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Gut microbiota is key to the development and modulation of the mucosal immune system. It plays a central role in several
physiological functions, in the modulation of inflammatory signaling and in the protection against infections. In healthy states,
there is a perfect balance between commensal and pathogens, and microbiota and the immune system interact to maintain gut
homeostasis. The alteration of such balance, called dysbiosis, determines an intestinal bacterial overgrowth which leads to the
disruption of the intestinal barrier with systemic translocation of pathogens. The pancreas does not possess its own microbiota,
and it is believed that inflammatory and neoplastic processes affecting the gland may be linked to intestinal dysbiosis. Increasing
research evidence testifies a correlation between intestinal dysbiosis and various pancreatic disorders, but it remains unclear
whether dysbiosis is the cause or an effect. The analysis of specific alterations in the microbiome profile may permit to develop
novel tools for the early detection of several pancreatic disorders, utilizing samples, such as blood, saliva, and stools. Future
studies will have to elucidate the mechanisms by which gut microbiota is modulated and how it tunes the immune system, in
order to be able to develop innovative treatment strategies for pancreatic disorders.

1. Introduction

The human gastrointestinal tract hosts more than 1014

microorganisms, a number 10 to 20 times greater than the
total number of cells of the human body, and includes at least
1000 different microbial species, including bacteria, fungi,
yeast, viruses, and archaea [1–3]. The ensemble of these
populations constitutes the so-called gut microbiota. Instead,
the collection of the whole genome sequence of gut microbi-
ota species is called microbiome and consists of more than
5,000,000 genes [4–7].

Gut microbiota is central to the development and modu-
lation of the mucosal innate and adaptive immune system
and exerts an important role in the protection against patho-
genic microbes by maintaining gut integrity and regulating
intestinal barrier permeability. It weighs about 900–1200 g
and participates in several physiological functions. Indeed,
gut microbiota is constantly involved in facilitating digestion,

storing nutrients, secreting vitamins, activating metabolic
functions, and shaping intestinal architecture [8]. It is com-
posed of various microbial populations, the most prevalent
being the Firmicutes and Bacteroidetes phyla which together
represent about 80–90% of the whole gut microbiota [9].
These microbial populations are separated from intestinal
epithelial cells by a physical-chemical barrier composed of
mucus, mucin glycoproteins, and multiple antibacterial mol-
ecules, including alpha-defensins, C-type lectins, lysozyme,
phospholipase A2, and secretory IgA [10]. In healthy con-
ditions, all gut microbial species are in a mutualistic or
commensal symbiotic state contributing to a perfect and
constant homeostasis [11]. In such state, the interaction
between gut microbiota, intestinal epithelial cells, and the
mucosal immune system creates an environment which
controls overgrowth of the host pathogenic flora [12]
and limits the colonization of the intestinal tract by for-
eign pathogens [13–16].
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The breakdown of this balance between gut microbiota,
the immune system, and the intestinal epithelial barrier
results in a pathological condition called dysbiosis [17]. In
recent years, several diseases and dysfunctions have been
linked to intestinal dysbiosis, including celiac disease, inflam-
matory bowel disease (IBD), and irritable bowel syndrome
(IBS), as well as other conditions [18–24]. In a similar way,
given that pancreas is known not to have its own microbial
collection, gut microbiota may be involved in the pathogene-
sis of pancreatic disorders [25]. In this article, we will review
the currently available data linking gut microbiota-immune
system crosstalk and several pancreatic disorders, such as
pancreatitis, diabetes, and pancreatic cancer.

2. Inflammatory Pancreatic Diseases

Acute pancreatitis is an inflammatory disease frequently
associated with gallstones or alcohol consumption with a
high risk of mortality.

Chronic pancreatitis, instead, is a long-standing, inflam-
matory disease leading to severe alterations in pancreatic
structure and function. The typical clinical manifestations
are recurrent episodes of acute pancreatitis in a previously
compromised pancreatic gland or a pancreatic exocrine
insufficiency due to persistent chronic damage [26].

In either acute or chronic pancreatitis, several alterations
in gut microbiota composition have been reported [27].

2.1. Acute Pancreatitis. Hallmark of an acute pancreatitis is
an inflammatory state [28, 29] due to an imbalance between
pro- and anti-inflammatory cytokines. Recently, Chen et al.,
in a necrotizing pancreatitis mouse model, demonstrated an
overexpression of several proinflammatory cytokines and
chemokines, such as TNF-alpha, IL-1beta, IL-6, IL-17A,
CXCL1, and IL-18, and a parallel decrease in the Paneth
cell-related antimicrobial peptides, such as alpha-defensins
and lysozyme [30, 31].

Indeed, pancreatic acinar and Paneth cell-related antimi-
crobial peptides are essential for gut homeostasis, intestinal
immunity integrity, and even for the control of microbiome
composition [32]. Recently, in a mouse model, Ahuja et al.
have demonstrated that deletion of the Ca2+ channel Orai1
in pancreatic acinar cells (Orai1−/− mice) induces several
signs of gut inflammation and bacterial overgrowth, lead-
ing to bacterial translocation, systemic infection, and death
[33]. These experimental findings further confirm the
critical role played by antimicrobial pancreatic secretion
in modulating gut/pancreatic homeostasis and gut immune
system integrity.

As response to inflammation-mediated tissue damage,
acinar pancreatic cells produce several molecules that may
have the function of damage-associated molecular patterns
(DAMPs) [34], such as high-mobility group box protein 1
(HMGB1), heat shock protein 70 (Hsp70), cytosolic
protease-caspase 1, nucleotide-binding domain (NLRP3),
adenosine triphosphate (ATP), and DNA [35–37]. DAMPs
promote activation of the Toll-like-receptors (TLRs)
germline-encoded type I transmembrane receptors present
on epithelial cells, immune cells, macrophages, and other

cells. TLRs act as pathogen recognition receptors (PRRs)
and are able to identify pathogen-associated molecular pat-
terns (PAMPs) [38]. To date, in humans, a total of at least
10 different TLRs have been recognized [39]. The TLRs most
frequently implicated in the interactions with intestinal bac-
teria are TLR2 and TLR4, but several other TLRs may be
implicated in the pathogenesis of acute pancreatitis [38, 40].
Nishio et al. demonstrated that in mice genetically deficient
in the anti-inflammatory cytokine IL-10, the repeated
administration of TLR4 and TLR9 ligands was able to induce
pancreatic injury [41]. Matas-Cobos et al. comparing 269
acute pancreatitis patients to 269 healthy controls demon-
strated that polymorphisms in TLR3 and TLR6 genes were
associated with increased severity of pancreatitis [42].

Each TLR responds to distinct DAMPs, leading to the
activation of specific intracellular signaling pathways, and
to the production of inflammatory cytokines and chemo-
kines [43]. Notably, in the blood of severe acute pancreatitis
patients, an increase of TNF-alpha, IL-1, IL-6, and IL-10
has been documented [28, 29]. However, TLR activation is
also linked to the transcription of several genes related to
some nuclear factors, such as nuclear factor kappa-B (NF-
kB), MAP kinase p38, JNK, and IRF-3, crucial in the control
of infection and inflammation [11]. Thus, TLRs may be ini-
tially responsible for the inflammatory state, but subse-
quently, they protect the host, repair damaged tissue, and
promote a mucosal immune response [38].

Recently, Watanabe et al. proposed that pancreatitis
should be thought as a unique form of immune-mediated
inflammation [44]. In this model, a pivotal role is played by
TLRs (activated by pathogens related DAMPs), in inducing
NF-kB-relatedadaptive immunesystemcytokines. In thispro-
inflammatory context, damaged acinar cells begin to produce
the proinflammatory cytokine IL-33 that, in turn, determines
the activation and recruitment of T-cell subpopulations
which participate in pancreatic inflammation.

In the context of acute pancreatitis, the inflammation
produces intestinal damage by several concomitant patho-
genic mechanisms, such as alterations in microcirculation,
vasoconstriction in the splanchnic district, and ischemia-
reperfusion damage [45, 46]. This, in turn, alters intestinal
permeability and leads to a condition known as leaky gut
(Figure 1). When there is bacterial overgrowth, leaky gut
facilitates the translocation of bacteria and toxins to the
pancreas. This worsens pancreatic inflammation resulting
in further damage leading to fibrosis or even, in severe cases,
necrosis. The bacterial translocation may also be responsible
for secondary infections that are associated with a high
mortality risk [47].

Moreover, several studies have investigated the relation
between inflammatory patterns and microbiota composition
during acute pancreatitis. In general, during acute pancreati-
tis, there is an increase of pathogenic bacteria of the Entero-
bacteriaceae and Firmicutes families and a decrease of
beneficial Bacteroidetes and Lactobacillales [28]. Gerritsen
et al. in a mouse model documented that the normal intesti-
nal flora is replaced by an “acute pancreatitis-associated
microbiota” [30]. In 2015, Tan et al. published the results of
a multicentre prospective clinical study involving 108 acute
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pancreatitis patients compared to healthy controls [28]. The
authors analyzed the 10 predominant bacteria and measured
several serum markers of systemic inflammation, such as
plasma endotoxin, TNF-alpha, IL-1, IL-6, and IL-10. The
findings have shown that the pathogenetic Enterococcus, of
the phylum Firmicutes (order Lactobacillales), is increased
while Bifidobacterium, of the phylum Actinobacteria (order
Bifidobacteriales), is decreased. Additionally, IL-6 serum
levels correlated directly with Enterobacteriaceae and Entero-
coccus number and inversely with the Bifidobacterium and
Clostridium cluster XI number. The study by Tan et al. was
also able to demonstrate that the extent of gut microbiota
modifications predicts pancreatitis severity and the occur-
rence of systemic complications.

It is notable that in the context of acute pancreatitis
several commensal bacteria populations have also been
identified. These are associated with reduced levels of inflam-
matory cytokines, such as IL-1beta, TNF-alpha, CXCL1, and
IL-18, and are inversely correlated with pancreatitis severity
and systemic infectious complications. Thus, it can be
hypothesized that the restoration of a physiological gut
microbiota composition may be a useful strategy to treat

acute pancreatitis [48]. Indeed, the use of probiotics in this
clinical setting has been tested, but results are controver-
sial [49]. Qin et al. in 76 acute pancreatitis patients
demonstrated that the restoration of a physiological com-
mensal/pathogens ratio is able to limit the systemic infec-
tious complications [50]. On the other hand, in several
other studies, oral administration of probiotics showed
no significant impact on disease outcome or on the
prevention of complications [48, 51, 52].

2.2. Chronic Pancreatitis. Chronic pancreatitis results from a
long-standing inflammation leading to a chronic damage and
severe functional impairment of the gland [53, 54].

It has been reported that about one-third of chronic
pancreatitis patients are affected by intestinal bacterial over-
growth but the specific alterations in microbiota composition
are not yet fully known [55–59]. Some authors have observed
an increase in Firmicutes and a relative decrease in Bacteroi-
detes [27]. Recently, Jandhyala et al. published a study
analyzing three groups of patients: chronic pancreatitis with
and without diabetes and healthy controls. Regardless of
diabetes, in pancreatitis patients, it was documented a
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Figure 1: Role of leaky gut in pancreatic inflammation and carcinogenesis. The breakdown of the relationship among physiologic and
pathogenic bacteria, the immune system, and intestinal epithelial barrier leads to dysbiosis. The pancreas does not possess its own
microbiota, and thus, inflammatory and neoplastic processes affecting the gland may be linked to intestinal dysbiosis. In this way, during
bacterial overgrowth, leaky gut is responsible for the translocation of bacteria and toxins to the pancreas. Bacterial translocation is
involved in pancreatic inflammation due to toxin diffusion and complications like fibrosis, digestive and absorption disorders, diabetes, or
cancer. TLR: Toll-like receptors; NLRs: NOD-like receptors; IL: interleukin; IFN: interferon; TNF: tumor necrosis factor; ROR-γt: RAR-
related orphan receptor-gamma t; NF-kB: nuclear factor kappa-B.
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progressive, duration-dependent reduction of the commen-
sal bacteria Faecalibacterium prausnitzii [27]. Notably, Fae-
calibacterium prausnitzii promotes the homeostasis of
intestinal epithelium favoring mucin production and tight-
junction protein synthesis [60], induces the anti-
inflammatory cytokine IL-10 [61], and regulates gut T-cell
responses. Thus, the progressive reduction in Faecalibacter-
ium prausnitzii observed in chronic pancreatitis patients
testifies to a duration-dependent disruption of gut mucosal
integrity [27]. Furthermore, Faecalibacterium prausnitzii
levels negatively correlated with plasma endotoxin ones and
an increase of endotoxin levels was associated with an
impairment of glucose metabolism. Thus, the reduction in
Faecalibacterium prausnitzii observed in chronic pancreatitis
patients is an additional factor favoring the onset of diabetes
or worsening its course. Then, Jandhyala et al. reported a
reduction of Ruminococcus bromii in chronic pancreatitis
patients [27]. Ruminococcus bromii has an important physio-
logic role in the degradation of starch in human colon [62].
Its reduction is related to the disruption of the gut
mucosal barrier and is responsible of an alteration of the
glucose metabolism.

In other studies, a reduction of Bacteroidetes, a Gram-
negative bacteria source of lipopolysaccharide (LPS), has
consistently been reported. LPS is considered a potent
mediator of inflammation. In fact, in binding TLR4, LPS
may activate NF-kB-related proinflammatory cytokine
production [63]. Chronic pancreatitis patients have higher
LPS and endotoxin levels than healthy controls, and these
correlate with disease duration. LPS may induce an impair-
ment of pancreatic beta-cells further worsening glucose
metabolism [64]. The inflammatory process targets pancre-
atic islets, and also, T-cell recruitment occurs. In this way,
literature data testifies that during chronic pancreatitis there
is an increase in both Th1 and Th17 cells [65] and their
related proinflammatory cytokines, such as IFN-gamma in
pancreatic islets [66].

2.3. Autoimmune Pancreatitis. Pancreatic inflammation
may elicit an immune response in the exocrine tissue,
leading to either acute or chronic damage. Autoimmune
pancreatitis (AIP) accounts for about 5% of all pancreati-
tis, and it is usually associated with other autoimmune
diseases [67]. An increase in serum immunoglobulin G4
(IgG4) is a diagnostic criterion [68]. While genetic factors
have been hypothesized [69], the pathogenesis of AIP
remains unknown [70].

Interestingly, the gastric Helicobacter pylori infection
has been shown to be associated with AIP [71, 72]. This
bacterium is known to trigger immune responses against
host tissues via several molecular mimicry pathways [73].
Guarneri et al. reported a homology between the human car-
bonic anhydrase II (CA-II) and alpha-carbonic anhydrase of
Helicobacter pylori (HpCA). CA-II is an enzyme of the
pancreatic epithelium whose specific serum antibodies are
characteristics of AIP, and the bacterial homolog segments
contain the binding motif of the high-risk HLA-DR alleles.
These data demonstrated thatHelicobacter pylorimay trigger
AIP in genetically predisposed subjects [74].

Other suggestions link bacterial infections with the devel-
opment of AIP. In a mouse model, Escherichia coli induces a
severe pancreatic inflammation and fibrosis similar to the
human AIP [75]. Numerous studies have reported that
specific microbial antigens may trigger the development of
AIP activating immune responses. Gram-negative bacteria-
associated LPS is able to activate immune response via-TLRs
[41]. Several TLRs (TLR2, TLR3, TLR4, TLR5, and
TLR7) have been linked with the development of AIP
[76–78]. Among these, TLR3 typically recognizes microbial
dsRNA activating the Fas/FasL-mediated cytotoxicity,
responsible for chronic inflammation [79]. Finally, TLR7
is able to recognize viral ssRNA, thus activating proinflam-
matory signaling cascades [80].

3. Diabetes

3.1. Type 1 Diabetes. Type 1 diabetes (T1D) is characterized
by a loss of insulin secretion due to damage to pancreatic
beta-cells caused by an autoimmune process triggered by
microbial infections.

Several alterations in gut microbiota composition have
been related to the development of T1D. In a recent study
on 76 children at high genetic risk, it has been demonstrated
that early changes in gut microbiome composition predict
T1D onset [81]. In particular, in the microbiome of these
T1D predisposed children, Bacteroides dorei and Bacteroides
vulgatus are increased. Instead, in people with late-onset
T1D, there is not only a similar increase in Bacteroides
species but also a reduction of Clostridium leptum [38, 82].

Furthermore, several bacterial or viral antigens recog-
nized in children and teenagers have been associated later
to the development of T1D [83], including antigens from
Coxsackievirus A and B, Echovirus, Enterovirus, and so forth.

During the course of T1D, profound alterations in gut
microbiota composition and related metabolites take place
[84, 85]. Of importance, changes in the ratio of butyrate-
producing Bacteroidetes and Firmicutes bacteria occur
[86–88]. Other butyrate-producing and mucin-degrading
bacteria, such as Prevotella and Akkermansia muciniphila,
are decreased [89] while short-chain fatty acid- (SCFAs-)
producing bacteria such as Klebsiella are increased.

Recently, Semenkovich et al. demonstrated bidirectional
relationships between gut microbiota alterations and T1D-
related inflammation. In fact, in a NOD mouse model, gut
microbiota was able to instruct hormonal changes in the tes-
tosterone axis (in males) which led to T1D susceptibility, and
the hormonal levels, in turn, were able to alter the microbial
niches in the gut. This phenomenon may be a possible expla-
nation for the different susceptibility between sexes [84, 90].

In a murine T1D model associated with a reduction in
Lactobacillus and Bifidobacterium species [91], a coexisting
high-grade lymphopenia [92] and an upregulation of Th17
cells have been shown [93]. These findings lend support to
the hypothesis that alterations in gut microbiota composition
are associated with abnormalities of the mucosal immune
system and that both mechanisms participate in T1D patho-
genesis [94]. In addition, a leaky gut exacerbates T1D either
indirectly via beta-cell damage, due to bacterial translocation
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and related antigen presentation [95], or directly via beta-cell
function impairment mediated by microbial toxins, such as
streptozotocin [94].

Diet modification and pharmacological treatment have
been similarly studied. Recently, a nonobese diabetic mouse
study found that exposure to acidified water is able to increase
the presence of mucosal and spleen T-regulatory cells (Tregs)
and to decrease Th17 cells, thus decreasing the onset of T1D
[96]. Amouse model revealed that insulin treatment is able to
somewhat restore microbial populations, positively modulat-
ing the microbiota composition towards the normal, healthy
state [97]. Xenobiotics have also been implicated in the path-
ogenesis of T1D. In a recently published study, the neonatal
oral administration of vancomycin in a nonobese diabetic
mouse reduced the presence of several major genera of
Gram-positive and Gram-negative bacteria, with one single
species (Akkermansia muciniphila) becoming dominant [98].

Furthermore, in T1D pathogenesis, a special role is
played by mucosal innate and adaptive immunity. To eluci-
date the role of innate immunity in the susceptibility to
T1D, the nucleotide-binding oligomerization domain-
containing protein 2 (Nod2) has been identified as a key fac-
tor [99]. Nod2, mainly expressed in neutrophils and mono-
cytes/macrophages, recognizes bacterial molecules which
possess the muramyl dipeptide (MDP) moiety and stimulates
an immune reaction, inducing CD4+ Th1 and CD4+ Th17
cells in pancreatic tissue, contributing to autoantibody pro-
duction and tissue damage [100, 101].

Recently, Li et al. have generated Nod2−/− nonobese dia-
betic (NOD) mice with a different gut microbiota composi-
tion compared to Nod2+/+ NOD mice. Nod2−/− NOD mice
appear to be significantly protected from diabetes and present
a significant reduction in the proinflammatory cytokine-
secreting immune cells and an increase in Tregs [99]. Inter-
estingly, when Nod2−/− NOD mice were housed with
Nod2+/+ NOD mice, they lost the protection from diabetes,
and this evidence confirmed that T1D susceptibility in
Nod2−/− NOD mice is dependent on the alteration of gut
microbiota, which modulated the frequency and function of
IgA-secreting beta-cells and IL-10 promoting T-regulatory
cells. Thus, this study has confirmed the close relationship
between gutmicrobiota and T1D susceptibility and the strong
interaction between gut microbiota and the immune system.

Several studies have specifically investigated the role of
adaptive immune cells in the pathogenesis of T1D. There is
evidence that pancreatic islets infiltrating lymphocytes
induce beta-cell damage via CD8+ cytotoxic T-cells. This
abnormal activation is believed to be the consequence of
mechanisms of molecular mimicry and of microbial infec-
tions triggering an immune response. Recent studies have
focused on the possible role of TLRs. Pancreatic beta-cells
express TLR4 which make them sensitive to LPS, promoting
and activating transcription of NF-kB-related proinflamma-
tory genes that mediate an immune response against micro-
bial invasion. Thus, the upregulation of TLR4 is a further
mechanism to understand the pathogenesis of T1D [71].

3.2. Metabolic Syndrome and Type 2 Diabetes.Metabolic syn-
drome is defined by a complex cluster of various elements,

including visceral obesity, abnormal glucose metabolism,
dyslipidaemia, and arterial hypertension. Metabolic syn-
drome is associated with an increased risk of type 2 diabetes
(T2D) and cardiovascular diseases [102]. The disease is char-
acterized by an increased cytokine production (mainly TNF-
alpha and IL-1beta) [103], with a persistent low-grade
inflammation [104]. This, in turn, generates a continuous
recruitment of immune cells in metabolically active tissues,
such as adipose tissue, the pancreatic gland, thyroid, liver,
and muscle [105, 106]. T2D is a multifactorial disease, and
several factors are involved in its pathogenesis, including
diet, obesity, and gut dysbiosis [107].

Gut microbiota has conclusively been linked to the path-
ogenesis of both metabolic syndrome and T2D. Recently,
Guo et al. developed a mouse model with high-fat feeding
and demonstrated that the diet was able to alter gut microbial
communities, the Paneth cell-related antimicrobial peptide
production, and even to increase circulating proinflamma-
tory cytokines, such as TNF-alpha, IL-6, and IL-1beta
[108]. Thus, it is the intestinal dysbiosis related to diet, rather
than adipose tissue per se, that has a pivotal role in develop-
ing intestinal inflammation.

Hence, gut microbiota by affecting the production and
storage of energy could influence body weight and obesity
[8], tissue proinflammatory activity, peripheral insulin resis-
tance, pancreatic intestinal hormone production, and finally
bile acid metabolism [109]. Consequently, in metabolic syn-
drome, the increase in the Firmicutes/Bacteroidetes ratio
corresponds to body weight and promotes the hydrolysis of
nondigestible polysaccharides in the gut, which in turn favors
an increase in calories extracted from food [110, 111]. Several
metagenomic studies performed on metabolic syndrome and
T2D patient stools compared to healthy subjects revealed
an increase in the order Lactobacillales with a decrease
in Roseburia intestinalis, Faecalibacterium prausnitzii, Bac-
teroides, Prevotella genera, Bifidobacterium animalis, and
Methanobrevibacter smithii. On the other hand, Staphylo-
coccus aureus, Escherichia coli, and Lactobacillus reuteri
have been found to be elevated and to predict the develop-
ment of obesity [107].

Certain types of bacteria, such as Tannerella spp., are
associated with oral infections and periodontal disease. These
are typically characterized by an increase of several proin-
flammatory cytokines like TNF-alpha, IL-1beta, and IL-6
[112]. Gram-negative bacteria-induced LPS is able to trigger
an immune response via LPS-binding protein (LBP), which
in turn binds the macrophage receptor CD14. The complex
formed by LPS-LBP and CD14 may activate NF-kB and
AP-1 proinflammatory genes via TLR4 [113]. LPS may also
activate the macrophage and dendritic cell NOD-like recep-
tors (NLRs) that induce NF-kB in association with TLR4
[114]. In this way, a mouse model demonstrated that the lack
of TLR4 protects against insulin resistance [115].

Finally, recent evidences demonstrated that intestinal
dysbiosis may also mediate alterations in the Th17 cells/
Tregs balance. So, the breakdown in the physiological equi-
librium between pro- and anti-inflammatory T-cell subpop-
ulations may be responsible for the development and
progression of several inflammatory diseases, both in the
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gastrointestinal tract and in the systemic ones, including
obesity-associated metabolic syndrome and T2D [104].
Thus, intestinal dysbiosis is intimately linked to significant
alterations in Th17/Tregs balance contributing to obesity,
metabolic syndrome, and T2D. Understanding the complex
mechanisms responsible for this alteration will allow to
develop novel translational therapeutic strategies to poten-
tially treat these widespread diseases.

4. Pancreatic Cancer

Pancreatic cancer is extremely aggressive, with a very poor
prognosis. Only 25% of pancreatic cancer can be surgically
removed at the time of diagnosis. About 95% of them are
adenocarcinomas that originate from gland, ductal, or acinar
cells of the exocrine pancreas [116].

A link among dysbiosis, chronic inflammation, and pan-
creatic cancer has been well established [117–120]. Impor-
tantly, dysbiosis is considered not to have a direct
mutagenic action disrupting cell cycle control, activating
oncogenic signaling pathways, and producing tumor-
promoting metabolites [121–124]. However, intestinal dys-
biosis can activate the immune system through several path-
ways involving tumor-infiltrating lymphocytes (TILs) and
their related cytokines, innate immune cells, TLRs, and
others. In this way, TILs produce proinflammatory mediators
inducing STAT3 and NF-kB pathways that act as tumori-
genic factors increasing cellular proliferation and suppressing
apoptosis [125–127].

Several germ-free mouse models have allowed to under-
stand the significant impact of gut microbiome in carcino-
genesis. In fact, germ-free animals have a significant
reduction in cancer development, probably due to decreased
gut dysbiosis and related chronic inflammation [1, 128]. In
the same way, a reduction in cancer development has been
observed in mice after antibiotic treatment that may be
responsible for the reduction of the pathogen load in the
gut mucosa [117]. Other experimental evidence has
highlighted the close relationship among diet, xenobiotics,
gut microbiota, and cancer [129]. In one study, mice geneti-
cally predisposed to colorectal cancer displayed increased
tumor progression in a context characterized by a specific
microbiota composition. This tumor-predisposing pheno-
type could be transferred to healthy mice after microbiota
transplant using fecal samples. Interestingly, in these mice,
antibiotics were able to limit tumor development, probably
blocking the tumor-inducing gut microbiota [129]. However,
antibiotics could also have a detrimental role. In a recent
case-control study conducted on a very large cancer popula-
tion, Boursi et al. proved that repeated antibiotic exposure is
able to promote cancer formation, probably due to a change
in microbiota [130]. This study revealed that especially the
use of penicillin was associated with an elevated risk of
developing colorectal, esophageal, gastric, and pancreatic
cancers [130].

In chronic pancreatitis people who harbor a KRAS
mutation, there is an increased risk of cancer [131, 132]. In
these individuals, gut dysbiosis is able to accelerate pancreatic
carcinogenesis due to the mutated KRAS hyperstimulation

by the LPS-driven inflammation and by the TLR-mediated
NF-kB proinflammatory gene transcription [133, 134]. The
role of Gram-negative LPS-TLR4 interaction in inducing
chronic inflammation and cancer has been well recognized
[135]. In a recent study, Ochi et al. specifically demonstrated
their impact in the pathogenesis of pancreatic cancer [136].
In a mouse model, the administration of LPS was able to sig-
nificantly accelerate carcinogenic progression. On the other
hand, the inhibition of TLR4 limited cancer progression,
while the inhibition of the TLR adapter protein myeloid
differentiation primary response gene 88 (MyD88) unpre-
dictably worsened pancreatic inflammation and cancer
development. The procancerogenetic and inflammatory
actions of MyD88 inhibition are mediated by dendritic cells
(DCs), which were able to induce pancreatic antigen-
restricted Th2 cells and promote the transition from pancre-
atitis to pancreatic cancer [136].

Pathogens are able to act as carcinogenetic agents after
infecting the pancreatic gland through intestinal transloca-
tion. Among these, a special role is played by Helicobacter
pylori [72]. In fact, it has been well established that it may
promote the carcinogenesis of the stomach, liver, and
pancreas, by inducing the activation of the nuclear factor
NF-kB and its proinflammatory cytokines, such as IL-1beta
[137]. Fusobacterium species have also been linked to the
development of pancreatic cancer, and they are associated
with worse prognosis [138].

Recently, Ren et al. studied the microbiota profile of 85
pancreatic cancer patients compared to 57 healthy people
[139]. This study revealed that gut microbial diversity is
significantly reduced in pancreatic cancer and this tumor is
characterized by a unique microbial profile. In particular,
the microbial alterations in pancreatic cancer regarded an
increase in several pathogens, such as Veillonella, Klebsiella,
and Selenomonas, and LPS-producing bacteria including
Prevotella, Hallella, and Enterobacter, and a related decrease
in several commensals, such as Bifidobacterium, and some
butyrate-producing bacteria, such as Coprococcus, Clostrid-
ium IV, Blautia, Flavonifractor, and Anaerostipes [139]. The
evidence of the increase in the LPS-producing bacteria
confirms the role of dysbiosis in mediating chronic inflam-
mation and oxidative damage activating the NF-kB pathway
and its related proinflammatory cytokine production. In this
way, long-standing chronic inflammation and oxidative
damage participate in the development of cancer.

Likewise, it has been shown that pancreatic cancer is
associated with an alteration of the physiological oral micro-
biota composition [140]. Oral microbiota is composed of
more than 700 bacteria species which contribute to health
and physiology of the mouth, teeth, and oral cavity [117].
Alterations in the taxa dominance and diversity among oral
microbial communities, particularly regarding those related
to the periodontal disease, may be associated with an
increased pancreatic cancer risk [140]. Farrell et al. per-
formed a study analyzing salivary microbiota of several
pancreatic cancer and chronic pancreatitis patients com-
pared to healthy subjects [141]. These authors demonstrated
that pancreatic cancer is related to a specific alteration in sal-
ivary microbiota composition. In particular, it was shown
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that Neisseria elongata, Corynebacterium spp., and Strepto-
coccus mitis decreased, while Granulicatella adiacens and
Porphyromonas gingivalis increased [140, 141]. Recently,
Torres et al. conducted a cross-sectional study showing an
increase in Leptotrichia spp. and a reduction in Porphyromo-
nas spp. in pancreatic cancer patient saliva; thus, a higher
Leptotrichia : Porphyromonas (L : P) ratio may become an
important pancreatic cancer diagnostic biomarker [142].
Otherwise, Michaud et al. demonstrated that high antibody
titer against gut commensal bacteria was associated with a
reduction of 45% in the risk of pancreatic cancer compared
to those with a lower antibody titer [143]. In the same way,
these authors revealed that the highest concentration of
serum antibodies to the pathogenetic bacteria Porphyromo-
nas gingivalis (associated with periodontal disease) was
linked to a 2-fold increased risk of pancreatic cancer [143].

Altogether, these evidences highlight the potential to
develop future novel diagnostic tools to detect early pancre-
atic cancer, utilizing samples easy to collect, such as blood,
saliva, and stools. However, at the present time, it is not pos-
sible to discriminate whether these gut microbial alterations
exert a causal role in the developing of pancreatic cancer or,
instead, are a result of cancer formation.

Importantly, it should be noted that chronic inflammation-
related pancreatic cancer development may occur even without
the presence of bacteria. This type of sterile inflammation may
be triggered by distant intestinal dysbiosis or translocation of
bacteria components, such as LPS, and it is guided by the
activation of the immune system through TLRs. In this way,
TLR2, TLR4, and TLR9 have been recently shown to be associ-
ated with pancreatic cancer development [144, 145].

Finally, recent evidences have shown that gut microbiota
and antibiotics may alter tumor response to chemotherapy
by modulating tumor microenvironment [146, 147]. Hence,
gut microbiota may modify the efficacy of traditional cancer
chemotherapies, the novel immune-target drugs, such as
anti-CTLA4 and anti-CD274 therapies, but also the tumor
recurrence after pancreatic surgery [121].

In conclusion, pancreatic cancer is considered a very
insidious and aggressive disease characterized by late diagno-
sis and no effective screening methods. In this way, in the one
hand, it may be too early to hope in the routine use of gut
microbiome modulation for therapeutic purposes, and on
the other hand, gut microbiome profiling may have impor-
tant diagnostic tools in the prediction of pancreatic cancer
development, thus improving the survival rates associated
with this disease.

5. Conclusions

Gut microbiota is central to the development and modula-
tion of the intestinal homeostasis and mucosal immune sys-
tem integrity and exerts an important role in the protection
against pathogenic microbes by maintaining gut integrity
and regulating intestinal barrier permeability.

The pancreas does not possess its own microbiota, and
the available evidence demonstrates that alteration of gut
microbiota determining dysbiosis and bacterial translocation
(Table 1) is correlated with the duration and prognosis of

several pancreatic disorders, including pancreatitis, diabetes,
and cancer. However, whether gut dysbiosis is the cause or an
effect of such pathological conditions remains unclear.

In principle, the pharmacological modulation of gut
microbiota may be beneficial in the treatment of pancreatic
conditions and related complications. However, the use of
prebiotics, probiotics, antibiotics, and anti-inflammatory
drugs or the fecal microbiota transplantation either as a
preventative or as a therapeutic strategy remains controver-
sial. These procedures have not yet been a subject to the
rigorous efficacy and safety testing necessary to recommend
their routine use.

In the foreseeable future, the analysis of specific alter-
ations in the microbiome profile may permit to develop
novel tools for the early detection of several pancreatic
disorders, utilizing samples easy to collect, such as blood,
saliva, and stools.

In conclusion, the ways in which gut microbiota is modu-
lated and interacts with the immune system need to be further
elucidated to enter a new era of treatment modalities.
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