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Abstract

The inflammasomes are innate immune system receptors/sensors that regulate the activation of 

caspase-1 and induce inflammation in response to infectious microbes and molecules derived from 

host proteins. It has been implicated in a host of inflammatory disorders. Recent developments 

have greatly enhanced our understanding of the molecular mechanisms by which different 

inflammasomes are activated. Additionally, increasing evidence in mouse models, supported by 

human data, strongly implicates an involvement of the inflammasome in the initiation or 

progression of diseases with a high impact on public health such as metabolic disorders and 

neurodegenerative diseases. Finally, recent developments pointing toward promising therapeutics 

that target inflammasome activity in inflammatory diseases have been reported. This review will 

focus on these three areas of inflammasome research.

INTRODUCTION

Inflammation is a protective immune response mounted by the evolutionarily-conserved 

innate immune system to harmful stimuli, such as pathogens, dead cells, or irritants, and is 

tightly regulated by the host. Insufficient inflammation can lead to persistent infection of 

pathogens while excessive inflammation can cause chronic or systemic inflammatory 

diseases. Innate immune function depends upon recognition of pathogen-associated 

molecular patterns (PAMPs), derived from invading pathogens, and danger-associated 

molecular patterns (DAMPs), induced as a result of endogenous stress, by germline-encoded 

pattern-recognition receptors (PRRs). Activation of PRRs by PAMPs or DAMPs triggers 

downstream signaling cascades and leads to production of type I interferon (interferon-α and 

interferon-β) and proinflammatory cytokines. Of note, DAMP-triggered inflammation, 

which is particularly important in inflammatory diseases, is termed sterile inflammation 

when it occurs in the absence of any foreign pathogens1.

Activation of the inflammasome is a key function mediated by the innate immune system, 

and recent advances have greatly increased our understanding of the macromolecular 
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activation of inflammasomes. Several families of PRRs are important components in the 

inflammasome complex including the nucleotide-binding domain, leucine-rich repeat 

containing proteins (NLRs, also known as NOD-like receptors) and absent in melanoma 2-

like receptors (ALRs, AIM2-like receptors) in both mice and humans2. Upon sensing certain 

stimuli, the relevant NLR or AIM2 can oligomerize to be a caspase-1-activating scaffold. 

Active caspase-1 subsequently functions to cleave the proinflammatory IL-1 family of 

cytokines into their bioactive forms, IL-1β and IL-18, and cause pyroptosis, a type of 

inflammatory cell death3,4.

Inflammasomes have been linked to a variety of autoinflammatory and autoimmune 

diseases, including neurodegenerative diseases (multiple sclerosis, Alzheimer’s disease, and 

Parkinson’s disease) and metabolic disorders (atherosclerosis, type-2 diabetes, and obesity)4. 

In inflammatory disease initiation, inflammasomes play either causative or contributing 

roles, and also exaggerate the pathology in response to host-derived factors. This review will 

focus on the current understanding of inflammasome activation, the roles of inflammasomes 

in several prevalent diseases that are increasingly recognized as having an inflammatory 

contribution, such as neurodegenerative diseases and metabolic disorders, and advances in 

potential therapies targeting inflammasomes.

MECHANISMS OF INFLAMMASOME ACTIVATION

General principles of inflammasome activation

Recent developments in our understanding of the mechanisms of inflammasome activation 

have been expertly reviewed in depth4–8. However, here, we give a brief overview of recent 

advances in the mechanisms of inflammasome activation in order to best explain their link 

with disease.

Inflammasomes are multimeric protein complexes that assemble in the cytosol after sensing 

PAMPs or DAMPs7,9. While there are fundamental differences between inflammasomes 

dependent upon stimuli, in general, canonical inflammasomes serve as a scaffold to recruit 

the inactive zymogen pro-caspase-1 (Figures 1 and 2). Oligomerization of pro-caspase-1 

proteins induces their auto-proteolytic cleavage into active caspase-110. Active caspase-1 is 

a cysteine-dependent protease that cleaves precursor cytokines pro-IL-1β and pro-IL-18 

generating biologically active cytokines IL-1β and IL-18, respectively11–13. Active 

caspase-1 is also able to induce an inflammatory form of cell death known as pyroptosis5–7.

Inflammasome names denote the protein forming the scaffold. Most inflammasomes are 

formed with one or two NLR family members, and NLRC4 requires interaction with an 

NLR member of the NAIP subfamily of proteins6,14 (Figures 1 and 2A). However, non-NLR 

proteins such as AIM2 (Figure 2B) and pyrin can also form inflammasomes. NLRC4 can 

directly associate with caspase-1 through CARD-CARD interactions15. NLRs containing an 

amino-terminal pyrin domain (PYD) are shown to associate with apoptosis-associated 

speck-like protein containing a CARD (ASC) in order to recruit pro-caspase-1 to the 

inflammasome9,16 (Figures 1).
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Inflammasome activation occurs when the scaffold protein senses or binds its activating 

stimuli. How this occurs is starting to be clarified for certain inflammasome proteins6, 

prominent among these are the roles of ASC, AIM2, and NAIP/NLRC4. For example, AIM2 

can directly bind to its stimulus, double-stranded DNA (dsDNA)17. However, many 

questions remain regarding inflammasome activation. We will now briefly discuss the 

mechanism of activation of the most well-characterized inflammasomes where major 

advances have been made. The readers can refer to recent reviews where all of the NLR 

inflammasomes have been reviewed5–7, including evidence supporting the existence of less-

characterized inflammasomes, such as NLRP6, NLRP7, NLRP12, and IFI16 

inflammasomes. Additionally, though NLRP1, which has many genetic variants in mice and 

rats, forms well-defined inflammasomes in these rodent models, activation of the single 

human NLRP1 paralog into an inflammasome is less well understood18.

NLRP3 inflammasome

The NLRP3 inflammasome (Figure 1) is activated in response to the widest array of stimuli, 

leading to the theory that the dissimilar agonists induce similar downstream events which 

are sensed by NLRP38,19,20. The mechanisms of NLRP3 activation supported by the most 

studies include potassium efflux out of the cell, the generation of mitochondrial reactive 

oxygen species (ROS), translocation of NLRP3 to the mitochondria, the release of 

mitochondrial DNA or cardiolipin, or the release of cathepsins into the cytosol after 

lysosomal destabilization6–8 (Figure 1). However, not all of these events are induced by all 

NLRP3 agonists, so the precise mechanism of NLRP3 activation is still debated. 

Additionally, increases in intracellular calcium can activate the NLRP3 inflammasome21,22, 

but this is also not a requirement of all NLRP3 agonists23. Though many published studies 

support the involvement of lysosomal cathepsins, proteases that degrade internalized 

proteins, in NLRP3 inflammasome activation, it is important to note that this is not without 

some controversy24.

In most cell types, NLRP3 must be primed, and a prototypical example of such a priming 

event is the binding of LPS to TLR4. Priming has long been known to increase cellular 

expression of NLRP3 through NF-κB signaling25. However, recent findings have shown 

that priming rapidly licenses mouse NLRP3 inflammasome activation by inducing the 

deubiquitination of NLRP3 independent of new protein synthesis, while inhibition of 

deubiquitination inhibits human NLRP3 activation26,27. Once primed, NLRP3 can respond 

to its stimuli and assemble the NLRP3 inflammasome. Additionally, ASC must be linearly 

ubiquitinated for NLRP3 inflammasome assembly28. Current stimuli recognized as NLRP3 

agonists that induce NLRP3 inflammasome formation include ATP, pore-forming toxins, 

crystalline substances, nucleic acids, hyaluronan, and fungal, bacterial, or viral pathogens6,7. 

These stimuli can be encountered during infection, either produced by pathogens or released 

by damaged host cells. Additionally, pathologic conditions in the body may promote 

formation of these stimuli in the absence of infection, such as the formation of inflammatory 

cholesterol crystals, as discussed in more detail later.

Recent studies identified that the NLRP3 NBD oligomerizes the NLRP3 PYD, which serves 

as a scaffold to nucleate ASC proteins through PYD-PYD interactions29,30. This causes 
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ASC to convert to a prion-like form and generate long ASC filaments that are crucial to 

inflammasome activation. Pro-caspase-1 then interacts with ASC through CARD-CARD 

interactions and forms its own prion-like filaments that branch off of the ASC filaments. The 

close proximity of pro-caspase-1 proteins then induces auto-proteolytic maturation of pro-

caspase-1 into active caspase-1.

Additionally, increasing evidence has identified a crucial role for caspase-8 in 

inflammasome activation and pro-IL-1β processing. Caspase-8 is a pro-apoptotic protease 

that initiates the external apoptosis pathway in response to external stimuli, such as FasL and 

TNF, and protects against an inflammatory form of cell death termed necroptosis31. It is 

now also recognized that caspase-8 is required for both the transcriptional priming and 

activation of the canonical and noncanonical NLRP3 inflammasomes in mice in response to 

pathogenic stimuli and ligands stimulating various different TLRs32–34. Thus, inflammatory 

diseases in which TLR ligands are generated could lead to caspase-8-mediated NLRP3 

priming or activation.

Additionally, caspase-8 was shown to bind and localize to ASC specks, further suggesting 

that caspase-8 is an important component of inflammasome complexes35. However, the 

exact molecular mechanism of how caspase-8 promotes caspase-1 activation has yet to be 

elucidated. Importantly, caspase-8 also has an identified role in NLRC4 and AIM2 

inflammasome activation35,36 and has even been shown to directly promote pro-IL-1β 

processing in a noncanonical caspase-8 inflammasome induced by the binding of certain 

extracellular pathogens to dectin-137. Notably, the exact role of caspase-8-mediated 

inflammasome activation is somewhat controversial38.

NLRC4 inflammasome

In contrast to the diverse stimuli that activate NLRP3, the NLRC4 inflammasome responds 

to a more limited set of stimuli. A major advance in our understanding of the NLRC4 

inflammasome is that NLRC4 forms a complex with various NAIP proteins, and NLRC4-

activating ligands are bound by these NAIP components rather than by NLRC4 (Figure 2A). 

This raises the question of whether NLRC4 is a scaffolding protein and not a receptor14,39. 

In mice, NAIP1 binds the bacterial type III secretory system (T3SS) needle protein40,41, 

NAIP2 binds the bacterial T3SS rod protein42, and both NAIP5 and NAIP6 bind bacterial 

flagellin42,43. T3SS is found in several gram negative bacteria and allows the bacteria to 

inject effector molecules into infected host cells. By contrast to mice, only one human NAIP 

protein has been characterized, and it was found to bind only the T3SS needle protein40, 

suggesting a far more restrictive repertoire of ligands for the NLRC4 inflammasome in 

human cells than NLRP3, which responds to a plethora of stimuli.

Once NAIP proteins bind their ligands, they can oligomerize with NLRC4 and form a NAIP/

NLRC4 inflammasome14. In order for NLRC4 to be activated, its autoinhibition must be 

relieved to allow oligomerization with NAIP proteins, but how this occurs is unclear14. 

However, two new gain-of-function mutations have recently been identified in humans that 

cause severe spontaneous autoimmune syndrome, suggesting that the helical domain is 

responsible for this autoinhibition44,45. Though some reports indicate that mouse NLRC4 
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must be phosphorylated prior to inflammasome activation46,47, there are also conflicting 

reports indicating that phosphorylation is dispensable14.

Though NLRC4 contains a CARD domain, ASC is required for maximal inflammasome 

activation7 (Figure 2A). A possible explanation might be the formation of NLRC4 filaments, 

as there is evidence that the CARD domain can convert ASC to its prion-like form31.

AIM2 inflammasome

The non-NLR AIM2 can also form a caspase-1-containing inflammasome, but, unlike the 

NLRs, the HIN-200 domain of AIM2 can directly bind its stimulus, cytosolic dsDNA, which 

may be encountered in the cytosol during pathogenic infection (Figure 2B)17. The 

autoinhibitory conformation of AIM2 is created by interactions of its two domains and 

relieved by the sugar phosphate backbone of dsDNA48. DNA binding displaces the PYD 

domain48, freeing the PYD domain to recruit ASC to the complex17,49. AIM2 cannot 

interact with ASC unless autoinhibition is relieved50 and, thus, AIM2 maintains itself in an 

inactive state until its ligand binds.

Interestingly, AIM2 does not appear to recognize a specific sequence or structure of dsDNA 

but instead requires a dsDNA strand of at least 80 base pairs for optimal inflammasome 

activation48. Similar to NLRP3, oligomerized AIM2 nucleates ASC through PYD-PYD 

interactions and converts ASC to its prion form, leading to the development of long PYD-

PYD ASC filaments29,30.

Recently, a noncanonical AIM2 inflammasome was shown to mediate protection against 

Francisella novicida51. F. novicida infection is detected by cGAS and STING, inducing the 

expression of the transcription factor IRF1. IRF1 increases the expression of guanylate 

binding proteins, which increase the intracellular killing of the bacterium. This releases 

dsDNA into the cytosol and induces AIM2 inflammasome activation.

Noncanonical inflammasomes

A developing area of interest in the inflammasome field is the noncanonical inflammasome 

formed by caspase-11 in mice (Figure 2C). Caspase-11 was initially found to be important 

for the activation of caspase-1 and caspase-352. Recently, it was shown that caspase-11 

promotes NLRP3 inflammasome activation to indirectly enhance processing of pro-IL-1β or 

pro-IL-1853. More remarkably, caspase-11 detects intracellular LPS and some intracellular 

bacteria, directly mediating cell death and IL-1α secretion, but not IL-1β secretion, in a 

mechanism independent of the traditional LPS receptor TLR47,54,55. Though humans do not 

express caspase-11, recent studies indicate that caspase-4 and caspase-5 in human cells serve 

a similar function56,57 (Figure 2C). Notably, active caspase-4 can promote the activation of 

the primed NLRP3 inflammasome without a need for a canonical NLRP3 activating 

stimulus57. As caspase-11-deficient mice are protected from endotoxic shock53, further 

study of the noncanonical inflammasome in human cells is of great interest.
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Mechanisms of inflammasome spreading

ASC has long been recognized to redistribute upon inflammasome activation from the 

nucleus to the cytosol and form a large perinuclear aggregate in cells58,59. In a recent 

breakthrough, ASC specks were reported to be released by dying cells, leading to cleavage 

of extracellular pro-IL-1β and activating caspase-1 in macrophages internalizing the 

specks60. Importantly, as activation of all major inflammasomes is associated with speck 

formation59, this suggests that inflammasome activation propagates inflammation from cell 

to cell. The buildup of specks at sites of inflammation has serious implications for 

inflammatory diseases, as injection of purified ASC specks into mice in vivo was shown to 

propagate inflammation60.

Additionally, phosphorylation of ASC was recently identified to be a key checkpoint in ASC 

speck formation. The kinases Syk and JNK, which activate in response to a vast array of 

stimuli and lead to the phosphorylation of many downstream targets, mediate 

phosphorylation of ASC upon NLRP3 inflammasome activation, and inhibition of these 

kinases prevented ASC speck formation and blocked caspase-1 activation61. Importantly, 

phosphorylation was dispensable for NLRP3 and ASC oligomerization. This suggests that 

phosphorylation of ASC may be necessary for ASC to switch to its prion form and form 

self-propagating filaments. This also suggests that kinase inhibition may have potential 

therapeutic use against inflammatory diseases in the absence of more targeted inhibitors.

INFLAMMASOMES IN DISEASE

Here we focus on neurologic disorders and metabolic diseases, both of which are not 

traditionally considered to be inflammatory diseases, but are increasingly recognized as 

having an inflammatory component that contributes significantly to the disease process. 

Misfolded protein aggregates and aberrant accumulation of certain metabolites accompanied 

with those diseases are endogenous DAMPs that have been proved to be direct activators of 

the NLRP3 inflammasome, which plays a critical role in the initiation and progress of those 

diseases.

The inflammasome and multiple sclerosis

Multiple sclerosis (MS), one of the most common autoimmune/inflammatory diseases, is 

characterized by myelin-reactive CD4+ T cells that infiltrate the central nervous system 

(CNS), attack oligodendrocytes and induce demyelination62. Demyelination partially 

disrupts the communication of the nervous system, resulting in physical, mental, and 

psychiatric challenges, among other issues. Presently, MS has no cure and shortens the 

lifespan of patients approximately 5 to 10 years63.

Experimental autoimmune encephalomyelitis (EAE) is a commonly-used animal model to 

mimic MS. To induce EAE, mice are immunized with the peptide myelin oligodendrocyte 

glycoprotein (MOG) emulsified in adjuvant, inducing infiltration of MOG-specific T cells 

and other inflammatory cells into the CNS64.. Prior to the discovery of NLRs, the 

inflammasome products caspase-1, IL-1β, and IL-18 had been shown to contribute to EAE 

progression. Casp1−/−, Il1a−/−, Il1b−/− and Il18−/− mice are resistant to EAE, accompanied 

by reductions in IFN-γ and/or IL-17 levels65–67. Recently, Nlrp3 expression has been shown 
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to increase in the spinal cord during EAE progression and Nlrp3-deficient mice showed a 

dramatically delayed course and reduced severity of disease, accompanied by fewer 

infiltrating inflammatory cells and reduced astrogliosis64,68. In addition, a study using a 

cuprizone model of MS also showed that Nlrp3-deficient mice had delayed demyelination 

and oligodendrocyte loss69. Additionally, in EAE mice there was increased IL-18 levels, 

compared with controls and Il18-deficient mice phenocopied the reduced disease seen in 

Nlrp3-deficient mice, suggesting NLRP3 functions through IL-18 to promote EAE64,68.

Despite these findings, the role of NLRP3 in EAE progression is complicated. Expression of 

Nlrp3 in antigen-presenting cells (APCs) was required to stimulate T helper type 1 (Th1) 

and Th17 cells to respond to brain autoantigen in one study64. Additionally, Nlrp3 and Asc 

(also known as Pycard) deficiency caused reduced expression of many chemokines and 

chemokine receptors, such as Ccr2 and Ccr6, in both APCs and Th cells, reducing migration 

of Th1 and Th17 cells into the CNS of Nlrp3- and Asc-deficient mice following EAE 

induction by MOG peptide immunization. However, direct delivery of CD4+ T cells from 

EAE-induced WT, Nlrp3−/− or Asc−/− mice into the brain and spinal cord of recipient 

Rag2−/− mice, which lack mature T cells, induced the same extent of disease68. In summay, 

while these results suggest that the NLRP3 inflammasome contributes to both Th1 and Th17 

cell responses and migration during EAE, the function of the NLRP3 inflammasome is not 

an inherent function of T cells. In the clinic, peripheral blood mononuclear cells (PBMCs) 

from relapsing-remitting MS patient had higher levels of NLRP3, IL-1β, and caspase-1 than 

were found in PBMCs from healthy controls. Intriguingly, soluble factors secreted by 

human PBMCs upon NLRP3 activation skew the cytokine profile of CD4+ T cells toward a 

pro-inflammatory Th17 phenotype, supporting a link between MS and the NLRP3 

inflammasome70.

However, a role for NLRP3 and ASC in EAE is not found by all studies and varies with 

variations in the disease model. Aggressive immunization of mice with heat-killed 

mycobacteria (Mtb) was able to induce EAE even in the absence of NLRP3 or ASC, 

whereas lower-dose Mtb immunization required NLRP3 and ASC for EAE induction71. 

Another study found no difference in MOG-induced EAE disease between WT and Nlrp3-

deficient mice. In the same study, ASC promoted EAE progression in an inflammasome-

independent manner through a mechanism of maintaining CD4+ T cell survival. In 

agreement with this, Asc-deficient mice were even more resistant to EAE than Casp1-

deficient mice72. Part of the differences in inflammasome dependency may be explained by 

recent findings showing that IFN-β inhibited IL-1β production by macrophages, and only 

NLRP3-dependent EAE was ameliorated by IFN-β treatment. This suggests that IFN-β may 

therapeutically inhibit the NLRP3 inflammasome-IL-1β/IL-18 axis in MS71. Though IFN-β 

has been used therapeutically for more than 15 years, one third of MS patients fail to 

respond to IFN-β, echoing heterogeneity in the disease.

In addition to the NLRP3 inflammasome, a recent study using the pertussis toxin (PTX)-

induced EAE model showed that TLR4 was required for pro-IL-1β induction, and the pyrin-

dependent inflammasome contributed to bioactive IL-1β formation. IL-1β stimulated nearby 

stromal cells to secret IL-6, which can promote leukocyte adhesion and migration. Pyrin 

(also known as Mefv)-deficient 2D2 mice (MOG-specific T cell receptor transgenic mice) 

Guo et al. Page 7

Nat Med. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



had lower EAE incidence and delayed and less severe disease following PTX injection. 

However, the pyrin inflammasome only functions at the initial stage of EAE induced by 

PTX, as comparable infiltration of CD3+ cells was observed in the spinal cord of mice with 

similar clinical scores regardless of their genotype. In line with this, adoptive transfer of 

MOG-specific T cells into WT and pyrin-deficient mice induced similar EAE73.

The inflammasome and Alzheimer’s disease

Accumulation of amyloid-β plaques in the cerebrum is a characteristic of Alzheimer’s 

disease (AD) Amyloid-β peptide is regularly formed in cerebral tissue by cleavage of the 

amyloid precursor protein, but it can form prion-like misfolded oligomers in the case of 

AD74. Amyloid-β was the first molecule associated with neurodegenerative disease models 

that was found to activate the murine NLRP3 inflammasome, resulting in IL-1β 

production75. Fibrillary amyloid-β induces NLRP3-inflammasome-dependent caspase-1 

activation through a mechanism dependent on endosomal rupture and cathepsin B release in 

LPS-primed murine macrophages75 (Figure 3). Interestingly, administration of cathepsin B 

inhibitors significantly improved memory deficit and reduced amyloid plaque load in the 

brain in the AD mouse model, suggesting a potential therapeutic approach for Alzheimer’s 

treatment in which the inflammasome is targeted76. Importantly, a recent pivotal study in 

mice identified that the cell-surface receptor CD36 mediates the internalization of soluble 

amyloid-β, which then undergoes intracellular conversion to fibrillary amyloid-β to activate 

the NLRP3 inflammasome77. A direct link between the NLRP3 inflammasome and the 

development of AD has been shown in APP/PS1 mice (transgenic mice developing chronic 

deposition of amyloid-β) with NLRP3 and caspase-1 deficiency. These mice have reduced 

AD-related pathogenesis, reflected by reduced chronic amyloid-β secretion, neuronal 

inflammation, and cognitive impairment. In these mice, NLRP3-inflammasome deficiency 

skewed microglial cells to an M2 phenotype (characterized by elevated expression of 

arginase-1 and IL-4 ), resulting in the reduced deposition of amyloid-β and enhanced tissue 

remodeling in the AD mouse model78. In addition to the mouse study, a recent study found 

enhanced active caspase-1 expression in human brains with AD, suggesting that there is a 

link between inflammasome activation and Alzheimer’s in humans78. Therefore, in vitro and 

in vivo studies suggest a potentially important role for the NLRP3 inflammasome in the 

pathogenesis of AD and identify the NLRP3-caspase-1 axis as a potential target for AD 

therapy.

Inflammasome and Parkinson’s disease model

Parkinson’s disease (PD) results in the death of dopamine-generating neurons in the 

substantia nigra and the presence of aggregated inclusions mainly composed of α-synuclein 

(αSyn) in neurons79. αSyn can form fibrils with a cross β-sheet structure, morphologically 

similar to the amyloid fibrils from AD80. Through multiple mechanisms, intracellular αSyn 

can be released into extracellular spaces81. Extracellular αSyn activates primary microglia, 

astrocytes, as well as transformed microglia and astrocyte cell lines and induces the 

production of the cytokine IL-1β81,82. In a rat model of PD, chronic expression of 

exogenous IL-1β introduced in an adenoviral vector in the region of the substantia nigra was 

shown to induce cell death in dopamine neurons and to promote PD progression83. Recently 

it was found that both fibrillary and monomeric αSyn induce pro-IL-1β expression via TLR2 
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signaling in human primary monocytes, but only fibrillary αSyn fully activated the 

inflammasome by inducing caspase-1 activation and mature IL-1β production84. This 

activation of caspase-1 required phagocytosis, cathespin B, and ROS. Cathepsin B and ROS 

are thought to lie upstream of NLRP3 activation, suggesting that αSyn activated the NLRP3 

inflammasome84. However, this study did not use the more relevant microglial cells and 

astrocytes, and the involvement of NLRP3 was not directly proven by an in vivo animal 

model.

In a PD model mouse in which PD is induced by loss of nigral dopaminergic neurons caused 

by treatment with neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), mice 

lacking Nlrp3 are resistant to developing PD. This provides in vivo evidence for a link 

between the NLRP3 inflammasome and PD85. Interestingly, dopamine was found to 

negatively regulate NLRP3 activation in both primary microglia and astrocytes via a 

dopamine D1 receptor (DRD1)-cyclic adenosine monophosphate (cAMP) signaling 

pathway85. Moreover, cAMP was found to directly bind to NLRP3 and promote its 

ubiquitination-dependent degradation via the E3 ubiquitin ligase MARCH785. Furthermore 

mice lacking DRD1 are more susceptible to MPTP-induced neuroinflammation, reflected by 

enhanced NLRP3 activation-dependent IL-1β and IL-18 production and increased loss of 

dopaminergic neurons85. These studies suggest that dopamine-producing neurons and the 

NLRP3 inflammasome regulate each other in a bidirectional fashion, where the 

inflammasome can damage these neurons, while dopamine from these neurons can inhibit 

NLRP3 function.

NLRP3 inflammasome and atherosclerosis

Chronic inflammation plays an essential role in the initiation and progression of metabolic 

disorders such as type 2 diabetes (T2D), obesity, gouty arthritis, and atherosclerosis86. 

Atherosclerosis accounts for 70% of morbidity in T2D patients and is a chronic disease that 

results in progressive narrowing of arterial vessels due to imbalanced lipid metabolism. 

Cholesterol crystals and white blood cells accumulate on the arterial wall, limiting the flow 

of oxygen-rich blood to the organs87. It is commonly referred to as a hardening or furring of 

the arteries, which can lead to life-threatening complications such as heart attack and stroke.

It has long been suggested, on the basis of evidence from mouse models88–90, that IL-18, a 

product of inflammasome activation, may have crucial roles in the initiation and progression 

of atherosclerosis. Furthermore, human atherosclerotic plaques have elevated concentrations 

of IL-18 and IL-18 receptors compared to disease-free arterial tissues. Apolipoprotein E 

(ApoE) is important for proper cholesterol metabolism. In ApoE-deficient mice, which 

spontaneously develop atherosclerotic lesions, elevated IL-18 levels have been shown to 

cause vascular inflammation and enhance the instability of atherosclerotic plaques, while 

IL-18-deficiency resulted in reduced atherosclerotic lesion size89,91,92. Elevation of low 

density lipoprotein (LDL) and free fatty acids (FFAs) in human blood due to imbalanced 

lipid metabolism is able to induce pro-IL-1β production through TLRs, providing the first 

signal for inflammasome activation93 (Figure 4A). Recent studies indicate that the cell 

surface receptor CD36 facilitates internalization of oxidized LDL (ox-LDL) and intracellular 

conversion of ox-LDL to cholesterol crystals77. These cholesterol crystals formed 
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intracellularly activate the NLRP3 inflammasome in vitro in both mouse and human cells 

through phagolysosomal damage, a mechanism dependent on both cathepsin B and 

cathepsin L88 (Figure 4A). In vivo, intraperitoneal injection of cholesterol crystals in mice 

induced acute inflammation that was attenuated by the deficiency of NLRP3 inflammasome 

components, cathepsin B, and cathepsin L. In this model, IL-1β was released through 

NLRP3 inflammasome activation and in turn promoted rupture of atherosclerotic plaques.

Mice lacking the LDL receptor are prone to developing atherosclerotic plaques. When these 

mice are fed a high-cholesterol diet, they have markedly reduced lesion size if the bone 

marrow cells lack Nlrp3, Asc, or Il1a and Il1b88. Similarly, in the ApoE-deficient mouse 

model of atherosclerosis, lack of IL-1β significantly decreases the size of atherosclerotic 

lesions94. In line with this, another study showed that blockade of IL-1β inhibited 

atherosclerotic plaque formation in the ApoE-deficient mouse model95. However, other 

studies have failed to link NLRP3 and IL-1β to atherosclerosis but instead found that IL-1α 

played an essential role in mice96,97. Further studies are required to clarify the contributions 

of IL-1α and IL-1β to atherogenesis.

NLRP3 inflammasome and type 2 diabetes

Type 2 diabetes (T2D) is a major global health threat resulting in insulin resistance and is a 

chronic inflammatory disease characterized by elevated circulating levels of TNF, 

interleukins, and cytokine-like proteins known as adipokines released from adipose tissue98. 

IL-1β in particular has been strongly linked to the pathogenesis of T2D by promoting insulin 

resistance and causing β-cell functional impairment and apoptosis. In cell culture, IL-1β 

dampens insulin sensitivity by inducing JNK-dependent serine phosphorylation of insulin 

receptor substrate-1 (IRS-1), resulting in the disruption of insulin-induced PI3K-Akt 

signaling in insulin-targeted cells. At the same time, IL-1β induces the expression of TNF-

α99, which could independently impair insulin signaling100. Together with elevated FFAs in 

circulation due to imbalanced lipid metabolism, IL-1β induces metabolic stressors, such as 

ER stress and oxidative stress, both of which are involved in induction of inflammation and 

β-cell loss, thereby leading to the pathogenesis of T2D86,101. Furthermore, clinical trials 

reported that either IL-1 receptor antagonist (IL-1RA) or anti-IL-1β neutralizing antibody 

improved control of glucose levels and β-cell function102,103. Data also show that fatigue in 

T2D patients was reduced by IL-1β blockade. Trials with larger patient numbers should 

strengthen the argument for IL-1β-targeted therapy in T2D104.

Elevation of NLRP3 inflammasome activity in myeloid cells from T2D patients when 

compared with those from unaffected individuals has been described105. Multiple studies 

have found that NLRP3-, ASC-, and/or caspase-1-deficient mice show improved glucose 

tolerance and insulin sensitivity when exposed to a high fat diet (HFD)99,106–109. This is 

accompanied by reduced inflammatory cytokine levels in the serum and metabolic tissues 

such as liver and adipose tissue in conjunction with increased insulin-PI3K-Akt 

signaling99,106–108. These studies provide a direct link between the NLRP3 inflammasome, 

chronic inflammation, and insulin resistance.

As regards the role of the NLRP3 inflammasome and IL-1β in T2D pathogenesis, extensive 

studies have identified endogenous and exogenous stimulators of the NLRP3 inflammasome 
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during T2D. Islet amyloid polypeptide (IAPP), a 37-amino-acid peptide hormone secreted 

from β-cells along with insulin, can form an amyloid structure that builds up in the 

pancreatic islets of patients with T2D110. As in the conversion of oxLDL to cholesterol 

crystals, the surface receptor CD36 also facilitates the conversion of soluble IAPP to its 

amyloid form (Figure 4B). In vitro, IAPP induces NLRP3 activation through a mechanism 

involving phagolysosome perturbation as well as cathepsin-B and cathepsin-L that leads to 

IL-1β production in macrophages and dendritic cells in culture111 (Figure 4B). In a 

transgenic mouse model in which human IAPP is overexpressed in mouse β-cells, pancreatic 

macrophages showed strong induction of IL-1β111,112. Elevated blood glucose was reported 

to induce IL-1β expression in β-cells, possibly through inflammasome activation mediated 

by thioredoxin (TRX)-interacting protein (TXNIP)108,113. Glucose can upregulate TXNIP 

expression in islets, and increased ROS due to oxidative stress in T2D has been proposed to 

cause conformational changes in TXNIP, leading to dissociation from thioredoxin and, in 

turn, association with NLRP3 for inflammasome activation108 (Figure 4B). Even though 

those studies could link oxidative stress with NLRP3 activation and IL-1β production in 

islets, the data were not reproducible in Txnip-deficient macrophages by another research 

group111.

The neuromodulatory lipids known as endocannabinoids were recently found to induce 

NLRP3 inflammasome-dependent IL-1β production by pancreatic infiltrating macrophages 

through the peripheral CB1 receptor (CB1R), resulting in pancreatic β-cell death in a 

paracrine manner114 (Figure 4B). Endocannabinoid anandamide increased ASC protein 

levels and caspase-1 activation in rat islets and markedly increased IL-1β secretion from a 

mouse macrophage cell line, RAW264.7. Anandamide-induced IL-1β production is 

dependent on Nlrp3 and Cb1r (also known as Cnr1). Intriguingly, blockade of CB1R by an 

inhibitor delayed the progress of T2D in the Zucker diabetic fatty rat which carries a 

spontaneous mutation of the leptin receptor gene and develops hyperglycemia progressively 

with aging accompanied by reduced β-cell apoptosis and hyperglycemia. This finding 

implicates CB1R to be a therapeutic target in T2D114.

Finally saturated fatty acids such as palmitate and ceramide that arise from a high fat diet 

and induce type 2 diabetes can induce NLRP3 inflammasome activation99,107 (Figure 4B). 

In mouse macrophages, palmitate inhibits AMP-activated protein kinase (AMPK) activity, 

leading to defective autophagy and the generation of mitochondrial ROS, which is a 

proposed mechanism of NLRP3 inflammasome activation99. Ceramide is also sensed by 

NLRP3 resulting in NLRP3-dependent caspase-1 activation in both mouse bone marrow-

derived macrophages (BMDM) and mouse epididymal adipose tissue explants107. 

Interestingly, replacement of saturated fatty acid (SFA) with monounsaturated fatty acid 

(MUFA) in HFDs improves insulin sensitivity by reducing IL-1β production via preserved 

AMPK activity in the mouse model115. Recently, omega 3 fatty acids (ω-3 FAs) which are 

polyunsaturated fatty acids, have been shown to inhibit NLRP3 inflammasome activity 

through a G protein-coupled receptor (GPR120)/GPR40-β-arrestin-2 signaling pathway116. 

More importantly, ω-3 FAs prevented insulin resistance in a HFD-induced T2D model, 

suggesting the potential dietary use of ω-3 FAs in the amelioration of T2D and other 

inflammatory diseases116. Using the human THP-1 cell line, others have shown that 
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unsaturated fatty acid can prevent NLRP3 activation, presenting another way to reduce 

inflammation117.

NLRP3 inflammasome and obesity

Obesity is characterized by excessive expansion of adipose tissue due to adipocyte 

hypertrophy and immune cell infiltration98. Obesity-associated inflammation leads to 

functional abnormality of adipocytes, resulting in elevated circulating levels of FFAs and 

ectopic lipid accumulation118. This can subsequently give rise to multiple metabolic 

disorders such as atherosclerosis and T2D, as discussed previously. In this section, we will 

focus on discussing the involvement of inflammasome components in the development of 

obesity and adipose inflammation.

The expression of human NLRP3 and ASC/PYCARD is upregulated in adipocytes from 

obese patients119. Caspase-1 expression was found in both human and mouse adipose tissues 

and increases with adipocyte differentiation and obesity development120. Blockade of 

caspase-1 and IL-1β, but not IL-18, improves adipogenic gene expression in vitro, indicating 

that caspase-1 regulates adipogenesis potentially via IL-1β. Differentiated adipocytes with 

caspase-1 deficiency also have improved adipogenesis and insulin sensitivity compared to 

wild-type control cells. 120.

To establish the direct link between inflammasome activity and obesity development, HFD- 

or genetically-induced obese animals lacking inflammasome components have been 

studied106,120. It was initially reported that caspase-1 contributes to adipose tissue 

formation, as mice lacking Casp1 have reduced adipocyte size, reduced fat mass, increased 

adipogenic gene expression and improved insulin sensitivity. Furthermore in the HFD-

induced obesity model, mice lacking Casp1 gained less weight than wild-type controls did. 

In the spontaneously obese mouse model (ob/ob mice), caspase-1 inhibition reduced the 

body weight of ob/ob mice. Interestingly, caspase-1 blockade resulted in decreased 

lipogenesis and higher fat oxidation than in control mice but did not affect food intake, 

suggesting the potential mechanism by which caspase-1 promotes obesity120. Similarly, it 

was also observed that NLRP3, ASC, and caspase-1 deficiency protected from HFD-induced 

obesity106. However, a recent study reported contradictory results that mice lacking Casp1 

were more obese than control mice including having increased fat mass compared with 

controls121. The difference may be due to the variation in intestinal microbiota in mice 

raised in different animal facilities, as intestinal microbiota has been demonstrated to play a 

significant role in metabolic diseases122. Additionally, IL-18, one of the products of 

inflammasome activation, has been shown to protect mice from obesity as mice lacking Il18 

developed obesity due to increased food intake123. This provides another possibility for the 

discrepancy in obesity phenotypes observed in Casp1-deficient mice.

Recently, it was shown that the lack of inhibitor of κB kinase epsilon (IKBKE), a 

downstream mediator of TLR and cytokine signals, in ApoE-deficient mice fed a Western-

type diet (high in saturated fat) caused enhanced expression of inflammasome-related genes 

and low-grade chronic inflammation124. Hence, IKBKE functions as an endogenous 

negative regulator of the NLRP3 inflammasome under an obesity-inducing condition.
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As regards the role of caspase-1 in obesity, studies have shown that it is likely that caspase-1 

contributes to obesity through various mechanisms. It was previously thought that 

macrophages accumulate within inflamed adipose tissue to produce caspase-1125. However, 

recent studies in mice have shown that a major source of caspase-1 in adipose tissue is 

independent of infiltrating macrophages120. Recently, caspase-1 was shown to prevent lipid 

clearing in non-hematopoietic cells by an NLRP3-dependent but IL-1α/β- and IL-18-

independent manner126. Furthermore, sirtuin 1 (SIRT1), a deacetylase which can regulate 

metabolism and protect from obesity, was recently shown to be a caspase-1 substrate. 

Adipocyte-specific Sirt1 knockout resulted in spontaneous obesity, and SIRT1 protein was 

cleaved and inactivated in adipose tissues by active caspase-1 under the HFD stress127. 

However, the mechanism of inflammasome and caspase-1 activation in adipocytes needs 

clarification.

A strong association between obesity and leukocytosis exists, and inflamed adipose tissue 

from obese mice was recently found to induce monocytosis in recipient wild type mice128. 

NLRP3 played an essential role in obesity-induced leukocytosis, as Nlrp3−/− bone marrow 

reconstituted in ob/ob recipient mice resulted in significantly-reduced numbers of circulating 

leukocytes128.

THERAPIES THAT TARGET INFLAMMASOMES

Inappropriate inflammasome activity has been incriminated in the pathogenesis of 

neurodegenerative disease and metabolic disorders. Many reagents that target the 

inflammasome products IL-1β and IL-18, including recombinant IL-1RA anakinra, the 

neutralizing IL-1β antibody canakinumab, the soluble decoy IL-1 receptor rilonacept, IL-18–

binding protein, soluble IL-18 receptors and anti-IL-18 receptor monoclonal antibodies, 

have been developed to treat autoinflammatory diseases such as cryopyrin-associated 

autoinflammatory syndrome (CAPS)129,130. However, independently of IL-1β and IL-18, 

inflammasome-dependent pyroptosis is a type of inflammatory cell death that will release 

DAMPs to induce more inflammation and also is important in the pathology of CAPS131. 

Therefore, inhibitors of the inflammasomes could offer greater therapeutic promise for this 

condition.

A small-molecule inhibitor, named glyburide, that is commonly used for treatment of T2D 

was the first compound identified to inhibit NLRP3- but not NLRC4- and NLRP1-

dependent IL-1β production132. Glyburide is able to inhibit ATP-, nigericin-, and IAPP-

induced NLRP3 inflammasome activation111. However, glyburide’s mechanism of action 

remains elusive, though it is known to function downstream of the P2X7 receptor and 

upstream of NLRP3. Importantly, glyburide has been shown to efficiently prevent 

endotoxic-shock-induced lethality in the animal model of this disease132. A recently 

identified group of NLRP3 inhibitors targeting P2X7 signaling is the nucleoside reverse 

transcriptase inhibitors (NRTIs), which are mainly used to block retrovirus replication. 

NRTIs have efficacy on several inflammatory and autoimmune diseases in mouse 

models133. Several other small-molecule inhibitors targeting NLRP3, NLRP1, NLRC4 or 

AIM2, including parthenolide134, Bay 11–708134, CRID3135, auranofin136, 

isoliquiritigenin137, 3,4-methylenedioxy-β-nitrostyrene138, cyclopentenone prostaglandin 
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15d-PGJ2
139 and 25-Hydroxycholesterol (25-HC)140, have been characterized, even though 

their potency for in vivo usage needs more evaluation. The large majority of these are 

pharmacologic inhibitors that have been repurposed to target the inflammasome.

Recently, two additional small-molecule inhibitors that reduced NLRP3 activation have 

been reported. It was found that the ketone body β-hydroxybutyrate (BHB), which serves as 

an alternative source of ATP during energy-deficit status, specifically inhibits a variety of 

stimuli triggering NLRP3 inflammasome activation but not NLRC4 or AIM2 inflammasome 

activation141. Importantly, in animal models of NLRP3-mediated diseases such as Muckle-

Wells syndrome, familial cold autoinflammatory syndrome, and urate crystal-induced 

peritonitis, BHB-complexed nanolipogels and a ketogenic diet strikingly attenuated 

caspase-1 activation and IL-1β secretion. It was shown that BHB inhibits the NLRP3 

inflammasome by preventing potassium efflux and reducing ASC oligomerization and speck 

formation, although the direct target of BHB is still under exploration141.

Another study found that the compound MCC950 is a highly selective inhibitor of the 

NLRP3 inflammasome142. MCC950 blocked both canonical (ATP, nigericin, and 

monosodium urate) and noncanonical (cytosolic LPS) NLRP3-dependent inflammasome 

activation at nanomolar concentrations, with no effect on NLRC4, NLRP1, or AIM2 

inflammasomes. In vivo, MCC950 has been shown to reduce IL-1β production and attenuate 

the severity of EAE, a disease model of multiple sclerosis described earlier which is known 

to be exacerbated by the NLRP3 inflammasome64,68,71. MCC950 rescued the neonatal 

lethality in a mouse model of CAPS while blockade of IL-1β alone did not prevent lethality, 

providing evidence for a benefit of inflammasome inhibitors beyond the sole inhibition of 

IL-1β. Even though the mechanism of NLRP3 inhibition by MCC950 is not fully 

understood, an extensive assessment of in vitro and in vivo pharmacokinetics of MCC950 

has been performed, making significant strides toward therapeutic application142.

Type I interferon has been shown to suppress inflammasome activation with a poorly 

understood mechanism143. Recent studies showed that an IFN-stimulated gene product 

cholesterol 25-hydroxylase (Ch25h) antagonizes both Il1b transcription and NLRP3, 

NLRC4, and AIM2 inflammasome activation, suggesting Ch25h has a broad inhibitory 

activity of different inflammasomes. More importantly, the Ch25h substrate 25-

hydroxycholesterol is able to inhibit NLRP3 inflammasome activation and IL-1β 

production140.

CONCLUSIONS AND PERSPECTIVES

The new understanding of how inflammasomes are activated in health and disease raises 

new questions. Can post-translational modifications of inflammasome components be 

targeted to modulate inflammasome activation? For example, therapies that specifically 

promote NLRP3 ubiquitination could quell pathologic inflammation driven by NLRP3 

inflammasome activation by promoting NLRP3 degradation. What are the contributory roles 

of inflammasomes in the myeloid lineage compared to other cell types such as endothelial 

cells, epithelial cells or even adipocytes in inflammatory diseases? Can drugs that directly 

target inflammasome components, rather than those that target the end products of 
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inflammasomes such as IL-1β, be identified? Two new gain-of-function mutations of 

NLRC4, Val341Ala and Thr337Ser, causing severe spontaneous autoimmune syndromes 

have recently been identified in humans44,45. Establishment of the mouse model with similar 

mutations in NLRC4 will be a powerful tool to study the mechanism of NLRC4 auto-

activation-induced autoimmune diseases and evaluate NLRC4 inhibitors in vivo.

Importantly, a greater understanding of the balance between beneficial versus detrimental 

inflammasome activation is also needed. Indeed, inflammasome activity is critical for host 

response to microbial pathogens and possibly for optimal response to vaccine adjuvants, as 

cytokine production by the innate immune system shapes the adaptive immune response. 

Thus, all inflammasome activation cannot be considered harmful, and the therapeutic 

inhibition of this pathway has to be balanced against its beneficial contribution. As the 

mechanistic insight of the inflammasomes increases, opportunities to create new therapies 

for patients with inflammatory diseases are expected to enhance proportionately.
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Figure 1. Mechanisms of NLRP3 inflammasome activation
NLRP3 must be primed before activation. Priming involves two distinct steps. First, an NF-

κB–activating stimulus, such as LPS binding to TLR4, induces elevated expression of 

NLRP3 (as well as IL1B), which leads to increased expression of NLRP3 protein. 

Additionally, priming immediately licenses NLRP3 by inducing its deubiquitination. The 

adaptor protein ASC must become linearly ubiquitinated and phosphorylated for 

inflammasome assembly to occur. After priming, canonical NLRP3 inflammasome 

activation requires a second, distinct signal to activate NLRP3 and lead to the formation of 

the NLRP3 inflammasome complex. The most commonly accepted activating stimuli for 

NLRP3 include relocalization of NLRP3 to the mitochondria, the sensation of mitochondrial 

factors released into the cytosol (mitochondrial ROS, mitochondrial DNA, or cardiolipin), 

potassium efflux through ion channels, and cathepsin release following destabilization of 

lysosomal membranes. Recent studies have determined that activated NLRP3 nucleates ASC 

into prion-like filaments through PYD-PYD interactions. Pro-caspase-1 filaments 

subsequently form off of the ASC filaments through CARD-CARD interactions, allowing 

autoproteolytic activation of pro-caspase-1. Inset shows domain arrangement of the NLRP3 

inflammasome components. Pro-caspase-1 and caspase-1 domains are simplified for clarity, 

the CARD domain is actually removed by cleavage, and two heterodimers form with the p20 

and p10 effector domains (p20/10).
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Figure 2. Mechanisms of NLRC4, AIM2 and noncanonical NLRP3 inflammasome activation
(a) NLRC4 inflammasome agonists such as the bacterial needle protein bind directly to 

regions within the NACHT domains of the NAIP subfamily of proteins. hNAIP and 

mNAIP1 bind needle protein, mNAIP2 binds rod protein, and both mNAIP5 and mNAIP6 

bind flagellin. Ligand-bound NAIP proteins then oligomerize with NLRC4 to form a 

caspase-1–activating inflammasome. Though NLRC4 can directly oligomerize with 

caspase-1 through CARD-CARD interactions, ASC is required for caspase-1 activation by 

the NLRC4 inflammasome, possibly through the formation of prion-like filaments (blue) by 

ASC. However, ASC is dispensable for the induction of pyroptosis. Inset shows domain 

arrangement of NLRC4 inflammasome components. NAIP proteins have three N-terminal 

BIR domains. hNAIP, human NAIP; mNAIP, mouse NAIP. (b) The mechanism of AIM2 

inflammasome activation is well defined. The HIN domain of AIM2 directly binds cytosolic 

dsDNA, displacing the PYD and relieving autoinhibition. This allows oligomerization of 

AIM2 PYD with ASC PYD, converting ASC into its prion form. Prion-like filaments of pro-

caspase-1 (violet) are then able to form off of the ASC filaments, inducing caspase-1 

activation. Inset shows domain arrangement of AIM2 inflammasome components. (c) 

Studies have determined that mouse pro-caspase-11 (mPro-caspase-11) and human pro-

caspases-4 and -5 (hPro-caspase-4/5) can directly bind intracellular LPS and activate a 

noncanonical NLRP3 inflammasome. This induces oligomerization of these pro-caspases, 
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leading to their proximity-induced activation. This is sufficient for the induction of 

pyroptosis but not for the processing of pro-IL-1β. However, active mCaspase-11 and 

hCaspase-4 can promote full assembly and activation of the NLRP3 inflammasome 

following a priming signal.
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Figure 3. Mechanisms of NLRP3 inflammasome action in Alzheimer’s disease
In Alzheimer’s disease, CD36 mediates the internalization of soluble amyloid-β and its 

intracellular conversion to fibrillary amyloid-β. This leads to disruption of the 

phagolysosome and activation of the NLRP3 inflammasome due to cathepsin B release. 

However, this does not exclude the possibility that phagocytosis of extracellular fibrillary 

amyloid-β also activates the NLRP3 inflammasome. Cathepsin B inhibition prevents 

amyloid-β–induced NLRP3 activation.
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Figure 4. Mechanism of inflammasome activation in inflammatory disease
(a) In atherosclerosis, free fatty acids (FFA) can prime the NLRP3 inflammasome through 

TLR2-TLR4 signaling. Additionally, oxidized low-density lipoprotein (oxLDL) primes the 

NLRP3 inflammasome through a CD36-TLR4-TLR6 signaling complex. CD36 also 

facilitates the internalization of oxLDL and its intracellular conversion to cholesterol 

crystals, which disrupt the phagolysosome and activate the NLRP3 inflammasome through 

cathepsin release. Phagocytosis of extracellular cholesterol crystals may also contribute to 

inflammasome activation. Cathepsin inhibition prevents the NLRP3 inflammasome 

activation induced by cholesterol crystals. (b) In type 2 diabetes (T2D), the NLRP3 

inflammasome is activated in both islet β-cells and myeloid cells. In β-cells, elevated 

glucose increases thioredoxin (TRX)-interacting protein (TXNIP). Intracellular ROS also 
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causes a conformational change in TXNIP, leading to its dissociation from TRX. TXNIP 

then binds NLRP3 and promotes NLRP3 inflammasome activation. In myeloid cells, the 

endocannabinoid anandamide binds the CB1 receptor to increase the expression of NLRP3, 

ASC and IL1B. Saturated fatty acid (SFA) inhibits intracellular AMP-activated protein 

kinase (AMPK). This decreases autophagy, which leads to an increase in mitochondrial 

ROS (mtROS), a known NLRP3 inflammasome stimulus. CD36 facilitates the 

internalization of soluble islet amyloid polypeptide (IAPP), which is converted 

intracellularly to its amyloid form. This disrupts the phagolysosome and activates the 

NLRP3 inflammasome due to cathepsin release. As the amyloid form of IAPP builds up in 

the pancreatic islets of individuals with T2D, phagocytosis of extracellular amyloid IAPP 

may also contribute to NLRP3 inflammasome activation.
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