alleviation of acute and chronic pain and opioid tolerance.
In particular, although curcumin seems to be relatively safe to use as a single high dose orally [65],
the effect of curcumin on morphine tolerance has been suggested to be biphasic and therefore should
be used cautiously [66].

The JAK/STAT signalling pathway is antagonized by Suppressor of Cytokine Signalling proteins
(SOCS) that are involved in the regulation of proinflammatory proteins and cytokines production [67].
Guimarães et al. demonstrated that curcumin potently inhibited lipopolysaccharide (LPS)-induced
expression of IL-6, TNF-α and prostaglandin-endoperoxide synthase 2 mRNA in murine RAW
264.7 macrophages by preventing the inhibition of SOCS1 and 3 [68]. Curcumin further inhibited
LPS-induced p38 MAPK activation by reducing both its phosphorylation and nuclear translocation
pointing out the importance of this molecular pathway in inflammatory processes [68] (Figure 1).
These data are consistent with the ability of pure curcumin to increase the expression of SOCS1 and
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SOCS3 proteins in primary myeloproliferative neoplasms cells through suppressing class I histone
deacetylases (especially HDAC8 activity) [69].

Beside JAK/STAT, another key molecular pathway involved in the inflammation is mediated
by NF-κB, a transcription factor regulating the inflammatory response and the immune system
homeostasis. NF-κB has been demonstrating to control the expression of inflammatory mediators
such as COX-2, inducible nitric oxide synthase (iNOS) and interleukins and to regulate the expression
of more than 400 genes involved in inflammation and other chronic diseases [70]. In particular,
the modulation of cytokine levels by curcumin has been related to the inhibition of NF-κB signalling
pathway [71]. In type 1 diabetes, a T cell-mediated autoimmune disease in which pancreatic β

cells are destroyed by the IS, curcumin inhibited pancreatic leucocyte infiltration and preserved
insulin-expressing cells [72]. These effects have been related to a reduced NF-κB activation in T cell
receptor (TCR)-stimulated NOD lymphocytes and to an impairment of the T cell stimulatory function
of dendritic cells, thus leading to reduced secretion of proinflammatory cytokines and nitric oxide (NO)
and antigen-presenting cell activity [72]. The involvement of NF-κB and iNOS in anti-inflammatory
curcumin effects has also been investigated by Cianciulli et al. [73] in BV-2 murine microglial cells,
a specialised population of macrophages found in the central nervous system. Curcumin significantly
attenuated the LPS-induced release of NO and pro-inflammatory cytokines, as well as iNOS expression
and NF-κB activation [73]. These anti-inflammatory effects have been demonstrated to be mediated by
iNOS, COX-2, HO-1, MAPK and NF-κB [74], thus suggesting that curcumin plays an important role in
the attenuation of inflammatory responses in the central nervous system by influencing microglial
cells through modulation of NF-κB activity. In particular, the induction of NF-κB is dependent on
the activation of TLRs. TLR4 is the most studied member of TLRs family and its crucial role in the
regulation of immune system response has been well recognized, taking into account that TLR4
receptor agonists have been approved as vaccine adjuvants [75]. The activation of TLR4 recruits
MyD88 (myeloid differentiation factor), thus resulting in the induction of NF-κB [76]. The modulation
of TLR4/MyD88/NF-κB signalling pathway by curcumin has been demonstrated (Figure 1). Zhu et al.
found that curcumin administration in mice following Traumatic Brain Injury (TBI) showed attenuated
functional impairment, brain oedema and a reduced neuronal cell death with a general reduction
in the activation of microglia/macrophages. In particular, curcumin normalized the LPS-induced
upregulation of TLR4, MyD88 and NF-κB both in C57BL/6 mice with an induced TBI in vivo, and in a
co-culture system of microglia and neurons, in vitro [77]. Also in rats after spinal cord injury (SCI),
curcumin decreased the release of proinflammatory cytokines TNF-α, IL-1β, and IL-6 [78]. Moreover,
curcumin down-regulated TLR4 and NF-κB inflammatory signalling pathway, thus ameliorating
SCI-induced hind limb locomotion deficits, spinal cord oedema and apoptosis [78]. Similar effects
have been observed by Urdzikova et al. in a rat model of SCI, where curcumin, administrated both
intraperitoneally and in situ, attenuated glial scar formation by decreasing the levels of Macrophage
Inflammatory Protein (MIP1α), IL-2, and Regulated on Activation, Normal T cell Expressed and
Secreted (RANTES) production and the NF-κB activity [79]. MIP1α and RANTES are two members
of CC chemokine family also known as CCL3 and CCL5 respectively, involved in the inflammatory
response and in the recruitment and activation of immune cells. In other different studies, it has been
shown that the release of these (and other) chemokines were decreased by curcumin, demonstrating
the ability of this compound to modulate the chemotaxis process in the immune response [80,81].

The modulatory effects of curcumin on the TLR4/MyD88/NF-κB signalling pathway have
been reported not only in brain injury models but also in experimental colitis [82], in LPS-induced
mastitis [83] and in Helicobacter pylori-induced gastritis [84], pointing out the importance of this
pathway in the development of different diseases.



Molecules 2018, 23, 2778 9 of 17

Table 2. Main significant immunomodulatory and antinflammatory effects of curcumin in different
in vitro and in vivo studies.

Source Model & Concentration Effects Ref.

In vitro studies

Curcumin Bone Marrow-derived Dendric Cells; 25 µM
↓ DC maturation
↓ CD80, CD86
↓ IL-12, MAPK, NF-κB

[57]

Curcumin Bone Marrow-derived Dendritic Cells;
7.5 µM ↑ STAT3 [63]

Curcumin Murine macrophage; 10 µM
↓ IL-6, TNF-α, PTGS-2
↓ p38MAPK
↑ SOCS1, SOCS3

[67]

Curcumin Myelogenous leukemia cells and human
erythroleukemia cells; 20 µM

↑ SOCS1, SOCS3
↓ HDAC8 [68]

Curcumin BV-2 microglia cells; ≥10 µM ↓ NF-κB, iNOS
↓ IL-6, TNF-α, IL-1β [72]

Curcumin BV-2 microglia cells; ≥10 µM
↓ iNOS, COX-2, HO-1
↓MAPK, NF-κB
↓ TNF-α, NO, PGE-2

[73]

Curcumin Microglial and cortical neurons co-cultures;
2 µM ↓ TLR4, MyD88, NF-κB [76]

Curcumin Human promonocytic cells; 30 µM ↓ NF-κB, caspase 3 [88]

α-Turmerone
ar-Turmerone

Human Peripheral Blood Mononuclear
Cells; 5–10 µg/mL

↑ PBMC proliferation
↑ IL-2, TNF-α [89]

Polar fraction of turmeric
hot water extracts

Human Peripheral Blood Mononuclear
Cells; 400 µg/µL

↑ PBMC proliferation
↑ IL-6, TNF-α [90]

In vivo studies

Curcumin Healthy rabbits; 2, 4 and 6 g/kg orally ↑ serum IgG, IgM [58]

Curcumin
Mice with experimental colitis induced by
dextran sulfate sodium (DSS);
50 mg/kg orally

↓MPO, STAT3
↓ IL-1β, TNF-α [62]

Curcumin
Mice with cyclophosphamide
(CYP)-induced diabetes; 25 mg/kg
intraperitoneally

↓ leucocyte infiltration
↓ NF-κB, NO [71]

Curcumin Mice with traumatic brain injury;
100 mg/kg intraperitoneally

↑ activation of
microglia/macrophages
↓ TLR4, MyD88, NF-κB

[76]

Curcumin Rats with traumatic spinal cord injury;
100 mg/kg intraperitoneally

↓ TNF-α, IL-1β, IL-6
↓ TLR4, NF-κB [77]

Curcumin Rats with spinal cord injury; 6 mg/kg
intraperitoneally

↓MIP1α, IL-2, RANTES
↓ NF-κB [78]

Curcumin Mice with K. pneumoniae induced lung
infection; 150 mg/kg orally

↓ leucocyte infiltration
↓ NO, MPO, TNF-α [85,86]

Curcumin Broilers with induced Eimeria maxima and
Eimeria tenella infections; 35 mg/kg orally ↑ concanavalin A [87]

The anti-inflammatory effects of curcumin have been further used to enhance the efficacy of
already approved antimicrobial agents through synergic effects [85]. Bansal et al. demonstrated
that curcumin protected BALB/c mice from lung inflammation caused by Klebsiella pneumoniae [86].
In this study, mice that received orally curcumin alone or in combination with augmentin showed a
significant decrease in neutrophil influx into the lungs and a significant decrease in the production of
NO, MPO activity and TNF-α levels [86]. Similar results have been obtained by combining curcumin
and clarithromycin [87]. Kim et al. evaluated also the effects of a dietary supplementation with
turmeric on systemic and local immune responses on experimental Eimeria maxima and Eimeria tenella
infections in commercial broiler chickens [88]. Dietary supplementation with turmeric enhanced
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coccidiosis resistance in the chickens with enhanced systemic humoral immunity, as assessed by higher
levels of serum antibodies to an Eimeria microneme protein, MIC2, and enhanced cellular immunity,
as measured by concanavalin A-induced spleen cell proliferation [88]. The antinflammatory effects
of curcumin have been tested also against Mycobacterium tuberculosis (MTB) infection in an in vitro
human macrophage model and have been found to be partially mediated both by NF-κB inhibition
and caspase 3 activation [89].

Altogether these results underline that curcumin may modulate molecular pathways involved in
the inflammation and in the immune response, thus suggesting its putative use as supplement therapy
or nutritional approach.

Beyond curcumin, also other bioactive components of Curcuma longa have been investigated
for their abilities to modulate the immune system. α-turmerone and ar-turmerone, two compounds
isolated from the lipophilic fraction Curcuma longa, were demonstrated to induce PBMC proliferation
and cytokine production [90]. The same effects were stimulated also by the polar fraction of turmeric
hot water extracts [91]. Also other curcumin-free turmeric components, such as turmerin, elemene,
furanodiene, curdione, bisacurone, cyclocurcumin, calebin A, and germacrone, have been found to
exhibit different biological activities including anti-inflammatory and anticancer activity (for a review
see [92]). These results suggest the potential use of whole Curcuma longa extract to enhance the IS
activity in immunosuppressed patients.

5. Problematics and Future Perspectives

Nutraceuticals positively influence human health and include a variety of functional foods,
fortified foods and dietary supplements (both herbal and not) [93] and their consumption amounts
for approximately 20–25% of dietary supplements sales in the USA, pointing out their relevance
on the market [94]. Herbal dietary supplements, mainly consisting of herbal extracts, are complex
mixtures of phytochemicals which contain not only the principal active compound/s but also minor
constituents that can enhance the pharmacological activity of the main active ingredient or lead to
adverse effects. The chemical variability and the complexity of the herbal extracts make the study
of the pharmacological profile very difficult and this issue is exacerbated whether we consider that
different preparations can have different pharmacological effects. One putative hypothesis for batch
variability could be ascribed to additional factors that might interfere with the effects of the main
active ingredient/s. The inadequate control of quality and standardization of productive processes
represent a relevant problem related to the use of dietary supplements. In many studies conducted
to determine the effect of natural extracts on immune system, no adequate microbial contamination
control protocols have been applied even if it is recognized that microbial endotoxins can modify the
parameters and the response of immune system [95]. As regarding the clinical use of curcumin, despite
the multi-target activity and its safety at higher doses, one of the major limitations is due to its reduced
bioavailability and its low solubility. Several pharmacokinetics studies over the past decades related to
absorption, distribution, metabolism and excretion of curcumin have confirmed its poor absorption
and rapid metabolism that severely curtails its bioavailability [95].

To improve the pharmacokinetic profile of this molecule, alternative strategies have been adopted:
new formulations, a change in the way of administration, alternative drug delivery taking advantage
from the development of nanotechnology-based delivery systems, such as nanoparticles, liposomes
and hydrogels and, finally, the hybridization approach [55,96]. Kumari et al. derivatized curcumin
and the lead compound derived, curcumin A, was able to decrease the cell cycle progression of T
cells, indicating the anti-inflammatory activities of this new molecule [97]. Jantan et al. tested a series
of 43 curcumin diarylpentanoid analogues evaluating their inhibitory effects on the chemotactic
activity of phagocytes in vitro, and found that some of them inhibited the migration of human
polymorphonuclear leukocytes, suggesting their potential use as chemical leads for the development
of new immunomodulatory agents [98].
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Krishnakumar et al. investigated the bioavailability of a novel formulation of curcumin-
impregnated soluble dietary fibre dispersions, which undergoes fermentation in the colon by the
action of b-mannanase and may provide protection to curcumin from the degrading enzymes
of the upper gastrointestinal tract [99]. This formulation, when orally administered, showed an
improved bioavailability when compared to curcuminoids [99,100]. Recently, nanoformulations of
curcumin are emerging as a novel substitute to increase aqueous solubility and bioavailability [101].
The entrapment in poly D,L-lactic-co-glycolic acid nanoparticles has been demonstrated to be suitable
in the transportation of curcumin to target tissues through the epithelia and other biological barriers
and in adjuvating its activity increasing an early cell-mediated immune response [102]. Furthermore,
curcumin-stabilized silver nanoparticles significantly inhibited the expression of IL-1β, TNF-α, IL-6 and
NF-κB in a higher extent than curcumin alone [103]. In addition, lipid nanoparticles encapsulating
curcumin were able to prevent metastasis formation and limited the progression of the disease by
modulating vascular inflammation in a highly metastatic breast cancer model [104].

Curcumin represents also a starting point for multitarget drug design. Multitarget drugs can
be rationally designed by linking, by means of suitable spacers, or fusing the key pharmacophoric
functions, or through amalgamation of the pharmacophoric groups essential for activity into one
hybrid molecule [105]. Many different curcumin analogues and hybrids have been synthetized
and are now under testing phase. The idea to synthesize new hybrids raised by the knowledge
that hydroxycinnamoyl recurring motif, present in curcumin, has been shown to modulate several
pathways related to aging-related disorders. As an example, Simoni et al. [106,107] synthetized
a set of new hybrids, by combining a hydroxycinnamoyl function from curcumin and diallyl
sulfides from garlic. This novel design strategy represented an efficient and promising approach,
since a catechol derivative with remarkable biological modulating properties has been characterized.
This approach could be useful in the near future the development of new efficient molecules to
counteract multifactorial diseases.

6. Conclusions

The active components in medical plants have always represented an important source of clinical
therapeutics since they offer a chemical diversity often associated with a multi-pharmacological
activity. Their use in traditional medicine for their properties and health benefits is well recognized
since ancient times. Many of these natural products, such as curcumin and Echinacea, have important
biological activity that can be exploited in pharmaceutical drug discovery and drug design. However,
inconsistencies in published results regarding immunomodulatory effects of herbal remedies have
been highlighted, mainly due to limitations such as lack of standardization to active ingredients,
qualitative and quantitative changes in preparations and lack of rigorous test for efficacy. There is
evidence of both therapeutic inefficacy and efficacy of Echinacea on immune system, depending
on preparation and study design. In addition, curcumin show additional limitations related to
its poor pharmacokinetic/pharmacodynamic properties, its chemical instability, and its PAINS
character [54]. To overcome these critical pharmaceutical issues, new formulations, the direct delivery
to the specific tissue taking advantage from the hybridization approach and the development of
nanotechnology-based delivery systems have been characterized mainly for curcumin. The use
of nanoparticles, in particular, can ensure controlled release of drugs and reduce their toxicity.
Noteworthy, natural products might also contain prebiotic components, whose interaction with
the host microbiome can significantly impact health and disease. This is a new area of research that
would further help optimize the selection of natural products for the maintenance of health and
treatment of autoimmune diseases, such as arthritis, systemic lupus and other diseases, and define
their mechanisms of action [108]. These approaches may be promising, allowing developing new
promising chemical entities, which, however, should be validated through expensive preclinical work
to be approved for clinical trials. Within this context, an approach has been recently tried on subjects
affected by rheumatoid arthritis, on which a novel, highly bioavailable form of curcumin in a natural
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turmeric matrix was evaluated for its ability to improve the clinical symptoms of this autoimmune,
inflammatory disorder [109].
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