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Abstract
Viral infections affect three to five million patients annually. While commonly used antivirals often show limited efficacy and
serious adverse effects, herbal extracts have been in use for medicinal purposes since ancient times and are known for their
antiviral properties and more tolerable side effects. Thus, naturally based pharmacotherapy may be a proper alternative for
treating viral diseases. With that in mind, various pharmaceutical formulations and delivery systems including micelles, nano-
particles, nanosuspensions, solid dispersions, microspheres and crystals, self-nanoemulsifying and self-microemulsifying drug
delivery systems (SNEDDS and SMEDDS) have been developed and used for antiviral delivery of natural products. These
diverse technologies offer effective and reliable delivery of medicinal phytochemicals. Given the challenges and possibilities of
antiviral treatment, this review provides the verified data on the medicinal plants and related herbal substances with antiviral
activity, as well as applied strategies for the delivery of these plant extracts and biologically active phytochemicals.
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Introduction

Viral infections remain a major worldwide cause of morbidity
and mortality. Among the most aggressive viral infections are
Ebola, AIDS (acquired immunodeficiency syndrome), influ-
enza, and SARS (severe acute respiratory syndrome). For in-
stance, influenza is responsible for over 3 million new cases of
severe disease, and between 300,000–500,000 deaths yearly
[1, 2]. Alarmingly, the number of patients diagnosed with viral
infections is increasing every year with more blood transfu-
sions, organ transplantations, and the use of hypodermic
syringes.

Classic antiviral drugs such as interferon and ribavirin
are effective in vitro against most viruses, but often are
ineffective in patients. Ninety different antiviral agents
available today [3, 4] only treat a selection of viruses;
these viruses include HIV (human immunodeficiency vi-
rus), herpes viruses, including HSV (herpes simplex vi-
rus), hCMV (human cytomegalovirus), VZV (varicella
zoster virus), influenza viruses, and the hepatitis viruses
(Fig. 1). Currently, there is no approved remedy for many
types or viruses, and vaccination is limited to hepatitis A
virus, mumps, and varicella [2]. In addition, these agents
are often costly and ineffective due to viral resistance and
cause side effects. With that in mind, naturally based
pharmacotherapy may be a proper alternative for treating
viral diseases. Thus, it is necessary to further examine the
topic of antiviral phytochemicals, highlighting drug deliv-
ery applications in overcoming the multiple biological
barriers existing for antiviral agents to successfully reach
their intended site(s) of action. The present review focuses
on the antiviral properties of herb extracts and bioactive
constituent isolates from medicinal plants, and the efforts
to obtain their efficient delivery.
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Antiviral medicinal plants
and phytochemicals

Various plants have been used in medicine since ancient times
and are known for their strong therapeutic effect. In traditional
medicine, diseases of possible viral origin have been treated
by many of these plants. The main findings related to antiviral
plant extracts are collected in Table 1. Included extracts were
tested in cell culture, and some extracts were also studied
in vivo [11, 23, 31, 39].

Various phytochemicals were isolated, purified, and iden-
tified from the crude extracts of alkaloids, terpenes, flavo-
noids, various glycosides, and proteins (Table 1).
Compounds with antiviral activity are present in many plants,
e.g., rutin, a flavonoid glycoside common in different plants,
is effective against avian influenza virus [48], HSV-1, HSV-2
[18], and parainfluenza-3 virus [49].

Quercetin, an aglycone of rutin, is a phytochemical abundant
in plants and may diminish the replication of many viruses:
highly pathogenic influenza virus [50], rhinovirus [51], dengue
virus type-2 [52], HSV-1 [53], poliovirus [54], adenovirus [53],
Epstein-Barr virus [55], Mayaro virus [56], Japanese encephali-
tis virus [57], respiratory syncytial virus [58], and HCV [59, 60].
Its antiviral activitymodewas studies in a few cases. Its ability to
inhibit HCV by limiting the activity of some heat shock proteins
(HSPs) produced by cells in response to exposure to stress which
were involved in NS5A (nonstructural protein 5A)-mediated
viral IRES (internal ribosome entry site) translation [60] is one
well-known mechanism. Another mechanism involved the inhi-
bition of HCV NS3 protease and HCV replication in a sub-
genomic HCV RNA replicon cell system [59]. Quercetin also
inhibits various steps of the rhinoviruses pathogenesis, i.e., en-
docytosis, viral genome transcription, and protein synthesis [51].
In another case, quercetin was shown to have a more specific
mode of action, reducing the replication of dengue virus type-2,
but not the processes of viral attachment and entry [52].

In addition, quercetin and three other flavonoids:
3,3′,4′,5,5′,7-hexahydroxyflavone (myricetin), 3,3′,4′,5,6,7-
hexahydroxyf lavone (quercetaget in) , and 5,6 ,7-
trihydroxyflavone (baicalein), all effectively inhibited reverse
transcriptases from Rauscher murine leukemia virus (RLV)

and HIV; quercetin, myricetin, and quercetagetin were also
shown to inhibit different DNA polymerase enzymes [61].
The abovementioned flavonoid, myricetin, is abundant in wild
plants, nuts, fruits, berries, and vegetables. Ellagic acid and
myricetin (from the aronia fruit) were active in cell cultures
against different subtypes of influenza viruses including an
oseltamivir-resistant strain, and also effective in vivo [62].

Apigenin (4′,5,7-trihydroxyflavone), an aglycone of the fla-
vone class, is found in many plants and has broad antiviral
activities against enterovirus-71 [63], foot and mouth disease
virus [64], HCV [65], African swine fever virus (ASFV) [66],
and influenza A virus [67]. Of note, many flavonoids of plant
origin have known antiviral properties. For example, out of 22
different flavonoids, six phytochemicals (apigenin, baicalein,
biochanin A, kaempferol, luteolin, naringenin) were active
against the avian influenza H5N1 virus in human lung epithelial
(A549) cells through inhibiting nucleoprotein production [67].
Baicalin (the glucuronide of baicalein) was also active against a
wide range of viruses, including enterovirus [68], dengue virus
[69], respiratory syncytial virus [70], Newcastle disease virus
[71], human immunodeficiency virus [72], and hepatitis B virus
[73], and different mechanisms were suggested for its antiviral
actions. For example, baicalin inhibits the production of HBV,
the templates for viral proteins and HBV-DNA synthesis [73],
and decreases IL-6 and IL-8 production without affecting IP-10
levels, as shown in a study on avian influenza H5N1 virus [67].

The triterpenoids oleanolic acid and ursolic acid are abundant
in the plant kingdom,may be effective against HCVby reducing
HCV NS5B RdRp virulence [74], and can also inhibit entero-
virus 71 replication [75]. Lastly, Sambucus nigra L. is an active
ingredient in a standardized elderberry extract, effectively used
in the treatment of fever, colds, and influenza A and B [76–78].

Delivery of herbal extracts
and phytochemicals

Introducing pharmaceutical nanotechnology into the field of
natural medicine is useful and promising. New strategies for
the delivery of poorly soluble phytochemicals and plant extracts
allow improved pharmacokinetic and clinical outcomes.

Fig. 1 Antiviral drugs. The antiviral drugs are used for HIV (human
immunodeficiency virus), herpes viruses, influenza A and B viruses,
and the HBV (hepatitis B) and HCV (hepatitis C) viruses. Some of the

commonly prescribed antiviral drugs are given. NRTI, nucleoside reverse
transcriptase inhibitor; NNRTI, non-nucleoside reverse transcriptase
inhibitor; PI, protease inhibitor
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Table 1 Antiviral properties of plant extracts

Plant Kind of extract Virus Phytochemicals References

Achillea
fragrantissima

Hydro-alcoholic extract Poliomyelitis-1 virus (POLIO) Unknown [3]

Aegle marmelos Aqueous extract Human coxsackieviruses B1-B6 Unknown [4]

Aloe vera Glycerine extract HSV-2 Unknown [5]

Artocarpus integrifolia Aqueous extract (SA-11) and human (HCR3)
rotaviruses

Unknown [6]

Balanites aegyptiaca n-Hexane extract VSV T2 Unknown [7]

Camellia sinensis Aqueous extracts HBV Epigallocathechin-3-gallate [8]

Capparis spinosa Methanolic extract HSV-2
HIV-1

Unknown
Protein

[9]

Cassine xylocarpa Aqueous extract HIV Pentacyclic lupane-type triterpenoids [10]

Cistus incanus Polyphenol-rich extract
(CYSTUS052)

Avian and human influenza
strains
of different subtypes

HIV-1 and HIV-2

Unknown
Unknown

[11, 12]
[13]

Curcuma longa Aqueous extract HSV-1 Curcumin [5]

Cyperus rotundus Hydro-alcoholic extract HSV-1
HBV

Unknown
cyperene-3, 8-dione, 14-hydroxy

cyperotundone, 14-acetoxy
cyperotundone, 3β-hydroxycyperenoic
acid and sugetriol-3, 9-diacetate

[3, 14]

Daphne gnidium Hydro-alcoholic extract HIV Daphnetoxin, gnidicin, gniditrin and
excoecariatoxin

[15]

Diospyros kaki Aqueous extract Human rotavirus Licocoumarone, licoflavonol,
glyasperin D, 18 β-glycyrrhetinic
acid, luteolin, vitexin,
apigenin-7-O-glucoside

[6]

Dittrichia viscosa Aqueous extract VSV, HSV-1, poliovirus type 1 Unknown [16]

Euphorbia hirta Aqueous extracts, methanol
extracts

HIV-1, HIV-2, SIV mac 251 Unknown [17]

Euphorbia spinidens Methanol extract HSV-1 Unknown [5]

Ficus benjamina Ethanol extract HSV-1, HSV-2 Rutin, kaempferol 3-O-rutinoside and
kaempferol 3-O-robinobioside

[18]

Ficus carica Aqueous extract
The hexanic and hexane-ethyl

acetate from latex of fig fruit
Hexanic extract

HSV-1
HSV-1, ECV-11 and ADV
influenza virus

Unknown [19]
[20]
[21]

Globularia arabica Hydro-alcoholic extract Poliomyelitis-1 virus (POLIO) Unknown [3]

Glycyrrhiza glabra Methanolic extract NDV Unknown [22]

Glycyrrhiza uralensis Metabolic extract Rotavirus diarrhea Unknown [23]

Hyssopus officinalis Methanolic extract HSV-1 Unknown [5]

Leucojum vernum Methanolic extract HIV-1 Homolycorine and 2-O-acetyllycorine [24]

Lilium candidum Ethanol extract HSV-1, HSV-2 Kaempferol [25]

Magnolia officinalis Methanol extract Dengue virus Type 2 Honokiol [26]

Maytenus cuzcoina Aqueous extract HIV Pentacyclic lupane-type triterpenoids [10]

Melissa officinalis Aqueous extract HSV-1
HSV-1, HSV-2
HIV

Unknown [27]
[28]
[29]

Mentha pulegium Methanolic extract HSV-1 Unknown [30]

Moringa peregrina Hydro-alcoholic extract HSV-1 Unknown [3]

Myristica fragrans Aqueous extract Human rotavirus Unknown [6]

Olea europaea Hexanic extract Influenza virus subtype H9N2 Unknown [21]

Panax ginseng Methanolic extract Human rotavirus Epigallocatechin gallate, theaflavin
digallate, genistein, hesperidin,
neohesperidin, diosmin, pectic
polysaccharides

[6]
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Commonly used approached such as phytosomes, nano-
particles, hydrogels, microspheres, transferosomes and
ethosomes, self-microemulsifying drug delivery systems
(SMEDDS), and self-nanoemulsifying drug delivery sys-
tems (SNEDDS) have been applied for the delivery of
antiviral plant agents (Table 2). These antiviral technolo-
gies may be preferred over older phytochemical drug for-
mulations due to enhanced solubility and oral absorption,
systemic bioavailability, safety, delayed metabolism, and
better overall antiviral activity. Yet, very few papers have
been published on the topic of antiviral herbal drug

delivery, so we wish to display several successful attempts
of improving the delivery of phytodrugs with known an-
tiviral activity. Qian et al. [79] attempted to design a self-
nanoemulsifying drug delivery system (SNEDDS) to al-
low greater apparent solubility and oral bioavailability
(< 10%) of myricetin. Overall, four formulations were pre-
pared, F04 (Capryol 90/Cremophor RH 40/PEG 400 in a 4:3:3
ratio), F08 (Capryol 90/Cremophor RH 40/1,2-propanediol
4:3:3), F13 (Capryol 90/Cremophor EL/Transcutol HP 4:3:3),
and F15 (Capryol 90/Cremophor RH 40/Transcutol HP 2:7:1),
and the solubility of myricetin in different excipients was

Table 1 (continued)

Plant Kind of extract Virus Phytochemicals References

Panax notoginseng Aqueous extract Influenza A virus Unknown [31]

Phyllanthus acidus Aqueous extract HBV Highly oxygenated norbisabolane
sesquiterpenoids, phyllanthacidoid
acid methyl ester

[32]

Phyllanthus emblica Aqueous extract
Aqueous extract

Influenza A virus strain H3N2
HBV

Highly oxygenated norbisabolane
sesquiterpenoids

Sesquiterpenoid glycoside dimers

[33]
[34]

Prunella vulgaris Aqueous extract HIV-1
Ebola virus

Unknown [35]
[36]

Quercus brantii L
Acorn.

Ethanol extract HSV-1 Unknown [37]

Quercus persica Hydroalchoholic extract HSV-1 Unknown [38]

Salacia reticulata Aqueous extract H1N1 influenza Unknown [39]

Sanguisorba minor Aqueous extract VSV, HSV-1
HIV

[16]
[40]

Securigera securidaca Methanol extract HSV-1, HSV-2 Unknown [5]

Solanum nigrum Methanol and chloroform
extracts of seeds

HCV Unknown [41]

Spondias lutea Aqueous extract Human rotavirus Unknown [6]

Tamarix nilotica Hydro-alcoholic extract HSV-1 Unknown [3]

Taraxacum officinale Methanol extract
Aqueous extract

HCV
Influenza virus type A, H1N1.

Unknown [42]
[43]

Thymus carmanicus Methanol extract HIV-1 Unknown [44]

Thymus daenensis Methanol extract HIV-1 Unknown [44]

Thymus kotschyanus Methanol extract HIV-1 Unknown [44]

Thymus vulgaris Methanol extract HIV-1 Unknown [44]

Tuberaria lignosa An aqueous extract HIV Ellagic acid derivative [45]

Viola diffusa Ethanol extract HBV 2β-hydroxy-3,
4-seco-friedelolactone-27-oic acid, 2β,
28β-dihydroxy-3,4-seco-friedelolactone-
27-oic acid, 2β, 30β-dihydroxy-3,4-
seco-friedelolactone-27-lactone and
stigmastane, stigmast-25-ene-3β,
5α,6β-triol

[46]

Vitis labrusca Methanol extract (SA-11) and human (HCR3)
rotaviruses

Resveratrol, piceatannol,
trans-arachidin-1 and trans-arachidin-3

[6]

Vitis macrocarpon Methanol extract (SA-11) and human (HCR3)
rotaviruses

Abietic acid, all-trans-retinoic acid,
mangostin, α-glucosyl hesperidin,
proanthocyanidins

[6]

Zataria multiflora Methanolic extract HSV-1 Rosmarinic acid [47]

HSV herpes simplex virus, VSV vesicular stomatitis virus, HBV hepatitis B virus, HIV human immunodeficiency virus, SIV simian immunodeficiency
virus, ECV echovirus, ADV adenovirus, NDV Newcastle disease virus, HCV hepatitis C virus
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studied. The optimized formulations underwent evaluation of
release (dissolution), Caco-2 cell cytotoxicity and intestinal per-
meability studies in vitro, following by in vivo pharmacokinet-
ics of myricetin-SNEDDS. Three of the four chosen formula-
tions exhibited acceptable cell viability (> 90%), while the
fourth formulation was slightly cell-toxic, probably because of
high nonionic surfactant content (70%). In vitro drug release
testing demonstrated that myricetin alone had limited dissolu-
tion of 51% after an hour, whereas drug release for all SNEDDS
formulations was over 90% after 1 min. Single-pass intestinal
perfusion (SPIP) method in rats showed that in the duodenum,
the primary absorption site of myricetin, the effective perme-
ability coefficient was significantly higher (1.2–2.2-fold, p <
0.05) in all SNEDDS formulations relative to free myricetin,
via inhibition of myricetin efflux by nonionic surfactants in
SNEDDS (Fig. 2). In animal models, the myricetin-loaded
SNEDDS formulations exhibited higher plasma myricetin con-
centrations in all time points compared to the free myricetin.
Formulation No. 13 in Fig. 2 had higher intestinal permeability,
but showed lower bioavailability attributed to poor lymphatic
transport—a main absorption mechanism of myricetin.

Formulation No. 4 and 8, on the other hand, achieved small
particle size, required for lymphatic transport (Fig. 2).

Kim et al. [85] tried to increase the oral bioavailability of
the low solubility flavonoid apigenin. Different water-in-oil-
in-water emulsions of apigenin were studied for their physical
characteristics, as well as digestibility using in vitro digestion
model and in vivo pharmacokinetics in rats. An emulsion of
soybean oil-Tween 80was chosen for pharmacokinetic tests in
animal model after proving better stability in terms of particle
size and zeta potential. Plasma concentrations of apigenin in
the water-in-oil emulsion were markedly higher at different
time points and maximal concentration was 9-fold higher
compared to apigenin suspension [85].

Zhang et al. [94] aimed to improve the oral absorption of
baicalin, which has low solubility and poor permeability, by
using a micellar formulation comprised of the carriers Pluronic
P123 copolymer and sodium taurocholate. Sustained release pro-
file of baicalin-loaded mixed micelles, in in vitro drug release
experiment, held in several pH conditions, showed 14% drug
released after 2 h in gastric conditions and 54% release within
48 h in intestinal conditions, compared to 34% and 79% release

Table 2 Summary of the different applied delivery systems for antiviral phytochemicals

Phytochemical Viruses Delivery system/method

Myricetin HIV, RLV, influenza SNEDDS [79], nanogel [80], mixed micelles [81], nanosuspension [82],
cocrystal [83], nanoencapsulation [84]

Apigenin Enterovirus 71, FMDV, HCV,
ASFV, influenza A

W/O/W emulsion [85], O/W microemulsion [86], solid dispersion [87,
88], mixed micelles [89], phospholipid phytosome [90], pellets [91],
SMEDDS [92]

Baicalin Influenza, NDV, enterovirus 71,
DENV, RSV, HIV, HBV

Liposome [93], mixed micelles [94, 95], polymeric micelles [96],
SNEDDS [97], nanoemulsion [98], inclusion complex [99], solid
dispersion [100], nanoparticles [101], nanocrystals [102, 103],
SMEDDS [104]

Quercetin JEV, influenza A, EBV,
MAYV, RV, HCV

Nanocrystal [105], nanoparticles [106–110], phytosome [111],
nanoliposome [112], mixed micelles [113, 114], SNEDDS [115, 116],
nanocarrier [117, 118], nanoemulsion [119], nanosuspension [120]

Fructus Forsythiae extracts Influenza, RSV chito-oligosaccharide [121, 122]

Flos Lonicerae extracts Influenza, RSV, HIV, NDV chito-oligosaccharide [122]

Andrographolide DENV, CHIKV, HPV16
pseudovirus, influenza,
HBV, HCV, HSV1, EBV, HIV

SMEDDS [123], microspheres [124], nanosuspension [125],
self-nanodispersion [126], nanoparticles [127], inclusion complex
[128]

Curcumin Influenza, RSV, HBV, HCV,
ZIKV, CHIKV, norovirus,
HIV, HPV, CMV, EV71,
DENV type-2

Mixed micelles [129, 130], nanoparticles [131, 132], solid dispersion
[133, 134] , SNEDDS [135] , SMEDDS [136], lipid carrier [137],
copolymeric micelles [138], exosomes [139]

Naringenin DENV, HCV SNEDDS [140], solid dispersion [141], nanoparticles [142, 143] ,
liposome [144], nanosuspension [145, 146] , cyclodextrin complex [147]

Honokiol DENV, HCV Inclusion complex [148], conjugate micelles [149], nanoparticles [150]

Oleanolic acid Acute and chronic hepatitis SMEDDS [151], nanoparticles [152], nanosuspensions
[153, 154] , SNEDDS [155]

HIV human immunodeficiency virus, RLV rhesus lymphocryptovirus, FMDV foot and mouth disease virus, HCV hepatitis C virus, ASFVAfrican swine
fever virus, NDV Newcastle disease virus, DENV dengue virus, RSV respiratory syncytial virus,HBV hepatitis B virus, JEV Japanese encephalitis virus,
EBV Epstein–Barr virus,MAYVMayaro virus, RV rhinovirus,CHIKVChikungunya virus,HPV human papilloma virus,HSV herpes simplex virus, ZIKV
Zika virus,CMV cytomegalovirus,EVenterovirus, SNEDDS self-nanoemulsifying drug delivery system,W/O/Wwater-in-oil-in-water,O/Woil-in-water,
SMEDDS self-microemulsifying drug delivery system
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from a baicalin suspension, respectively. This observation sug-
gests improved stability afforded by the designed formulation.
In vitro uptake studies, carried out with a caco-2 cell line, deter-
mined the absorption of baicalin within the mixed micelles and
verified their internalization ability. Baicalin-loaded ST-P123-
MMs formulation achieved high oral bioavailability (Fig. 3).
These results are believed to derive from the micellar small size
and to Pluronic component, which is a P-glycoprotein inhibitor.
In addition, the mixed micelle formulation showed a bimodal
presentation, presumably attributed to enterohepatic recircula-
tion, further enhancing the drug’s oral bioavailability [94].

Oleanolic acid has low aqueous solubility and systemic bio-
availability (0.7% in rats). SMEDDS was developed in an at-
tempt to overcome these limitations. This delivery system
consisted of 50% ethyl oleate (oil), 35% Cremophor EL (surfac-
tant), and 15% alcohol (co-surfactant), allowing a great increase
in oleanolic acid solubility [151]. In vitro studies showed a

sustained release behavior fromSMEDDS. Systemic rat bioavail-
ability was significantly higher in SMEDDS than in themarketed
tablets of oleanolic acid (Fig. 4). The improved drug’s oral bio-
availability was explained by enhanced solubility and permeabil-
ity through emulsification and small particle sizes, respectively.

Flos Lonicerae Japonicae and Fructus forsythia are used
together in Chinese herbal remedies, and both have antiviral,
antibacterial, and antiinflammatory properties. An attempt
was made to enhance the bioavailability and antiinfluenza
properties of the herb combination by chito-oligosaccharide,
a chitosan derivative [122]. In a cell culture antiinfluenza as-
say, chito-oligosaccharide improved the activity of extracts
containing Flos Lonicerae Japonicae and Fructus forsythia,
compared to extracts that do not contain the chito-oligosac-
charide. The absorption was studied in vitro using Caco-2
model, and higher experimentally derived apparent perme-
ability values were obtained with increasing concentrations

Fig. 2 Myricetin blood levels in
rats after oral administration of 20
mg/kg free myricetin or any of
four different SNEDDS
formulations (n = 6); upper right:
permeability coefficient (Peff) of
myricetin in single-pass intestinal
perfusion model (n = 3); F04,
Capryol 90/Cremophor RH 40/
PEG 400 4:3:3; F08, Capryol 90/
Cremophor RH 40/1,2-
propanediol 4:3:3; F13, Capryol
90/Cremophor EL/Transcutol HP
4:3:3 and F15, Capryol 90/
Cremophor RH 40/Transcutol HP
2:7:1. Reproduced from [79] with
permission

Fig. 3 Baicalin blood levels after
oral administration of baicalin
(BC) and BC-loaded ST-P123-
MMs (P123, an amphipathic
polymer and sodium taurocholate
as a carrier); upper right: drug
release of baicalin. Reproduced
from [94] with permission

Drug Deliv. and Transl. Res. (2020) 10:354–367 359



of chito-oligosaccharide. In vivo pharmacokinetics showed a
significant increase in Flos Lonicerae Japonicae and Fructus
forsythia concentrations when co-delivered with chito-oligo-
saccharide, relative to herb administration alone (Fig. 5a). In
addition, enhanced antiviral effect was achieved in four prep-
arations containing chito-oligosaccharide, which was ex-
plained by the higher absorption of caffeic acid derivatives
(Fig. 5b). This work was unique because it studied the effects
of the delivery system on both the pharmacokinetic properties
and the antiviral activity of the herbal drug, directly.

An inclusion complex of honokiol and sulfobutyl ether-β-
cyclodextrin was made to enhance the solubility and bioavail-
ability of the herbal drug [148]. In a phase solubility experi-
ment, honokiol solubility linearly increased with growing
levels of the cyclodextrin. The in vitro release study showed
that the honokiol/cyclodextrin complex allowed enhanced re-
lease rate than either honokiol/cyclodextrin physical mixture
or honokiol alone. In rat oral pharmacokinetics, AUC and
Cmax values of the inclusion complex were 1.58 and 1.23
times higher relative to honokiol suspension, respectively.

Also, honokiol in suspension had 3 times higher body clear-
ance than complexed honokiol.

Andrographolide is sparingly soluble in water, unstable in
very acidic and basic conditions, poorly absorbed, and has
low oral bioavailability. PLGA (poly(lactic-co-glycolic acid))
was used to form andrographolide loaded microspheres to over-
come these limitations [124]. In vitro andrographolide-
microsphere formulation exhibited sustained release profile over
9 days, with just 14% andrographolide release over the first 8 h,
because of low drug density at the surface of the delivery sys-
tem, which also allowed a relatively high oral bioavailability of
67.5%. Lastly, fine correlation was obtained between in vitro
drug release and in vivo absorption, indicating that the in vitro
assay may be a good predictor of drug absorption in vivo.

Curcumin, a polyphenolic compound with various medical
applications including known antivirus activity, is poorly water-
soluble and has low oral bioavailability. With N-acetyl L-cyste-
ine and different levels (20, 50, and 100 mg) of polyethylene
glycol (PEG), nanostructured solid lipid carriers were synthe-
sized to obtain curcumin mucoadhesion and mucus penetration

Fig. 4 Oleanolic acid rat blood
levels after oral administration of
oleanolic acid-loaded SMEDDS
(filled diamonds) and marketed
drug product (tablet) (filled
squares); upper right:
accumulative release of oleanolic
acid. Reproduced from [151] with
permission

Fig. 5 Effect of COS (chito-oligosaccharide) on the pharmacokinetic
(panel a) and pharmacodynamics (inhibition of influenza virus; panel b)
of caffeic acid derivative after oral administration of preparation
containing Flos Lonicerae Japonicae and Fructus, forsythia extracts.
Black, 1:1:2-fold of Flos Lonicerae Japonicae, Fructus Forsythiae, and
Radix Scutellariae, respectively; red, only Radix Scutellariae; green,

2:2:2-fold of Flos Lonicerae Japonicae, Fructus Forsythiae, and Radix
Scutellariae, respectively; yellow, COS with added Radix Scutellariae
only; blue, COS with added 1:1:2-fold of Flos Lonicerae Japonicae,
Fructus Forsythiae, and Radix Scutellariae, respectively (n = 6).
Reproduced from [122] with permission
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[156]. Drug release was characterized in vitro for curcumin so-
lution, curcumin-loaded nanolipid carrier, and curcumin-loaded
nanolipid carrier with N-acetyl L-cysteine PEG. From the
curcumin solution, 80% of drug was released after 4 h, whereas
all the nanolipid formulations allowed sustained curcumin re-
lease; the sustained release effect from the modified nanolipid
carriers was more pronounced than that of unmodified
nanolipids. An SPIP study in rats was then conducted, and re-
sults were similar for all three parts of the small intestine:
nanolipids allowed enhanced curcumin permeation relative to
solution, and so did higher N-acetyl L-cysteine content.
Pharmacokinetic study of curcumin solutions (P.O and I.V)
and curcumin nanolipid carriers (with N-acetyl L-cysteine PEG
content of 0, 20, 50, and 100 mg) was conducted. Similar to the
results of the permeability experiment, plasma curcumin concen-
trations were higher with nanolipid carriers relative to solution
(either P.O or I.V) and increased further with higher N-acetyl L-
cysteine PEG levels. The area under the curve was substantially
larger with the modified nanolipid carriers compared to either
curcumin solution or to the unmodified delivery system.

Indeed,modern drug delivery technologies are numerous, and
tailoring the most appropriate formulation to the medicinal phy-
tochemical in question is not just a matter of trial and error; rather,
the physicochemical properties of the specific natural drug sub-
stance determine the delivery issues that the formulator may face,
and the excipients that can be used to overcome these challenges
[157, 158]. Among the physicochemical properties of impor-
tance are log P (ameasure of the drug’s lipophilicity) andmelting
point. These parameters will determine the likelihood of the ac-
tive substance to precipitate in the gastrointestinal lumen, in
which case the use of amorphous formulations may be preferred
over other oral carriers. Additional important physicochemical
properties include the drug’s chemical structure and molecular
weight; using previously successful formulations to deliver drugs
with similar chemical structure may be a wise approach. Also,
generally speaking, higher molecular weight substances may be
better incorporated into lipid-based drug delivery systems
[159–161]. It should be noted that some solubility-enabling for-
mulations may simultaneously decrease the drug’s permeability,
and overall absorption may be unimproved. This solubility-
permeability interplay was shown for formulations based on cy-
clodextrins [162–164], surfactants [165], cosolvents [166], and
hydrotropes [167, 168]. In amorphous solid dispersions (ASD),
on the other hand, the solubility increases (via supersaturation)
with unchanged permeability, and thus, ASD may be preferred
over other carrier systems, given supersaturation can be achieved
and maintained for sufficient time [169].

Conclusions

Altogether, the evidence presented in this work supports the
notion that medicinal plants have promising therapeutic

potential, especially in the case of herb products against viral
infections. Further research on the mechanisms by which phy-
tochemicals exhibit their antiviral effect will allow the devel-
oping of successful target-specific drug delivery systems. At
the moment, we cannot ensure the plant phytochemicals di-
rectly reach viruses or the correct structures inside cells.
Ideally, we would have smart pharmaceutical nanotechnol-
ogies and targeting strategies that can avoid cellular defenses,
transport drugs to targeted intracellular sites, and release the
drugs in response to specific molecular signals. Literature also
lacks randomized clinical trials to discern the strength of new
herbal antiviral drug delivery systems. It is our hope that in the
future more high quality clinically relevant studies will accu-
mulate in the literature, which will shed light on the full po-
tential of phytochemicals as novel antiviral agents in adequate
delivery systems.
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