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Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) represents an

emergent global threat which is straining worldwide healthcare capacity. As of May 27th,

the disease caused by SARS-CoV-2 (COVID-19) has resulted in more than 340,000

deaths worldwide, with 100,000 deaths in the US alone. It is imperative to study

and develop pharmacological treatments suitable for the prevention and treatment of

COVID-19. Ascorbic acid is a crucial vitamin necessary for the correct functioning

of the immune system. It plays a role in stress response and has shown promising

results when administered to the critically ill. Quercetin is a well-known flavonoid whose

antiviral properties have been investigated in numerous studies. There is evidence that

vitamin C and quercetin co-administration exerts a synergistic antiviral action due to

overlapping antiviral and immunomodulatory properties and the capacity of ascorbate to

recycle quercetin, increasing its efficacy. Safe, cheap interventions which have a sound

biological rationale should be prioritized for experimental use in the current context of a

global health pandemic. We present the current evidence for the use of vitamin C and

quercetin both for prophylaxis in high-risk populations and for the treatment of COVID-19

patients as an adjunct to promising pharmacological agents such as Remdesivir or

convalescent plasma.
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INTRODUCTION

It is serendipitous (or perhaps indicative of hard work) that the Nobel prize winner Szent-Gyorgyi
discovered both ascorbic acid (vitamin C) and the flavonoid quercetin (at the time labeled
vitamin P) (1). Ascorbic acid is an essential vitamin with known antiviral properties (2) which
is under investigation for its beneficial effects during the stress response in sepsis and critically ill
patients (3).

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2020.01451
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2020.01451&domain=pdf&date_stamp=2020-06-19
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:ruben.colungabiancatelli@gmail.com
https://doi.org/10.3389/fimmu.2020.01451
https://www.frontiersin.org/articles/10.3389/fimmu.2020.01451/full
http://loop.frontiersin.org/people/949378/overview
http://loop.frontiersin.org/people/52605/overview


Colunga Biancatelli et al. Quercetin and Vitamin C for COVID-19

Vitamin C exerts its antiviral properties by supporting
lymphocyte activity, increasing interferon-α production,
modulating cytokines, reducing inflammation, improving
endothelial dysfunction, and restoring mitochondrial function
(4–6). There are also suggestions that vitamin C may be directly
viricidal (7). These in vitro effects, as we previously discussed
(2), constitute a reflection of both the supra-physiological
concentrations of ascorbate and the interaction between vitamin
C and metal-containing culture media—both of which are
pro-oxidant, generating reactive oxygen species.

Quercetin (also known as 3,3′,4′5,7-pentahydroxyflavone) is
a widely distributed plant flavonoid, found in several vegetables,
leaves, seeds, and grains, where it is conjugated with residual
sugars to form quercetin glycosides (8). Studies suggest that
quercetin supplementation may promote antioxidant (9), anti-
inflammatory, antiviral (10), and immunoprotective effects (11).
Quercetin has been studied in various types and models
of viral infection due to its promising antiviral effects in
inhibiting polymerases (12), proteases (13), reverse transcriptase
(14), suppressing DNA gyrase, and binding viral capsid
proteins (15, 16).

In this review we collate the evidence of the antiviral
properties of quercetin, describe its biologic action and
pharmacokinetics profile, expand on our previous review of
vitamin C, discuss their synergistic actions, and propose this
experimental multi-drug approach for the prevention and
treatment of SARS-CoV-2/COVID-19 pandemic.

CHEMISTRY OF QUERCETIN

In plants, quercetin is produced from the phenylpropanoid
pathway and is ultimately derived from phenylalanine. It is
converted to 4-coumaroyl-CoA, via phenylalanine ammonia-
lysate, to cinnamate-4-hydroxylase and 4-coumaroyl-CoA-ligase.
This is combined with malonyl-CoA in a 1:3 ratio by 7,2′-
dihydroxy-4′methoxyisoflavanol synthase to form tetrahydroxy
chalcone. This in turn is converted to naringenin and to
eriodyctiol through flavonoid 3′-hydroxylase. Finally, eriodyctiol
is hydroxylated and converted to quercetin (Figure 1) using
flavanol synthase (17).

BIOLOGY OF QUERCETIN

Flavonoid compounds, such as quercetin, were initially studied
for their biological activity in affecting capillary wall resistance
(19) and continue to be investigated for their effects on vascular
tension (20). Dietary supplements differ, but often contain the
free form of quercetin—quercetin aglycone—under the FDA
national drug code numbers 65448-3085, 65448-3005 (21). Once
consumed, quercetin passes predominantly unaltered into the
large intestine (22). Quercetin acts as a free radical scavenger,
donating two electrons via o-quinone/quinone methide (23);
both in vitro and in vivo (24, 25) studies implicate quercetin
as a potent antioxidant. This antioxidant activity may also be
potentiated by vitamin C (26), as will be discussed below.

FIGURE 1 | Chemical structure of quercetin. Created with ChemDoodle Web

with permission (18).

There is also significant longstanding interest in the anti-
inflammatory activity of quercetin, as it has been suggested to be
a key mediator in the cardiovascular protective element of the
“Mediterranean” diet (27). This biological rationale is secondary
to quercetin’s free radical scavenging capacity, alongside diverse
roles identified in in vitro and in vivo models including: inhibition
of platelet aggregation (28), inhibition of lipid peroxidation
(29), and its inhibitory effects on pro-inflammatory mediators
such as lipoxygenase (30) and phospholipase A2 (31). This
anti-inflammatory effect is primarily mediated by flavonoid
activity on arachidonic acid metabolism and the associated
leukotriene/prostaglandin pathways. Furthermore, 3-methyl-
quercetin, a quercetin metabolite, displays stimulatory effects
on nasal epithelial cell ciliary beat frequency, both in vitro and
in vivo, when administered either alone or with absorption
enhancer HP-β-CD (32). Quercetin also affects the function
of several lipids, protein tyrosine, and serine/threonine kinases
(33, 34), such as phosphatidylinositol (PI)-3-kinase and inducible
nitric oxide synthase (NOS2) (35, 36).

BENEFICIAL EFFECTS OF VITAMIN C AND
QUERCETIN IN VIRAL INFECTIONS

There is a tremendous amount of literature supporting the
antiviral properties of quercetin, in both in vitro and in vivo
experiments. Quercetin inhibits several respiratory viruses in
cultured cells (16, 37). It inhibits the cytopathic effects provoked
by many serotypes of rhinovirus, echovirus (type 7, 11, 12, and
19), coxsackievirus (A21 and B1), and poliovirus (type 1 Sabin) at
a minimal inhibitory concentration of 0.03 to 0.5µg/ml in Hela
or WI-38 cells (38). Quercetin also significantly reduces plaque
formation by RNA and DNA viruses [Respiratory Syncytial Virus
(RSV), Polio type 1, parainfluenza type 3, and Herpes Simplex
Virus-1(HSV-1)] displaying anti-infective and anti-replicative
properties (39). It inhibits the replication of cytomegalovirus
(CMV) inoculated HeLa cells at a half inhibitory concentration
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(IC50) of 3.2 ± 0.8µM and with a selectivity index (SI) of 22
(40). Dengue virus type 2 (DENV-2) replication in Vero cells
is inhibited by quercetin at an IC50 of 35.7µg/mL, causing a
DENV-2 RNA reduction of 67%. This is attributed to quercetin’s
ability to either block virus entry or inhibit viral replication
enzymes such as viral polymerases (41).

In vivo studies indicate that mice inoculated with
meningoencephalitis virus are protected from lethal infection
by quercetin (30 or 40 mg/Kg BID, po, for 4 days) in a dose
dependent manner (42). These beneficial effects are abolished if
the compound is administered for <3 days, once per day or via
subcutaneous injection. This may suggest that the antiviral effects
may be dependent on a minimum inhibitory concentration or
from some form of metabolic drug conversion (42). Quercetin
treatment also displayed a beneficial effect in immunocompetent
mice infected with Mengo virus, where it lessened the severity
of organ damage (43). Athletes supplemented with quercetin
are protected from stress-induced susceptibility to upper
respiratory tract infection (44)—which was not related to
immunomodulation (45, 46).

Vitamin C is an essential nutrient involved in a diverse array
of immune functions; its supplementation has demonstrated
beneficial effects in different types of viral infections. Reduced
levels of ascorbate have been found in patients with viral
infections (47), sepsis (48), sepsis-related ARDS (49), and other
critical illness (50). During infection, vitamin C is necessary
for neutrophil killing (51), is concentrated within macrophages
(52), is responsible of T cell maturation (53), and promotes
phagocytosis and apoptosis of spent neutrophils (4). It is not
surprising, therefore, that viral infections, depending on their
severity, are associated with an increased metabolism and
reduced circulating ascorbate.

Vitamin C has improved survival in different murine models
of lethal infection. Mice infected with Venezuelan encephalitis
virus and treated with vitamin C (50 mg/kg) exhibit half
the mortality of controls with associated reductions in viral
titers, lipid peroxidation products, and NO content (54). Mice
incapable of synthetizing vitamin C (L-Gulono-gamma-lactone
oxidase nulls) were infected with influenza; mice not receiving
supplemental vitamin C exhibited greater lung pathology scores
despite no differences in viral titers (55). In restraint-stressed
mice with H1N1 viral-induced pneumonia, vitamin C reduced
mortality dose-dependently (100% vs. 80% vs. 50% at 0, 125, and
250mg/kg/day) and reduced capillary-alveolar structural damage
(56). Mice inoculated with Rabies+mouse brain cells and treated
with daily 100 mg/kg IM vitamin C exhibited nearly half the
mortality of controls (57).

The only human study of vitamin C has been in USSR soldiers
with severe viral infection indicated vitamin C supplementation
(300 mg/day) protected from influenza-associated pneumonia
and was associated with shorter hospital stays (58).

Vitamin C administration (i.v. 5 g/day twice/week) in patients
with herpes zoster exhibited a lower incidence of postherpetic
neuralgia (31.1% vs. 57.1%) and at study end (week 16) there
was a lower pain score in the treatment group (0.64+/−0.9 vs.
1.98 +/−0.7) (59). Vitamin C administered at 1 g BID to 133
patients, reduced the risk (OR 0.25) of herpes simplex keratitis

(HSK) recurrence (60), in accordance with previous studies
indicating reduced ascorbate availability in the eye (61). It is
noteworthy that a growing number of case reports of virus-
related acute respiratory distress syndromes (ARDS) indicate
successful treatment with intravenous high doses of Vitamin
C (62, 63).

Co-administration of quercetin (12.5 mg/kg/week) and
vitamin C and B3 in a murine model of exercise-induced
susceptibility to influenza H1N1 prolonged time-to-death
(median time to death: placebo 9.0 ± 0.33 vs. quercetin 16.5 ±

1.2) and improved survival (mortality: placebo 74% vs. quercetin
52%) when compared to mice receiving only vitamins B3 and
C (64). An older, small clinical trial identified the combination
of flavonoids and ascorbic acid (1:1 ratio) as beneficial for
respiratory infection (200mg TID) (65).

Inhibiting Virus Entry
Cell entry is a crucial step during viral infection and has been
studied as a potential target of antiviral treatments (66–68). In
an in vitro model of H1N1 and H3N2 influenza infection of
MDCK cells, quercetin demonstrated reduced cytopathic effect
48 h post-infection (69). This effect was observed when quercetin
was administered during viral entry (0–2 h), was maximal
with quercetin pretreatment, and was dependent on quercetin’s
ability to bind hemagglutinin proteins (HA). Specifically,
quercetin bound (dose-dependently) the HA subunit responsible
for membrane fusion during virus entry and virus-mediated
hemolysis (69). In vitro, quercetin pre-treatment (10µM)
inhibited Rhinovirus (RV) virulence, entry, and replication
into BEAS-2B cells via multiple mechanisms: it impeded
RV endocytosis though misdirecting EEA1 localization -an
early endosomal marker- and inhibiting AKT phosphorylation
with subsequent 3-fold viral load reduction at 24 h, lowering
negative-strand RNA and modulating interferon (IFN) and IL-
8 expression (70). These results were confirmed in vivo, with
an estimated lower plasmatic concentration of quercetin (nM)
(similarly to other studies (71–73)) during which quercetin
reduced RV-RNA at 1 day post-infection, modulated KC, MIP-
2, TNF-a, and MCP-2, decreased virus-induced airway hyper-
responsiveness, and modulated IFNs (IFN-α and IFN-λ2) (70).

Interfering With DNA and
RNA Polymerases
The in vitro antiviral effects of quercetin on herpesviruses
(HSV-1, 2) and adenoviruses (ADV-3,−8,−11) suggest inhibition
of early stage viral replication in a dose dependent manner
(for HSV-1 100% inhibition at 60 mg/L) (16, 74), as well as
inhibition of viral DNA and RNA polymerase (12, 75, 76).
In human embryonic kidney cells (HEK), inoculated with
polio, 3-methyl-quercetin disrupted plaque formation while
quercetin itself demonstrated these effects when administered
together with vitamin C (77). In fact, Vitamin C (either D-
or L-ascorbate but not dehydroascorbate), prevented quercetin
spontaneous degradation suggesting necessary co-administration
with ascorbate to exert its antiviral effect. The beneficial effects
of 3-methyl-quercetin (10µM) were exerted primarily when the
compound was administered 1–2 h post-poliovirus infection in
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Hela cells, inhibiting viral proteins and RNA synthesis in a
dose dependent manner (78). In fact, 3-methyl-quercetin was
identified as a molecule able to bind essential proteins required
during the transcription from minus-strand RNA into positive
polarity RNAs, thus interfering with cytoplasmic viral RNA
replication (79).

In an in vivo study, a quercetin metabolite (4′,5-diacetyl-
3,Y,7-trimethyl-quercetin), administered orally BID for 4 days
protected mice against lethal infection by Coxsackie virus,
promoting survival in a dose-response scale: 10, 20, and 40mg/kg
increased survival by 30, 40, and 50%, respectively (38). These
beneficial effects were ascribed to a complete inhibition of virus
replication when the compound was added within 2 h after virus
absorption and related to the blockade of the RNA polymerase
complex, as demonstrated in vitro (38).

Inhibition of Reverse Transcriptase
Quercetin has been investigated in vitro as an antiviral agent
for HIV due to its ability to inhibit crucial enzymes: reverse
transcriptase (RT), integrase (IN), and protease (PR) (80).
Quercetin significantly reduces HIV viral replication (81) and,
when added to peripheral blood mononuclear cells (PBMNc)
infected with HIV and compared to HIV infected controls,
quercetin reduced the levels of p24, Long Terminal Repeat (LTR)
gene expression, and viral infectivity together with an inhibition
of TNF-α and upregulation of IL-13 (11).

Quercetin has also been shown to inhibit non-HIV RT activity
in vitro, including avian myeloblastosis reverse transcriptase
(AMV-RT), Rous-associated virus-2 (RAV-2-RT), and Maloney
murine leukemia virus (MMLV-RT). Quercetin displayed a
dose-dependent inhibitory action: at 50µM, 23% inhibition
of both AMV-RT and RAV-2-RT, and at 10µM inhibition of
mammalian MMLV-RT of almost 60% were reached (14). HIV-
RT was inhibited completely at 2µg/ml quercetin in a partially-
competitive mode (76). These antiviral effects of quercetin are
believed to be related to the five hydroxyl groups on 3, 3′,
4′, 5, and 7 as the inhibitory activity is lower for baicalein,
quercetagetin, or luteolin which lack these groups (75).

Interestingly, Harakeh et al. studied the dose-dependent effect
of ascorbic acid (0–150µg/ml) on HIV-infected T-lymphocytes
in vitro and reported that >99% reverse transcriptase and nearly
>90% p24 antigen suppression and a 93% inhibition of syncytia
formation, a marker that correlates with viral infectivity and
cytopathic effects (82).

Inhibition of Proteases
Quercetin is a potent HIV protease inhibitor in vitro, with an
IC50 of 58.8µM (83). Hepatitis C virus (HCV) NS3 serine
protease catalytic activity was directly inhibited by quercetin
treatment in a dose dependent manner (95% NS3 inhibition
at 1.25 mg/ml); in this study quercetin blocked virus RNA
production and impeded virus replication by 70% at 72 h without
affecting cell viability (13).

Blocking Virus Assembly
Quercetin treatment inhibits HCV replication (84). This effect
is attributed to its ability to modulate Heat Shock Protein

expression (HSPs), thus impeding the crucial binding between
heat shock factor and elements (HSF-HSE) necessary for the
stress-induced transcription of stress genes (85, 86). Quercetin
reduced HSP70 and HSP40, thereby impeding the formation
of Non-Structural protein 5A complexes (NS5A-HSP70 and
NS5A-HSP40) necessary for HCV genome replication apparatus
through the internal ribosome entry site (IRES). Despite
unaltered HCV titer, the production of infectious particles was
decreased, interestingly more by quercetin treatment than by
HSP knockdown, displaying a dose-dependent relationship: at
0.5µM quercetin reduced viral production by 29%, at 5µM by
90%, and at 50µM by nearly 100% (84).

Immunomodulatory Properties
Quercetin stimulates T-helper cells to produce (Th-1)-derived
Interferon-γ (IFN- γ) and downregulates Th2-derived IL-4
when added to cultured blood peripheral mononuclear cells
(11). Immunonutrition studies in mice with supplementary
polyphenols, including quercetin, showed enhanced NK cell lytic
activity, neutrophil chemotaxis, and lymphocyte proliferation
(87, 88).

Human foreskin fibroblast (HFF) and endothelial cells (EC)
pretreated with 2-phospho-ascorbate (ASC-2P) resisted CMV
infection; they displayed a reduction in immediate and late
antigens and viral yield was inhibited 50–100-fold in ECs and
100–1,000-fold in HFF (89). This effect was not dependent on a
sustained ASC-2P presence but was abolished if the ASC2-P was
added after the virus infection, indicating an immunomodulatory
effect, rather than directly antiviral. Animal models with gulo
(–/–) mice insufficient in vitamin C, when infected with 20
hemagglutination units (HAU) of H3N2 influenza exhibited
worse outcomes than wild type and Gulo (–/–) sufficient in
vitamin C (90). Gulo (–/–) showed a reduction in IFN-α/β while
displaying higher levels of IL-1α, TNF-α, and IL-1B. When Gulo
(–/–) mice received supplemental Vitamin C, these cytokine
expression profiles were lost.

Patients with acute Epstein-Barr infection (EBV) treated
with high doses of intravenous vitamin C (7.5–50 g) displayed
lower EBV-IgG (levels, while EBV VCA IgM antibody levels
were negatively correlated to increasing plasma ascorbate
concentration (91). Patients with HTLV-1-associated
myelopathy/tropical spastic paraparesis HAM/TSP were all
successfully treated with 35–40 mg/kg oral vitamin C for 3–5
days despite no changes in serum HTLV-1 or CSF HTLV-1
antibody titer, indicating an immunomodulative effect (92).
Of these patients, 4 underwent a vitamin C on-off study
which demonstrated a “positive dose response relationship
with neurological symptoms.” A separate prospective trial
into a diverse number of therapies indicated that vitamin C
improved motor disability grades in HAM/TSP in 20% of
patients (93). High dose ascorbic acid was then shown to display
antiproliferative (95% decrease in lymphoproliferation) and
immunomodulatory effects (via reduction of TNF-α, IFN-γ,
IL-6, and p19) in peripheral blood mononuclear cells (PBMCs)
extracted from HAM+ patients and T helper cell lines.

Vitamin C administration has been related to enhanced
interferon production and was studied for its possible use for
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the prevention of vaccine failure. Rabies vaccination, when
supplemented with 2 g oral vitamin C for each of the 3 injections
provoked, at 24 h, increased serum IFN-α levels, indicating that
“vitamin C is an effective stimulator of interferon production”
(94). Mice on an ad libitum diet containing vitamin C increased
induction of interferon (62–145%) depending on the viral titer
of inoculation (95), and L-ascorbate added to stimulated mouse
cell lines increases interferon synthesis (96). Low levels of vitamin
C, in fact, have been related to insufficient phosphorylation of
signal transducers and activation of transcription (STATs), which
represent a crucial signaling process of IFNs (97). Specifically,
T cells of mice deficient in vitamin C display defects in STAT3
phosphorylation (90).

FOCUS ON SARS-COV-2

Quercetin has been investigated for its possible antiviral effect on
several members of the Coronaviridae family and, as mentioned
by Ling Yi and colleagues, “quercetin offers great promise as a
potential drug in the clinical treatment of SARS” (98). SARS-
Coronavirus, described in 2003 (99), is a single-stranded RNA
virus of ∼29,700 nucleotides, which uses ribosome sites to
encode two replicase glycoproteins, PP1a and PP1b, that mediate
viral replication (99, 100). Once these precursor glycoproteins
are synthesized, 3C-like protease (3CLpro) plays a critical
role in the lytic release of its replicates (101). Quercetin-
3β-galactoside binds SARS-Cov 3CL protease and inhibits its
proteolytic activity with an IC50 of 42.79 ± 4.95µM (102).
This inhibitory action on 3CLpro is dependent on the hydroxyl
group of quercetin which, as shown through molecular modeling
and Q189A mutation, recognizes Gln189 as a crucial site
on 3CLpro responsible for the binding of quercetin (102).
Quercetin was also identified as a compound able to block
SARS-Coronavirus entry into Vero E6 cells with a half-effective
concentration (EC50) of 83.4µM and with low cytotoxicity
(CC50 3.32mM) (98).

SARS-CoV-2, the virus responsible for the 2020 COVID-
19 pandemic (103), belongs to the genus Betacoronavirus and
subgenus Sarbecovirus and, due to its similar receptor-binding
domain, it is assumed, similarly to SARS-CoV, to infect type II
pneumocytes entering via the angiotensin-converting enzyme II
receptor (104). SARS-Cov-2 protease 3CL maintains the same
Gln189 site (105) of SARS-Cov 3CLpro, which previously was
identified as the binding site for the hydroxyl groups of quercetin
and its derivates (102).

Interestingly, an in vitro study of ascorbic acid treatment
on chick-embryo ciliated tracheal organ cells (CETO) promoted
resistance to Coronavirus infection but did not show any effect
on orthomyxovirus or paramyxovirus (106).

Despite the breadth and depth of anti-viral in vitro and in
vivo studies into the immunomodulatory effects of quercetin
and vitamin C administration, further studies are absolutely
necessary to confirm quercetin inhibitory activities on SARS-
Cov-2 virus entry, RNA polymerase, and on other necessary viral
life-cycle enzymes.

PHARMACOKINETICS OF QUERCETIN

Orally administered quercetin glycosides are hydroxylated by β-
glucosidases in the gut (107, 108). Aglycone quercetin passively
permeate the intestinal epithelial barrier while quercetin
glycosides are absorbed via the intestinal sodium/glucose
cotransporter-1 (109). The bioavailability of oral quercetin
is extremely variable, achieving values from 0 to 50% (110).
Quercetin can be metabolized either in the enterocytes
or in the hepatocytes forming glucuronidated, sulfated,
or/and methylated compounds (111). Indeed, four out of
five hydroxyl groups of quercetin can be glucuronidated by
UDP-glucuronosyltransferase, forming its major metabolites:
quercetin-3-glucuronide, 3’-methylquercetin-3-glucuronide,
and quercetin-3’-sulfate (112). Rat tissue distribution of
orally, long-term administered quercetin (12 weeks) shows
the highest concentration in the lungs while pigs display
the highest concentrations in the liver and kidneys (113).
In contrast, short-term administration exhibits no marked
distribution, implying that the beneficial effects of quercetin in
preventing lung respiratory viral infection could be maximized
by long-term administration. Following 500mg oral quercetin,
maximum plasma concentration of ∼15 µg/L of aglycone
quercetin (∼50 nM, Tmax of 3 h) and 450 µg/L of quercetin
non-methylated conjugates (Tmax of 4 h) were found (114).
Intravenous administration results in an elimination half-life
of 0.7–2.4 h with a distribution volume at steady-state of 6.2 to
92.6 L and with a total body clearance of 30 h (110).

SAFE PROFILE AND OPTIMAL DOSING

Oral supplementation with quercetin up to 1 g/day for 3
months has not resulted in significant adverse effects (111).
In a randomized placebo-controlled study, 30 patients with
chronic prostatitis were supplemented with oral quercetin (1
g/day) and reported only two mild adverse reactions (headache
and temporary peripheral paresthesia) (115). Intravenous
administration of quercetin in a phase I clinical trial for cancer
patients resulted in nausea, vomiting, sweating, flushing, and
dyspnea at doses >10.5 mg/Kg (756mg per 70Kg individual)
(116). Only higher intravenously administered doses up to
51.3 mg/Kg (around 3,591mg per individual) were associated
with renal toxicity (111). The safety of quercetin-based oral
supplementation during pregnancy and breastfeeding has not
been established.

We have previously described the safety profile and dosing
strategies of vitamin C (117). According to the data presented
above, we propose the following optimal dosing (Table 1).
Further studies are needed to examine and discuss the possible
administration of quercetin for prolonged periods of time
(>1 year).

SYNERGISTIC ANTIVIRAL ACTION

Quercetin spontaneously oxidizes to form O-semiquinone and
O-quinone/quinone methide (QQ), which can bind protein
thiols forming toxic compounds (118). This process of both
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anti- and pro-oxidant effects has been named the “quercetin
paradox” (119). However, QQ can be recycled into quercetin by
electron donors like NADH or ascorbate, or form together, with
glutathione either 6-glutathionyl-quercetin or 8-glutathionyl-
quercetin (GSQs) (107, 120). Importantly, if ascorbate or
glutathione levels are insufficient, quercetin may be shunted
to QQ and exert prooxidant effects. Therefore, we stress the
importance for its co-administration with vitamin C (121,
122). However, even though QQ exhibits a higher affinity
for glutathione than for vitamin C (121), the methylated
metabolites of quercetin show a higher preference for ascorbate
than for thiols, suggesting a cycling of activity which will
exert anti-oxidant effects (Figure 2) (123). Furthermore, both
GSQs (124) and QQ-protein thiols have been shown to be
unstable and transient -lasting for minutes and hours instead

TABLE 1 | Proposed multi-drug approach for either the prophylaxis for high risk

population, and treatment of mild and severe cases.

Quercetin Vitamin C

Prophylaxis 250–500mg BID 500mg BID

Mild cases 250–500mg BID 500mg BID

Severe Cases* 500mg BID 3 gr q6 for 7 days

*ARDS-like presentation, require assisted ventilation/intubation, ICU hospitalization.

of days- suggesting an overestimation of the proposed in vitro
toxicity (125).

The supraphysiological concentrations of ascorbate achieved
with intravenous administration (i.v. 3 gr q6) are capable of
free radical scavenging and electron donation, preventing either
quercetin or glutathione oxidation. In this scenario, ascorbate
may exert antioxidant and immunoprotective effects, quercetin
and its metabolites exert a concurrent antiviral response and, if
quercetin-oxidized compounds are formed, they can be partially
recycled by ascorbate and transported by glutathione, thus
preventing their possible toxicity.

DISCUSSION

A multi-drug approach with quercetin and vitamin C may
disrupt virus entry, replication, enzyme activity and assembly,
and concurrently fortify the immune response promoting early
IFNs production, modulating interleukins, promoting T cell
maturation, and phagocytic activity. Quercetin and ascorbic
acid co-administration represents an experimental strategy for
prophylaxis and treatment of several respiratory viruses, such
as SARS-CoV-2. The blockage of virus entry represents a key
strategy and quercetin impedes viral membrane fusion for both
influenza and SARS-Cov in vitro (98). Quercetin also targets
viral polymerases and may disrupt replication via the inhibition
of reverse transcriptase enzymes. Quercetin further inhibits
SARS 3CL protease by binding to its GLN189 site (102), which

FIGURE 2 | After exerting its scavenging properties, quercetin is oxidized into its reactive products o-semiquinone and o-quinone/quinone methide (QQ). These

compounds can be recycled by antioxidants like ascorbate or NADH or removed by glutathione. If ascorbate or glutathione levels are reduced, QQ can bind protein

thiols producing transient toxic compounds. Created with ChemDoodle Web with permission (18).
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is expressed similarly by SARS-COV-2 (105) and provides a
direct mechanistic rationale for its experimental clinical use—in
addition to its immunoenhancing and anti-inflammatory actions.
Despite the limitations of in vitro research, it is noteworthy that
the few in vivo models reviewed here indicate increased survival
from lethal viral infection when treated with quercetin (42, 64).
Some studies suggest that oral administration and metabolic
processing (methylation, conjugation, etc.) is necessary, and have
identified quercetin derivates, which display variable Tmax, as
responsible for a cooperative antiviral activity (126–128).

Vitamin C exerts immunomodulatory activity, enhancing
interferon production through STAT3 phosphorylation (90),
limiting cytokine-induced organ damage (55), promoting
survival in lethal infections (54) and, importantly, is able to
recycle oxidized quercetin (120), enhancing its antiviral effects.
SARS-Cov-2 virus infection may initiate a strong inflammatory
and dysregulated reaction in the lung with increased levels
of IL-6 and a “cytokine-storm” (129) which has been shown
to provoke either an asymptomatic, mild, or severe infections
This cytokine dysregulation may be associated with neutrophil
extracellular traps (130) and alterations in T cell activity (131).
These immunological alterations which have characterized our
current understanding of Covid-19 suggest that agents which
target immune modulation, rather than direct viricidal activity,
may present exciting targets for pharmacological intervention.
In this scenario, Vitamin C and quercetin co-administration
may represent a safe, effective, and inexpensive antiviral and
immunomodulative approach for both the prophylaxis of high-
risk populations and the treatment of both mild and severe cases.

They have also consistently been shown to display excellent
safety profiles, and a consideration of risks and benefits in
their therapeutic potential should be placed within this context.
Vitamin C is a widely available supplement which many millions
of people use already, and we have highlighted its antiviral
properties in conjunction with quercetin. Due to its large-scale
use, vitamin C in particular would be a cheap intervention with
which to ascertain these compounds’ efficacy as a prophylactic
intervention. The prophylactic use of over-the-counter vitamin
supplementation to combat infection is a behavior many people
engage with already. Research into the potential prophylactic
administration of vitamin C and quercetin in high-risk groups
is therefore warranted.

The excellent side effect profile of these agents would
also suggest that they may complement interventions which

have displayed potential benefits in treating Covid-19, such as
Remdesivir (132) and convalescent plasma (133, 134), which we
believe warrants their experimental use in clinical trials.

There are potential limitations of their use in clinical studies.
Both agents are present in varying degrees in individuals’
diets and global recommendations for vitamin C intake vary
extensively across the globe (135). Prophylactic interventions
in general populations within the community will therefore be
confounded by the quantity present in differing diets. Agents
such as vitamin C also have well-characterized beneficial effects
apart from the antiviral properties we have highlighted here.
Supplementation with these agents may therefore promote
general health and indirectly affect the capacity of individuals to
combat viral infection. Although this would diminish the ability
to identify the direct antiviral properties of vitamin C in clinical
studies it may have ancillary benefits of promoting general
health, which may be particularly pertinent if administered in
communities with greater deprivation or from less economically
developed countries.

CONCLUSION

Quercetin displays a broad range of antiviral properties which
can interfere at multiple steps of pathogen virulence -virus entry,
virus replication, protein assembly- and that these therapeutic
effects can be augmented by the co-administration of vitamin
C. Furthermore, due to their lack of severe side effects and
low-costs, we strongly suggest the combined administration of
these two compounds for both the prophylaxis and the early
treatment of respiratory tract infections, especially including
COVID-19 patients.
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